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Genotyping-by-sequencing based 
QTL mapping for rice grain yield 
under reproductive stage drought 
stress tolerance
Shailesh Yadav1, Nitika Sandhu1,2, Vikas Kumar Singh3, Margaret Catolos1 & Arvind Kumar   1,4

QTLs for rice grain yield under reproductive stage drought stress (qDTY) identified earlier with low 
density markers have shown linkage drag and need to be fine mapped before their utilization in 
breeding programs. In this study, genotyping-by-sequencing (GBS) based high-density linkage map 
of rice was developed using two BC1F3 mapping populations namely Swarna*2/Dular (3929 SNPs 
covering 1454.68 cM) and IR11N121*2/Aus196 (1191 SNPs covering 1399.68 cM) with average marker 
density of 0.37 cM to 1.18 cM respectively. In total, six qDTY QTLs including three consistent effect QTLs 
were identified in Swarna*2/Dular while eight qDTY QTLs including two consistent effect QTLs were 
identified in IR11N121*2/Aus 196 mapping population. Comparative analysis revealed four stable and 
novel QTLs (qDTY2.4, qDTY3.3, qDTY6.3, and qDTY11.2) which explained 8.62 to 14.92% PVE. However, one 
of the identified stable grain yield QTL qDTY1.1 in both the populations was located nearly at the same 
physical position of an earlier mapped major qDTY QTL. Further, the effect of the identified qDTY1.1 was 
validated in a subset of lines derived from five mapping populations confirming robustness of qDTY1.1 
across various genetic backgrounds/seasons. The study successfully identified stable grain yield QTLs 
free from undesirable linkages of tall plant height/early maturity utilizing high density linkage maps.

Genetic dissection of loci underlying drought tolerance in rice will accelerate the development of new varieties 
with enhanced grain yield under drought stress conditions. In this context, discovery of grain yield QTLs under 
drought with large and consistent effect across the genetic backgrounds and environments is the most desirable 
step for its successful utilization in breeding programs. Rice breeding in the last 10 years at IRRI, Philippines 
has witnessed the identification of robust grain yield QTLs under drought stress conditions namely, qDTY1.1

1,2, 
qDTY2.1

3, qDTY3.1
3, qDTY12.1

4 using SSR markers. The incorporation of such positive qDTY alleles has been 
attempted recently into high yielding rice varieties popular in rainfed lowland and rainfed upland ecosystems in 
Asia. Further, drought tolerant version of IR64, Swarna, Sabitri, and Sambha Mahsuri have been developed for 
testing and release under national/state trials in different countries5.

SSR markers have been successfully applied in mapping and introgression of various QTLs including qDTYs 
in rice. However, this approach is time consuming and cost ineffective due to laborious gel-based genotyping 
making it not feasible in the present era of available cheap DNA sequencing technologies6. To overcome the 
limitations of SSR, next generation markers such as SNPs are now available to use. SNPs are more valuable and 
informative markers over SSR and others due to high abundance and uniform distribution in genomes, high mul-
tiplexing and ease of automation7. Recent progress in next generation sequencing has developed high-throughput 
SNP genotyping as a rapid, precise and low-cost genotyping technique to accelerate the process of QTL map-
ping and gene discovery in breeding populations8. In rice, various fixed SNP chips viz., 6 K SNP chip, 44 K 
SNP chip, 50 K SNP chip and 700 K SNP arrays9–12 have been developed to find association between pheno-
type and genotype13. Further, a highly efficient and cost-effective sequence based genotyping approach called 
genotyping-by-sequencing (GBS) has been used for simultaneous genome wide SNP discovery and genotyp-
ing14–16. GBS is now the most widely used genotypic platform for crop genomics studies based on restriction 
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enzyme digestion to reduce the complexity of genome followed by adapter ligation, PCR and sequencing6. Several 
crop species in recent years have been genotyped using this tool for various genetic studies14,17–23 including 
rice24,25.

