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Abstract: Advanced research in recent years has revealed the important role of nutrients in the
protection of women’s health and in the prevention of women’s diseases. Genistein is a phytoe-
strogen that belongs to a class of compounds known as isoflavones, which structurally resemble
endogenous estrogen. Genistein is most often consumed by humans via soybeans or soya products
and is, as an auxiliary medicinal, used to treat women’s diseases. In this review, we focused on
analyzing the geographic distribution of soybean and soya product consumption, global serum
concentrations of genistein, and its metabolism and bioactivity. We also explored genistein’s dual
effects in women’s health through gathering, evaluating, and summarizing evidence from current
in vivo and in vitro studies, clinical observations, and epidemiological surveys. The dose-dependent
effects of genistein, especially when considering its metabolites and factors that vary by individuals,
indicate that consumption of genistein may contribute to beneficial effects in women’s health and
disease prevention and treatment. However, consumption and exposure levels are nuanced because
adverse effects have been observed at lower concentrations in in vitro models. Therefore, this points
to the duplicity of genistein as a possible therapeutic agent in some instances and as an endocrine
disruptor in others.

Keywords: genistein; soya products; dual role; dose-dependent

1. Introduction
1.1. Genistein in Food

Genistein (5,7-dihydroxy-3-(4-hydroxyphenyl) chromen-4-one) is a phytoestrogen
and isoflavone found in soybeans and soy-derived foods [1], including soya products,
meat alternatives, edamame, and tempeh [2]. It has been detected in many processed
foods [3] and can also be found in other foods [4]. Genistein’s content in mature soybean
seeds and therefore in soya products, varies by region, from the highest genistein content
(>70 mg/100 g food) in soybean seeds from the US, Korea, and Japan, to the lowest from
Europe (39.78 mg/g) and Taiwan (45.88 mg/g) [4]. Alongside reporting high genistein
concentrations in soybeans, the US is currently leading the world in soybean production
and export [5]. Furthermore, the demand for plant-based protein in Western societies is
increasing; while dollar sales of all US foods have increased by 17% over the past two
years, plant-based food sales have increased by 43% over this same time period [6]. As a
compound that is so commonly found in food and specifically in soy products (Table 1),
developing our understanding of genistein is paramount in both preserving global health
and furthering advancements in women health.
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Table 1. Genistein content in consumable products.

Food

Mean Genistein
Concentration a

(mg Genistein/
100 g Food)

Standard
Deviation References

Textured Soy Flour 89.42 26.96 [7–15]
Instant Beverage Soy Powder 62.18 3.69 [14,16–20]

Soy Protein Isolate 57.28 14.17 [7,14,16,19,21–29]
Meatless Bacon Bits 45.77 0.11 [13]

Kellog’s Smart-Start Soy Protein Cereal 41.90 N/A b (n < 3) [13]
Natto 37.66 7.85 [30–36]

Uncooked Tempeh 36.15 17.64 [11,14,16,29,31,37–39]
Miso 23.24 8.37 [14,16,17,30,31,33,35,36,40–43]

Sprouted Raw Soybeans 18.77 11.22 [23,32,40,44–49]
Cooked Firm Tofu 10.83 3.98 [30,40,50]

Red Clovers 10.00 0.00 [51]
Worthington FriChik canned meatless

chicken nuggets (prepared) 9.35 N/A (n < 3) [31]

American Soy Cheese 8.70 N/A (n < 3) [30]
Kellog’s Kashi Go-Lean Cereal 7.70 N/A (n < 3) [13]

Chocolate Power Bar 3.27 N/A (n < 3) [44]
Hoisin Sauce 3.25 N/A (n < 3) [13]

Cake-Type Plain Doughnuts 2.44 1.11 [13,40]
Raw Pistachios 1.75 N/A (n < 3) [40,52]

Reconstituted Infant Formula
(Abbot Nutrition) 1.37 0.37 [53,54]

Cooked USDA Commodity Beef Patties 1.09 0.42 [31]
Fat Free Frankfurter Beef 1.00 N/A (n < 3) [13]

Raw Chicken Breast Tenders 0.25 N/A (n < 3) [13]
Raw White Grapefruit 0.03 N/A (n < 3) [44]

Whole Raw Eggs 0.02 N/A (n < 3) [44,45]
Mature Raw Black Beans 0.00 0.00 [44,55,56]

a Data summarized from [4] b Not Applicable.

1.2. Genistein Levels in Various Populations

Genistein has been found and quantified globally in measures ranging from daily
intake to serum concentration. Prominent data from several different studies in popula-
tions are outlined in Table 2, which is representative of two larger correlations of serum
genistein concentrations.

Table 2. Genistein levels in populations worldwide.

Population Number of
Subjects Sample Type Quantified Genistein References Year

Healthy infants in
Pennsylvania,

collected at the
Children’s
Hospital of

Philadelphia and
its affiliated clinics

Blood, urine, and saliva samples
from cow- and breast-milk-fed

infants

Large majority, except for cow’s
milk-formula-fed infants, below
LOD (<27 ng/mL in blood, <1.4

ng/mL in saliva, and <0.8
ng/mL in urine) [57] 2009

165 Urine (cow-formula-fed infants) 13.6 ng/mL
Blood (soy-formula-fed infants) 890.7 ng/mL (median)
Urine (soy-formula-fed infants) 7220 ng/mL (median)
Saliva (soy-formula-fed infants) 10.9 ng/mL (median)
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Table 2. Cont.

Population Number of
Subjects Sample Type Quantified Genistein References Year

Cohort of women
in Philadelphia,

PA, USA
451 Daily consumption 2.4–3.9 mg (average)

[58] 2008Subgroup of larger
cohort of women
in Philadelphia,

PA, USA

27 Daily urine excretion 136.4 ng genistein/mg creatine
(average)

Adult participants
from Ireland, Italy,
the Netherlands,

and the UK

Daily consumption (Ireland) 0.368 mg/day (average)

[59] 2003
7312 Daily consumption (Italy) 0.302 mg/day (average)

Daily consumption
(The Netherlands) 0.516 mg/day (average)

Daily consumption (the UK) 0.389 mg/day (average)

Women of various
racial and ethnic
groups across the

US

1550 Daily consumption
(White women) 3.6 µg genistein/day (average)

[60] 2006

935 Daily consumption
(African American women) 1.7 µg genistein/day (Average)

286 Daily consumption
(Hispanic women) 0 µg genistein/day (average)

185 Daily consumption
(Chinese women)

3534 µg genistein/day
(average)

195 Daily consumption
(Japanese women)

6788 µg genistein/day
(average)

Adults from
various regions of

Japan
215

Daily consumption 14.5–18.3 mg genistein/day

[61] 2001Serum level 475.3 nmol genistein/liter of
serum

Daily excretion in urine 14.2 µmol genistein/day

Chinese men 48 Daily consumption 19.4 ± 12.36 mg/day [62] 2007

Adult (20–39 years
old) women from

the UK

20
Plasma genistein concentration of

women that rarely consumed
soy products

14.3 nmol/L (geometric mean)

[63] 2001

20
Plasma genistein concentration of

women that drank no soy milk
but ate some solid soya foods

16.5 nmol/L
(Geometric mean)

20

Plasma genistein concentration of
women that drank 0.25 pints of

soy milk daily and ate some solid
soya foods

119 nmol/L (geometric mean)

20

Plasma genistein concentration of
women that drank 0.5+ pints of

soy milk daily and ate solid soya
foods regularly

378 nmol/L (geometric mean)

First, Table 2 shows that individuals who consume more soy products or soy-derived
foods have higher serum levels of genistein. Supporting data from Verkasalo et al. [63]
demonstrated that among four groups of twenty British women consuming increasing
amounts of soya products (determined via a food diary method), plasma concentrations
of genistein increased in a manner correlated with total soya consumption. In order of
lowest to highest soya product consumption, the participant groups’ geometric mean
plasma concentrations (nmol/L) of genistein were 14.3, 16.5, 119, and 378. The Spearman
correlation coefficient a quantitative measure for the strength of this correlation between
plasma isoflavone concentrations and estimated dietary intakes was determined to be
between 0.66 and 0.80 [63]. This correlation also extends beyond blood serum, as genistein
has been shown to be more common in the breast milk of mothers that are consuming
vegetarian and especially vegan diets [3]. It was further demonstrated that genistein can
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cross the placental barrier and potentially affect the developing fetus, as it was detected in
similar concentrations in the maternal plasma, umbilical cord plasma, amniotic fluid, and
neonate plasma in seven healthy Japanese mother-child pairs [64].

Secondly, the data in Table 2 also shows that both residents of Asian countries and
Asian minority populations in Western countries consume significantly more soy prod-
ucts and, therefore, have higher serum genistein levels than other populations. This is
further displayed in Figure 1, and validated when considering that China is the world’s
largest importer of soybeans, consuming roughly one-third of the global annual soybean
harvest [65]. However, evidence suggests that eating a soya-rich diet, as vegetarians and
vegans commonly do [66], can elevate daily genistein intake levels among individuals to
a similar degree. British women who consumed soya regularly were reported to have a
daily soya-product consumption that rivals that of Japanese adults consuming a traditional
diet [63].

Figure 1. Heatmap showing daily genistein consumption levels across 7 surveyed countries. Data from [58,59,61,62].

Another relevant population in relation to genistein is perimenopausal and post-
menopausal aged women. As literature regarding the clinical applications of phytoe-
strogens has risen to prominence, millions of peri- and postmenopausal women have
begun taking genistein and soya supplements, aiming to alleviate their menopausal symp-
toms [67,68]. Taken in conjunction with the aforementioned populations, it is important to
investigate genistein’s effects, not only because of increased global soya consumption [69],
but because genistein is ubiquitously present in food, breast milk, and human serum and is
therefore bioactive in vulnerable, underrepresented, maternal, and neonatal populations.

1.3. Metabolism and Metabolites of Genistein

Genistein is typically ingested from vegetation as the glycoside genistin. Genistin
is hydrolyzed by phlorizin hydrolase (a small intestine brush-border lactase) [70] or by
enteric microflora [71] into genistein (the bioactive aglycone) before absorption or further
modification by enteric microflora [72]. Genistein, like other polyphenols, has an oral
bioavailability of roughly 10% [73]. With its low absorption potential, its lipophilic nature,
and low molecular weight, genistein can be passively transported into intestinal cells [74],
leading to post-absorption metabolism.

Most orally consumed genistein is eliminated by urine within a day of consump-
tion [75]. When absorbed into the bloodstream via the intestinal tract, genistein and all of
its metabolites were shown in a mouse model to have a half-life of 46 h [76]. However, in
a study of nineteen healthy women, its bioactive life as unconjugated genistein aglycone
was shown to be much shorter at just 7.13 h [77] This short bioactive life most commonly
ends when genistein is modified by uridine diphosphate-glucuronosyltransferases (UGTs)
and sulfotransferases (SULTs) in the intestinal enterocytes and liver [73,78]. Conversion to
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genistein glucuronide is the most common fate of absorbed genistein [76,79], and though
it varies greatly between individuals, it is also less commonly carried out by UGTs in
the kidneys [80]. The large majority of the circulating genistein that is not converted to a
glucuronide form is converted via enterocytic and hepatic sulfotransferases (SULTs) to a
sulfate form [76]. These sulfate and glucuronide groups are added to the 7 and 4′ positions,
creating different compounds that can have 1 glucuronide, 1 sulfate, 2 glucuronides, or
one of each [79]. It is also important to mention that sufficient expression and localiza-
tion of UGTs and SULTs in other organs, such as the heart and lungs, allows for minor
metabolism of genistein in these organs [78,81]. Furthermore, different cell types, due to
the composition of different ratios of UGT:SULT enzymes, may vary in their metabolism of
genistein [82].