GBS offers a powerful approach in producing large number of SNPs for genotyping and genetic analysis for 
implementing in genome wide association studies (GWAS), diversity analysis, genomic selection (GS), marker 
and gene discovery, genome profiling and high-resolution QTL mapping8,26–28. QTL mapping through GBS using 
high density linkage maps has been studied for various traits like fusarium wilt resistance29 and sterility mosaic 
resistance30 in pigeon pea, drought tolerance in chickpea31 rust resistance32 and flag leaf traits33 in wheat, plant 
architecture23 and yield traits34 in maize and grain weight, grain length in rice35.

In the present study, we genotyped two mapping populations segregating for grain yield using a high through-
put genotyping strategy called genotyping-by-sequencing approach. The identified high-quality SNP markers 
were used to construct high density linkage maps in order to find consistent grain yield QTLs under drought 
stress situation. Further, the identified stable QTL was validated in the subset of 250 lines derived from five map-
ping populations.

Results
Phenotypic evaluation of parental lines and mapping population.  Mean days to flowering (DTF), 
plant height (PH), grain yield (GY), heritability (H), range and least significant difference at 5% (LSD0.05) in four 
parents of two targeted mapping populations under non-stress(NS), severe stress (SS) and moderate stress (MS) 
conditions during 2016WS and 2017DS is presented in Table 1. The results indicated reduction in mean grain 
yield of parents and lines under reproductive stage drought (RS) compared with NS conditions in all the 12 exper-
iments clearly indicating that drought stress imposed during 2016 wet season (WS) and 2017 dry season (DS) was 
effective. Severity of imposed drought during 2016WS was much higher than 2017DS. Drought stress delayed 
mean DTF in Swarna*2/Dular population by 9 days under MS while the population was accelerated by 6 days in 
SS compared to their mean NS trials. Mean PH was drastically reduced under both SS and MS conditions. Mean 
grain yield of donor parent (Dular) was reduced from 4064 kgha−1 (NS) to 485 kgha−1 and 1382 kgha−1 under SS 
and MS conditions, respectively; while that of the recipient parent (Swarna) was reduced from 4600 kgha−1 under 
NS, to 0.0 kgha−1 and 561 kgha−1 under SS and MS, respectively. The mean GY of Swarna*2/Dular population 
was 2894 kgha−1, 469 kgha−1 and 1382 kgha−1 in NS, SS and MS conditions, respectively with percent mean grain 
yield reduction varying from 83% in SS to 52% under MS compared to NS condition. The heritability (H) estimate 
ranged from 0.28 under NS to 0.30 under SS and 0.42 under MS for Swarna*2/Dular population.

Similarly, mean DTF, PH and GY, H, and LSD0.05 of parents and lines for IR11N121*2/Aus 196 population is 
also presented in Table 1. Mapping population showed mean GY 589 kgha−1 under SS (2016WS) and 1685 kgha−1 
under MS (2017DS). Aus 196 (drought donor) showed 26% higher GY under MS while 116% higher GY under SS 
compared to IR11N121 recipient. The mean GY in IR11N121*2/Aus 196 population showed 34% and 21% higher 
yield than mean GY of Swarna*2/Dular population under SS (2016WS) and MS (2017DS) conditions respec-
tively. Under NS, mean GY for IR11N121*2/Aus 196 population was also higher than GY mean of Swarna*2/
Dular population in both the years during 2016 and 2017. Heritability/repeatability (H) for GY under RS was 
0.49 (SS) and 0.41 (MS) while under NS ranged from 0.36 (2016WS) to 0.39 (2017DS). Mean for other yield 
related traits (DTF and PH) for IR11N121*2/Aus 196 population is presented in Table 1. Statistical analysis of the 
validation panel along with donor (Dular and Aus196) and recipient parents (TDK1, Swarna and IR11N121) is 
summarized in Table 2. The mean GY of validation panel was 618 kgha−1, 1211 kgha−1 and 2840 kgha−1 under SS, 
MS and NS conditions and most of the best performing lines under drought was derived from TDK 1*2/Aus196 
with an average mean of 945 kgha−1.