To a significantly lesser extent [83,84], genistein is also metabolized via cytochrome
P450 (CYP) reaction to produce mostly hydroxylated metabolites [84–86]. The enzyme
CYP1A2 is the most relevant of the CYP group, converting genistein to orobol (3′-OH-
genistein) [86,87]. Less often, other CYP enzymes such as CYP2E1, CYP2D6, and CYP3A4,
and CYP2C8 also metabolize genistein via oxidation [86,87]. Figure 2 illustrates ingested
genistein’s most common metabolic processes and metabolites.

Figure 2. Major genistein metabolites. Data from [79,82,86–89]. Structures from [1,79].

Though enteric bacteria are known to play a prominent role in the uptake and
metabolism of genistein [3], Munro et al. [90] reported that its metabolic pathway may be
significantly altered by variations in microflora, intestinal transit time, pH, redox potential,
and even immune status and diet. There is even a likely temporal aspect to this metabolic
plasticity, as data presented in Hoey et al. [91] suggests that the ability to hydrolyze gly-
cosides to aglycones, and therefore genistin to genistein, develops before 4–6 months
postnatally and plays an important role in isoflavone metabolic capabilities.

Equol, metabolized from daidzein, another isoflavone found in soybeans, is also rele-
vant when discussing enteric bacteria and genistein because it is an isoflavone metabolite
with stronger estrogenic activity than all other known isoflavones and isoflavone metabo-
lites; it also exhibits the strongest antioxidant activity of any isoflavone metabolite [92–94].
Although equol itself is produced when intestinal bacteria metabolize daidzein and its
glycoside form daidzin, the human microfloral bacteria Slackia isoflavoniconvertens has
also been described as capable of converting genistein to 5-hydroxy-equol [88]. However,
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while this metabolite is slightly altered, 5-hydroxy-equol shares many of equol’s chemical
properties, exhibiting a greater antioxidant capacity than genistein [95].

It is difficult to quantify the significance of this genistein metabolite in terms of
women’s health, as most women likely do not have the correct gut bacteria for producing it.
Depending on genetic and dietary factors, only 25–50% of people are believed to have gut
bacteria that are capable of producing equol from daidzein [96]; this is especially relevant
considering multiple different bacteria can catalyze this conversion, and only a fraction of
them are known to be concurrently capable of 5-hydroxy-equol formation from genistein.

1.4. Estrogenic Effects of Genistein

Given the structural similarity of genistein and estrogen, genistein may exhibit a litany
of possible biological effects while circulating. Many of these effects stem from its status
as an isoflavone and therefore an estrogen mimic [75]; it acts on estrogen receptors (ERs),
ER alpha and beta, primarily through the classical genomic mechanism [97]. It does differ
from estrogen, however, in its preference for ER beta (gene name: ESR2) over ER alpha
(gene name: ESR1). In a solid-phase competition experiment, genistein was shown to
have a binding affinity for ER alpha that is 4% of that of 17 β-estradiol (E2), and a relative
binding affinity for ER beta of 87% [97]. Because of genistein’s hydroxyl substituents, these
relative binding affinities for both ERs are significantly higher than that of other isoflavones,
such as daidzein and formononetin [97]. This, however, is complicated by variation in the
presence and distribution of both ERs temporally, between different body tissues and cell
types, and even between individuals and populations [98–100].

Genistein has also been shown to exhibit agonistic activity with G protein-coupled
estrogen receptor 1 (GPER1) [101], yielding a binding affinity higher than that of E2 but
smaller than that of E2 [101,102]. This activity is compounded by results reported in Du
et al. [103], in which treatment with genistein induced greater gene and protein expression
of GPER while inhibiting MAP kinase activation in mouse microglial cells. Other molecular
targets of genistein include topoisomerase I and II [104,105], protein tyrosine kinases [106],
and 5α-reductase [107].

2. Biological Effects and Mechanism(s) of Genistein
2.1. In Vivo Experimental and Clinical Findings

Before soy gained widespread usage and more media attention, genistein was thought
to be a primarily beneficial chemoprotective compound in vivo. Barnes [108] created a table
detailing 29 studies characterizing the effects of genistein and genistein-containing products
on carcinogenesis in rats and mice, finding a protective effect of genistein in 21 studies, and
no effect in the other 8 studies. In vivo evidence also supports genistein’s capability for
supporting bone health and suppressing cancer development in tissue. Messing et al. [109]
treated pre-operative bladder cancer patients with daily oral genistein (placebo, 300, or
600 mg per day), finding that once excised, the cancerous bladder tissue had significantly
lower levels of EGFR phosphorylation. Among its reported antitumor, osteoblastic, and
anticarcinogenic abilities, genistein has also been suggested to exhibit antioxidant [110],
positive cardiovascular [111], and antilipogenic [112] effects. Although many subsequent
reviews have echoed these positive findings, there exists some recent controversy over
genistein’s net beneficial effects.

Given its strong potential for therapeutic activity, genistein has faced more scrutiny over
the past decade; it does have the potential to exhibit adverse effects. Turner et al. [113] found
that serum genistein levels that correlate with those found in women consuming a high-soy
diet did not affect bone loss in a rat model for postmenopausal osteoporosis; this evidence
outright contradicts previous literature on genistein’s osteoblastic capabilities [114,115].

Singh et al. [116] demonstrated that a single high dose of genistein (500 and
1000 mg/kg) had hepatotoxic, oxidative stress, and correlative genetic expression effects
within 24 h of intraperitoneal administration into male Swiss albino mice. However, this
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was not the case with lower doses; thus, these negative effects were elicited by levels of
circulating genistein that was within the realm of pharmacological treatment [109].

Studies with rats have also demonstrated that peri- and neonatal exposure of rats
to genistein can negatively affect their reproductive capabilities. Wisniewski et al. [117]
found that exposing male rats to even low doses of genistein during gestation resulted
in significantly decreased phallic length, testis size, circulating testosterone, and general
reproductive fitness. This is especially concerning considering genistein’s ability to cross
the human placental barrier [64]. Lewis et al. [118] also demonstrated that near-therapeutic
doses of genistein (40 mg/kg subcutaneously) given to neonatal female rats could cause
increased uterine weight, advanced onset of puberty, and even permanent estrus. However,
these effects were not replicated in females dosed with 4 mg/kg, correlating with the
exposure level for human infants drinking soy-based formula [57].

In vivo studies of genistein’s effects may be further confounded by the timing and
frequency of genistein consumption. Kerrie et al. [119] hypothesized that lifetime soy
consumption, if begun early in life, causes epigenetic changes that reduce the occurrence
and reoccurrence of breast cancer. Some of the most prominent data supporting this claim
come from the work of Korde et al. [120], which found the most consistent reduction in
breast cancer risk among Asian American women who had their largest soy intakes during
childhood as opposed to adolescence or adulthood (although a decrease in risk was seen
across all 3 groups). Kerrie et al. further reported that three other case-control studies on
Asian and Asian-American women supported the association between reduction of breast
cancer incidence and initiation of soy consumption at an earlier age. Interestingly, Joanne
et al. [121] reported that although Caucasian women see the same significant benefits,
they show less of a reduction in breast cancer risk. However, the idea that genistein’s
positive effects are somehow race- or ethnicity-dependent has been mostly discredited, as
Asian immigrants to western countries who reduce their soy-intake have a similar cancer
incidence as Western individuals [122–124].

2.2. In Vitro Experimental Findings

Genistein is of particular interest in vitro because it exhibits highly variable and
often contrasting biological effects, especially in relation to cell proliferation and cancer.
Akiyama et al. [125] showed that, in vitro, genistein inhibited tyrosine-specific protein
kinase activity of the EGF receptor, pp60v-src and pp110gag-fes, and therefore inhibited
growth and metastasis, in A-431 epidermoid carcinoma cells. In vivo, genistein was also
shown to inhibit serine- and threonine-specific protein kinase activity in the EGF receptor of
these cells [125]. Agarwal et al. [126] reported that, in DU145 metastatic prostate carcinoma
cells, genistein inhibited the activation of extracellular signal-related protein kinase (ERK)
1/2, a kinase whose overactivation is a fundamental aspect of prostate cancer proliferation.
Treatment of the DU145 cells, a prostate cancer cell line, at doses of 100–200 mM of genistein
coincidentally resulted in significant cell growth inhibition and induction of apoptosis [126].
In contrast to this inhibition, Chen et al. [127] demonstrated that lower concentrations
(1 mM) of genistein increased the proliferation of MCF-7 human breast cancer cells by
increasing the protein and mRNA content of the IGF-1 receptor (IGF-IR) and insulin
receptor substrate-1 (IRS-1), enhancing tyrosine phosphorylation of IGF-IR and IRS-1.

However, there is a large body of evidence suggesting that genistein’s metabolism and
biological effects may vary by dosage or exposure levels, even depending on the cell type
affected. For example, Chen et al. [127] and Wang et al. [128] showed that MCF-7 breast
cancer cell growth was stimulated by low concentrations of genistein (10−8–10−6 M) and
inhibited by higher concentrations (>10−5 M). Moore et al. [129] found that low in vitro
concentrations of genistein (≤1 µg/mL; 3.7 µM) elicited proliferation in human uterine
leiomyoma cells, while higher exposure levels (≥10 µg/mL; 37 µM) had inhibitory effects.
This non-monotonic dose response to genistein was different for the uterine smooth muscle
cells, and a similar dose response to genistein on behavioral parameters in rat offspring has
been observed in vivo [130]; it is also a hallmark of environmental endocrine disruptors
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such as BPA [131]. Figure 3 illustrates this point by portraying three different cell lines’
non-monotonic responses to genistein between 0.001 and 100+ µM. For reference, the
dose response curves on this figure are overlaid with serum genistein levels for three
surveyed populations.
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Figure 3. Relative growth of several cell lines at variable concentrations of genistein overlaid with
serum levels of genistein for three populations. Data from [57,61,63,128,129,132,133]. Note that
no (0) genistein marks a value of 1 relative growth unit. This is considered the control group for
all studies. Also, note that none of the cell lines were reported to be prominent metabolizers of
genistein. Concurrently, the serum concentration studies only assessed circulating genistein, while
its metabolites (likely the most predominant forms in vivo) would presumably also have effects on
the cell lines.

However, it is important to note that these in vitro studies and reference values do
not account for genistein’s metabolites. Given variable bioactivity between genistein and
its metabolites, the half-life of genistein and the levels of circulating metabolites may be
another pertinent variable in determining the effects of genistein on various tissues in vivo.
As such, in vitro studies that treat cells with genistein alone may find significantly different
results when compared to studies that used characteristic concentrations of genistein
and its metabolites. Further in vitro research should consider genistein metabolites when
conducting all forms of exposure assessment, as doing so will provide a more accurate
picture of genistein’s net effects.

3. Genistein and Women’s Diseases
3.1. Genistein and Obesity

Multiple studies purport genistein’s ability to combat obesity at various system-wide
levels. This is one of the reasons post-menopausal women may supplement their diet with
genistein, as studies with ovariectomized mice have shown orally-consumed genistein to be
an inhibitor of the increased fat accumulation, weight gain, insulin resistance, and hepatic
lipogenesis that is typically associated with post-menopausal estrogen deficiency [134].
Part of this effect was even shown to be a result of genistein inducing apoptosis in inguinal
fat [135].

Genistein was further shown to decrease the adipose tissue content of female mice
when compared to vehicle treatment groups [136]. However, genistein’s mechanism of
action for reducing body fat likely differs from its activity in other body tissues. While
genistein has a much higher binding affinity for ER beta, this same study found that
genistein was incapable of significantly reducing the adipose tissue content of female
ER alpha knockout mice (αERKO) when compared to a vehicle control [136]. This sug-
gests genistein’s mechanism of action on adipocytes uncharacteristically favors ER alpha
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rather than ER beta [136], as it did not reproduce this adipose tissue reduction in mice
that were lacking ER alpha while expressing ER beta. Further evidence showed that in
utero exposures to genistein also potentiates obesity throughout the lives of Agouti mice
born to dams consuming high-soy diets during gestation [137], suggesting an expecting
dam’s genistein intake may play a role in their offspring’s predisposition towards obesity.
Genistein may also regulate obesity by affecting thyroid peroxidase [138], insulin [139],
and leptin activity [140].

These anti-obesity effects are not exclusive to the genistein aglycone. For example,
orobol (3′-OH-Genistein), the metabolite from the CYP1A2 enzymatic pathway, has been
shown to have a significantly greater inhibitory effect on mouse fibroblast adipogenesis
than genistein [141].

It is important to mention that genistein’s status as a soy-derived compound means
it is generally consumed alongside significant amounts of plant-based protein, and it is
well documented that protein is among the most thermogenic and appetite-reducing of the
macronutrient groups [142]. Velasquez and Bhathena [143] compiled six human studies,
all of which showed that soy-protein was significantly more effective than carbohydrates
at increasing metabolic rate and lowering body weight. Though one of these studies did
show pork to be more thermogenic than soy [144], three of them showed soy protein to
be as or more thermogenic than meat and milk-based proteins [145–147]. This means that
supplementing one’s diet with genistein from natural sources, and therefore consuming
plant-based protein, likely yields many of the thermogenic benefits associated with meat
and animal protein consumption. Importantly, one meta-analysis of 24 studies [148]
concluded that soy consumption generally elicited either no weight change or weight
gain. However, this same review concluded that isoflavone—and therefore genistein—
consumption significantly reduced the body mass index (BMI) in postmenopausal women
independent of soy protein intake.

3.2. Genistein and Breast Cancer

Breast cancer is the most common cancer in women in the United States, causing
thousands of deaths each year. Given results from multiple literature reviews and stud-
ies [108,119,120,149,150], genistein has clearly shown a strong potential for breast cancer
prevention. Women who eat more genistein, especially earlier in life, have a significantly
decreased likelihood of developing breast cancer. These same women also have a lower
risk of recurrence of treated breast cancer [119–121]. Genistein also inhibits the growth
of human MCF-7 breast cancer cells at a concentration of 10−5 M [128], and even po-
tentiates the anticarcinogenic effects of tamoxifen on the growth of ESR1-positive and
HER2-overexpressing human breast cancer cells [150].

It is important to mention that genistein’s anticarcinogenic property is attenuated
based on both the concentration of genistein and the cell surface receptors of the target
cells. Although Wang et al. [128] demonstrated genistein’s ability to inhibit MCF-7 tumor
growth at higher concentrations, at lower concentrations they saw stimulated growth.
Furthermore, Pons et al. [151] illustrated that at concentrations representing genistein
blood levels of individuals consuming a high-soy diet, genistein’s potentiating effects
on breast cancer cells were influenced by the ESR1/ESR2 ratio of the cells. In this study,
MCF-7 cells, which have a higher ESR1/ESR2 ratio, being treated with cisplatin, paclitaxel,
or tamoxifen saw an increase in cell survivability when also treated with genistein. This
suggests that genistein may have the potential to elicit counterproductive effects in women
already being treated for a high ESR1/ESR2 ratio breast cancer using these common over-
the-counter therapeutics [151]. Conversely, genistein was shown to have a harmless or
beneficial effect when the procedure was repeated using cells with a low ESR1/ESR2 ratio
(including both T47D cells and MCF-7 cells transformed to overexpress ESR2) [151]. Taken
in context, this suggests that a genistein-supplemented regimen for treating breast cancer
can be beneficial; however, it might be contraindicated for women whose tumors present
with a high ESR1/ESR2 ratio.



Nutrients 2021, 13, 3048 10 of 23

Because of its numerous dose-dependent and receptor-influenced biological effects
and its various metabolic pathways, it is difficult to conclude genistein’s role in breast
cancer development and treatment. Though sufficient consumption has been shown to
prevent breast cancer development [152], the literature is controversial regarding genistein’s
effects on active cases of breast cancers. For example, a review published in 2000 focusing
on genistein and breast cancer stated that the net result of genistein consumption on breast
cancer activity or proliferation was inconclusive [119]. Furthermore, a meta-analysis of
164+ relevant studies in 2019 on genistein and breast cancer concluded that “the impact of
dietary genistein intake on breast cancer remains unclear” [153]. Like the aforementioned
studies, this review stated that variation in mode of intake, metabolism, menopausal status,
estrogen receptor expression pattern, and gene mutations among individuals is key to
determining the net effect of genistein consumption. These data suggest that further studies
focused on the above factors and their interactions may yield more definitive answers and
even future treatments for one of the most common cancers that affect women.

3.3. Genistein and Uterine Leiomyoma

Human uterine leiomyomas, also called fibroids, clinically affect about 40% of child-
bearing aged women in the United States with symptoms of bleeding, dysregulation of the
menstrual cycle, belly pain and infertility. Genistein’s effects on uterine leiomyomas is a
rapidly expanding research subject, also appearing to follow a dose-dependent interaction
pattern. Moore et al. [129] found that low in vitro concentrations of genistein (≤1 µg/mL)
elicited proliferation in human uterine leiomyoma cells but did not do so in human uterine
smooth muscle cells. However, higher exposure levels had inhibitory effects on both
cell types causing cellular morphological changes, inhibiting cell proliferation, inducing
apoptosis, and even causing targeted leiomyoma autophagy [154]. This type of biphasic
dose-response is similar to what has been characterized regarding genistein and breast
cancer [128]. It is also important to note that leiomyoma cells were more sensitive to the
proliferative effects of genistein at a high dose (>1 µg/mL) than the smooth muscle cells,
indicating a possible risk factor in terms of genistein consumption and fibroids.

There are many pathways by which genistein has been shown to affect leiomyoma
growth; understanding these pathways is a critical step in revealing the mechanisms behind
genistein-induced cell proliferation or inhibition and its therapeutic potential. Results from
Di et al. [155] suggest that the inhibition described in Moore et al. [129] was the result of a
high dose of genistein’s down-regulation of the TGF-β pathway, most notably activin A and
Smad3. Although outlined in Eker rats, another pathway by which genistein was shown to
inhibit leiomyoma cell proliferation was by acting as a ligand for peroxisome proliferator-
activated receptor-γ [156]. Wang et al. [128] elaborated on these findings by hypothesizing
that genistein’s emergent inhibitory effects at higher concentrations (>10−5 M) might occur
through regulating the estrogen-responsive pS2 in contrast to its proposed activity at
low concentrations.

Di et al. [157] demonstrated that low concentrations of genistein increased prolifer-
ation of uterine leiomyoma cells by rapidly associating with the IGF-1 receptor, causing
interactions between ERα and IGF-IR, and activating the extracellular regulated kinase and
MAP kinase pathways. Low concentrations of genistein have also been shown, in human
leiomyoma cells, to activate MAPKp44/42, MSK1, and increase phosphorylation of histone
H3 at serine10 (H3S10ph) [158]; these effects lead to increased cell proliferation, further
demonstrating that genistein can even have epigenetic effects on human leiomyoma cells.

While there is sufficient evidence to conclude genistein can affect fibroids once formed,
there is less evidence for associations between genistein consumption and the risk of fibroid
incidence. As an example, Simon et al. [159] found that, across 328 women, there was no
correlation between fibroid occurrence and urinary output of genistein (used as a proxy for
blood genistein content). However, the inhibitory effects of genistein at high doses indicate
that a requisite level of soy product consumption might be an important consideration in
protecting patients with either predisposition towards or active fibroids.
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3.4. Genistein and Endometriosis

Given genistein’s ability to mimic estrogen and endometriosis’ hormone-responsive-
ness [160], a reasonable hypothesis might assert that genistein could affect the incidence,
severity, or timing of endometriosis that affects thousands of premenopausal women in the
United States. Though 54 mg of oral genistein consumed daily has been shown to be an
effective alternative treatment for managing endometrial hyperplasia in premenopausal
women [161], much of the literature regarding its effects on endometriosis in women is
conflicting. A large majority of it appears to be focused on in vivo rodent studies.

Regarding the incidence of endometriosis, it is uncertain as to whether genistein
consumption affects a woman’s likelihood of developing the condition. One study encom-
passing over 500 American women found no significant correlation between endometriosis
and urine concentration of genistein [162]. The same study further concluded that, among
the women with moderate-to-severe endometriosis, there was no correlation between
phytoestrogen consumption and disease severity. This study conflicts with results from
another study which found that higher levels of urinary genistein were correlated with a
reduction in advanced endometriosis risk [163]. However, this study is less generalizable
because it only included women that were infertile and nulliparous. One might assume that
comparing the prevalence of endometriosis across populations with large discrepancies
in genistein consumption may help explain these conflicting results. However, women
living in Asia and Japan, populations known to consume significantly more genistein than
their Caucasian counterparts, develop endometriosis at a 1.5–3× greater rate than women
in Western populations do [164]. Given that peer-reviewed studies have concluded that
genistein may be associated with increased, decreased, or unchanged endometriosis risk,
further controlled research is needed on a larger scale to explain any confounding variables,
potential associations, or lack thereof.

The dispute over genistein’s anti-endometriosis effects appears to be less common
across rodent studies. For example, Cotroneo and Lamartiniere [165] concluded that
genistein’s effect on a rat model of endometriosis depended on the method of intake;
subcutaneously injected genistein sustained intestinally implanted endometrial tissue,
while dietary genistein did not. However, rats given oral genistein in Yavuz et al. [166]
saw a significant regression of peritoneal endometriotic implants when compared to the
control group. These two studies suggest genistein might have an inhibitory and even
regressive effect on endometriotic cells, which is supported by studies showing that genis-
tein inhibits expression of proinflammatory cytokines NF-κB, ESR2 [167], Bcl-2, COX-2,
and PGE [168] in rodent models of endometriosis. There does not appear to be thorough
research into why rodent studies are more conclusive in supporting genistein’s potential
for treating endometriosis, but it may be due to several factors ranging from the paucity
of human investigations, fundamental physiological differences between humans and
rodents, confounding lifestyle variables, and more.

3.5. Genistein and Endometrial Cancer

In 2018, there were 89,929 related deaths and 382,069 new cases of endometrial cancer,
globally [169]. The global incidence rate is also projected to pass 573,000 new cases by
2040 [170]. Genistein has been shown to inhibit endometrial cancer through a variety of
direct and indirect pathways. For example, genistein was shown to suppress endometrial
cancer cell proliferation in ECC-1 and RL-95-2 cell lines by decreasing expression of hTERT
and ERα, leading to effects on both the AKT/mTOR and MAPK pathways [171]. Treatment
with 5 mM of genistein was also sufficient to significantly affect Ishikawa cell prolifera-
tion and initiate downregulation of several prominent oncogenes, including the MAPK
pathway-related genes (AA704613, MYC-associated zinc finger protein; and AA829383,
mitogen-activated protein kinase), the cell cycle-related genes (AA789328, cyclin-dependent
kinase (CDC2-like) 10; and W70051 M-phase phosphoprotein 9), and the cell migration
and adhesion-related genes (AA283090 CD44 antigen; and N66616 phosphodiesterase
7A [172]. Further research confirmed a significant negative correlation among breast cancer
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survivors between consumption of genistein-containing herbal products and endometrial
cancer incidence [173]. It appears that a significant body of research on the subject suggests
that consumption of genistein has anti-endometrial cancer properties.

Understanding genistein’s effects on endometrial cancer-related hormones is critical
in assessing genistein’s role in endometrial carcinogenesis. Though estrogen has been
shown to induce the proliferation of endometrial cancer cells, genistein has been shown
to suppress this process. Sampey et al. [174] showed that though genistein itself did not
increase Ishikawa cell growth nor affect estrogen’s proliferative effects on an Ishikawa
monoculture, 10–100 nM of genistein did suppress estrogen’s proliferative effects on a
coculture including endometrial stromal cells along with Ishikawa cells. The same study
further discussed how studies using ESR2-specific agonists yielded similar data. Since
estrogen is a naturally occurring hormone in all women, this means that genistein is
likely able, in vivo, to suppress endometrial cancer proliferation. This concept is further
validated when considering results outlined in Zhang et al. [175] and Lee et al. [176], two
literature analyses that discussed multiple epidemiological studies that showed a negative
correlation between soya intake and endometrial cancer risk, and genistein and ovarian
cancer risk, respectively.

3.6. Genistein and Polycystic Ovarian Syndrome

Given that polycystic ovarian syndrome (PCOS) is considered a possibly heritable
disorder whose pathology might be partially hormonal in nature [177], there is a valid
interest in genistein as a potential therapeutic for and effector of this disorder. Khani
et al. [178] found that women with PCOS treated with a 3 month genistein regimen of
18 mg per 12 h saw decreases in circulating luteinizing hormone, serum triglyceride, LDL
cholesterol, and testosterone; all of which are commonly increased in all PCOS patients.
This evidence suggests that genistein can significantly improve the hormonal and lipid
profile of women with PCOS, thereby reducing their likelihood of developing comorbid
cardiovascular or metabolic disorders. This is supported by findings described in Jamilian
and Asemi [179], a study that compared isoflavone supplementation to placebo in two
groups of 35 women with PCOS. They found that the group that was supplemented
daily with 50 mg of soy isoflavone for 12 weeks saw significant improvements in their
hormonal and lipid profiles; the same group further showed decreased insulin resistance.
Furthermore, another study utilizing a test diet including 35% soy protein found that
women with PCOS that adhered to the diet saw improvements in BMI, glycemic control,
circulating testosterone, and lipid profiles, alongside significant increases in circulating
nitric oxide (NO) and glutathione (GSH) [180].

Using 36 mg/day, Romualdi et al. [181] reported similar findings with regards to
cholesterol levels and triglycerides. However, this study was contradicted by both Khani
et al. [178] and Jamilian and Asemi [179] in finding no significant changes in hormonal
profiles and glycoinsulemic metabolism. However, this difference may be attributable
to sample size (n = 12) or the profile of the sample population (all women in Romualdi
et al. [181] had both hyperinsulemia and dyslipidemia alongside their PCOS).

Isoflavone supplementation has also been shown to clinically improve the gut health
of women with PCOS. For example, after isoflavone intervention, a 50 mg isoflavones/day
regimen over just three consecutive days improved predicted stool metagenomic pathways,
microbial alpha diversity, and glucose homeostasis in PCOS patients. The effect was
so profound that, post-treatment, these variables resembled the profile of the control
group at baseline [182]. Though further testing is required, evidence suggests that dietary
supplementation of genistein may be a viable natural option for treating many of the
symptoms of PCOS [175–179].

3.7. Genistein and Cervical Cancer

Cervical cancer used to be the leading cause of cancer death of women in the United
States; however, in the past 40 years, the number of cases of cervical cancer and cancer
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deaths have decreased significantly because of Pap tests and HPV vaccinations [183]. As
with breast cancer, there exists conflicting evidence and controversial conclusions regarding
genistein’s effects on the viability, incidence, and severity of cervical cancer. For example,
while cervical cancer cells of the HeLa [184], CaSki and ME180 [185] lines have been
shown to be sensitized to radiation therapy by high doses of genistein (20–40 mM), low
concentrations of genistein (0.001–1 µM) have also been shown to promote HeLa cell
proliferation and inhibit apoptosis via the PI3K/Akt-NF-κB pathway [133].

These results were directly challenged by Sahin et al. [186], who found that 25µM genis-
tein sensitized HeLa cells to cisplatin by inhibiting the NF-κB and Akt/mTOR pathways.
The same results were also challenged by Hussain et al. [132], who found that genistein
inhibited HeLa cell proliferation and promoted both apoptosis and cell cycle arrest at doses
as low as 5 µM, becoming more effective with higher doses tested up to 150 µM.

The difference between the conclusions of these studies seems to lie in the concen-
tration of genistein used to expose HeLa cervical cancer cells. Similar to the biphasic
concentration-dependent responses observed in uterine leiomyoma [129] and MCF-7 breast
cancer cells [128] (noted in Figure 3), HeLa cells appeared to show the same nonmonotonic
response to genistein across these three studies; exhibiting proliferation at lower concen-
trations and suppression at higher concentrations. Most notably, increasing the dosage
meant that genistein had the opposite effect on the NF-κB pathway. Though more research
is needed—especially in terms of epidemiological and human in vivo evidence—to come
to a sound conclusion regarding genistein and cervical cancer, this evidence suggests that
using genistein at controlled high concentrations could be an effective treatment for both
inhibiting the growth of and radiosensitizing cervical cancer cells for therapy.

3.8. Genistein and Menopause (Hormone Regulation)

Menopause is marked by a series of physiological changes linked to a reduction in
bodily estrogen and progesterone production, potentially eliciting symptoms such as hot
flashes secondary to vasomotor dysfunction, sweating, thinning of vaginal membranes,
mood effects, sleep insufficiency, and more [187]. It occurs in women between ages 40–58,
and even older, yet the age of onset can be affected by multiple factors including smoking,
contraceptive use, BMI, and more [188]. It is unlikely that genistein influences the timing of
menopause onset itself; despite a large disparity in genistein consumption between Asian
and Caucasian women, they both typically experience menopause at around the same
age [189,190].

Genistein has been thoroughly explored for its potential use in postmenopausal hor-
monal replacement therapy in alleviating the severity of menopausal symptoms. This
is largely because although current hormone-replacement therapies are available, many
of them may increase the risk of thromboembolism, cancer, stroke, and other complica-
tions [191]. The use of genistein as a form of hormone replacement therapy is common [114],
and has been shown to be significantly more effective than a placebo at combatting several
of the post-menopausal symptoms and physiological effects in women.

Double-blind studies showed that 54 mg of daily oral genistein reduced hot flashes
without negatively affecting endometrial thickness, liver function, or blood physiology
in postmenopausal women [192]. The same dosage has also been shown to reduce bone
resorption while increasing bone deposition [193], improve brachial arterial vasodila-
tion and perfusion capability [194], enhance endothelium function as effectively as es-
trogen/progesterone treatment [195], and even showed cardioprotective activity in post-
menopausal women [196].

Even considering different populations, those that consume more genistein such as
Asian women have a significantly decreased propensity towards postmenopausal hot
flashes [114]. Reinforcing this notion, a 2016 meta-analysis of 62 clinical trials across 6653
postmenopausal women found that phytoestrogen supplementation was significantly cor-
related with reductions in the number of daily hot flashes and general vaginal dryness [197].
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The literature appears to mostly support genistein supplementation as a viable option for
reducing many of the symptoms of menopause (Table 3).

Table 3. Summary of 62 human studies and literature reviews of human studies on genistein’s effects on women’s
health—both in vivo and in vitro studies are included.

Category of Studies’
Conclusions Regarding

Genistein/Whole
Isoflavones/Genistein

Metabolites

Total Number of Studies
(Number Included in the

Exposure Testing
Range/Daily Dosage
Column In Vivo) a

Exposure Testing
Range In Vitro

(µM)

Daily Dosage
Testing Range In Vivo (mg) References

Evidence suggests effects
are primarily beneficial 42 (27) Genistein: 2.0–370

Genistein: 36–600 (all doses
above 54 were in one study)

Genistein Mode:
54 (7 studies)

Whole Isoflavones:
40–165

Soy Intakes/Week: 0.76–12.0

[67,68,95,108–
112,120,121,125,132,143–
147,149,150,152,161,171–

173,175,176,178–180,182,184–
186,192–200]

Evidence suggests effects
are debated/inconclusive,
but does suggest potential

benefits

11 (9) Genistein:
0.0037–185

Genistein: 30–54 Whole
Isoflavones: 45

[108,114,119,128,129,151,154,155,
163,174,181]

Evidence suggests effects
are debated/inconclusive,

and does not show any
potential for benefits

4 (2) Genistein: 1–10 Whole Isoflavones: 33.3–300 [148,153,159,162]

Evidence suggests effects
are primarily detrimental 5 (5) Genistein:

0.001–3.7 N/A b [127,133,157,158,201]

a Omitted studies include those which reported measures that could not be converted to fit this table. b Not applicable.

4. Clinical Therapeutic Options

Because of its numerous positive biological effects, genistein has begun to see widespread
medicinal use. Over the counter genistein supplements are marketed to the general public
using buzzwords such as “life extension, wellbeing, health supplement,” and more [202];
however, even “Amazon’s Choice” genistein supplement lacks citations, instead stating that
these claims have not been validated by the FDA in the fine print [203]. While there is a
large body of evidence suggesting the numerous health benefits of genistein for nearly all
populations, it is important that the public also be informed of the risks associated with
supplementation. This is especially relevant and concerning considering many of these
marketed supplements are individual pills containing 125+ mg pure genistein aglycone
each [202], greater than 5× the total daily average whole genistin and genistein consumption
values for Chinese [62] and Japanese adults [61]. Values in this range are within the realm
of doses given in genistein’s clinical trials [109]. Despite the therapeutic potential of these
significantly larger dosages, they also carry increased risks [116–118]. Given the need for
further investigation into maximizing the benefits and minimizing the potential side effects,
genistein supplementation is currently not recommended without first consulting a pharma-
cist or physician [204]. Across much of the literature, the most consistent and safe results
appear to be found at genistein consumption levels similar to those found in traditional
Asian diets [108,110,112,120,121,193,205].

As previously mentioned, genistein has been used in human clinical trials for purposes
such as restricting growth and growth factor activity in cancer cells [109]; a 2008 literature
review [149] reported that across 20+ studies, genistein has been shown to be a strong
potentiator of antitumor chemotherapeutics, including tamoxifen [150]. Genistein was
even found to increase the sensitivity of renal [198], prostate [206], esophageal [199], and
cervical cancers [185] to radiation therapy. Genistein therapies show great potential; they
utilize genistein’s dual effects that are cell- and organ-specific, hormone receptor content-
mediated, and concentration-dependent to improve the clinical outlook of a broad range of
women’s diseases.
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5. Conclusions

The geographic distribution of soya product consumption has resulted in differential
serum concentrations of genistein globally. We have evaluated and summarized research
evidence from current in vivo and in vitro studies, clinical observations, and epidemio-
logical surveys to show that genistein has been reported to have dual effects in women’s
health when all data are taken under consideration. The effects of genistein appear to be
dose-dependent and varies by individuals and suggests that genistein’s effects may be
dependent on the levels of consumption, serum concentrations, and other factors that may
contribute to its beneficial effects in women’s health, disease prevention, and treatment.
However, there have been inconclusive beneficial effects of genistein reported in women
and in in vivo animal studies; conversely, even adverse effects have been observed at
lower concentrations in in vitro and in in vivo animal models. Therefore, the duplicity of
genistein in women’s health is that it has been reported to serve as a possible beneficial or
therapeutic agent in some instances and as an endocrine disruptor in other situations.
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