Population name Season Env
Stress 
level

DTF (Days) PHT (cm) GY (kgha−1)

P1 P2 M
LSD 
0.05 H P1 P2 M

LSD 
0.05 H P1 P2 M LSD 0.05 H

Swarna*2/Dular 2016WS NS — 105 75 92 8 0.81 112 136 139 28.5 0.8 4600 4065 2894 3570 0.28

Swarna*2/Dular 2016WS RS SS 96 88 86 10 0.29 70 88 87 12.0 0.46 0 485 469 735 0.30

IR11N121*2/Aus 196 2016WS NS — 87 86 85 5 0.51 116 129 121 14.2 0.89 4401 4314 4095 2294 0.36

IR11N121*2/Aus196 2016WS RS SS 86 83 83 10 0.19 96 132 116 47.6 0.55 272 589 630.6 754.6 0.49

Swarna*2/Dular 2017DS NS — 97 81 90 10 0.21 93 132 119 26.1 0.79 5354 4538 4740 3014 0.26

Swarna*2/Dular 2017DS RS MS 95 89 99 9 0.79 68 83 85 12.0 0.93 561 1382 1471 1622 0.42

IR11N121*2/Aus 196 2017DS NS — 85 90 86 5 0.62 93 121 104 10.9 0.92 6149 6003 5971 2593 0.39

IR11N121*2/Aus 196 2017DS RS MS 85 95 85 11 0.53 76 90 77 13.2 0.83 1331 1685 1787 2072 0.41

Table 1.  Mean performances for days to flowering (DTF), plant height (PH) and grain yield (GY) of two rice 
mapping populations (Swarna*2/Dular and IR11N121*2/Aus 196) under non-stress (NS) and reproductive 
stage (RS) drought conditions. Note: Env = environment, NS = non-stress, RS = reproductive stage drought 
stress, P1 = recipient parent, P2 = donor parent, M = population mean, LSD0.05 = least significant difference 
at 5% confidence level, H = heritability, DTF = days to flowering in days, PHT = plant height in cm, GY 
(kgha−1) = grain yield in kg per hectare, SS = severe stress, MS = moderate stress.
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High throughput sequencing and SNP discovery.  A total of 41.2 GB (307.64 million reads) and 34.8 
GB (276.98 million reads) sequencing data were generated for Swarna*2/Dular and IR11N121*2/Aus 196 map-
ping populations, respectively (Supplementary Table S1). The sequence reads from individual lines mapped to 
reference genome varied from 0.23 to 11.05 million reads in Swarna*2/Dular and 0.01 to 1.31million reads for 
IR11N121*2/Aus 196. The sequence reads were mapped to reference genome Nipponbare IRGSP1.036 (http://
rapdb.dna.affrc.go.jp/) and aligned, cleaned GBS reads were used in pipeline for SNP calling. The alignment of 
reads to reference genome for both the populations used in this study are provided in Supplementary Tables S2 
and S3). As a result, a total of 81,152 and 52,169 SNPs was identified for Swarna*2/Dular and IR11N121*2/Aus 
196 mapping populations, respectively. Further, SNPs were filtered out for missing data (≤90%) and minor allele 
frequency (MAF) at threshold of 0.05 and in total, 6243 and 4247 high quality

SNPs were generated for both the populations to validate the allelic variations between parents and lines 
(Supplementary Table S4 and S5). There is a significant reduction in the numbers of SNPs from several thousands 
to few thousands, due to stringent selection criteria used in the present analysis. SNP calls from a nucleotide-based 
format were converted to parent-based format using ABH-plugin in TASSEL pipeline. After converting the gener-
ated SNPs into parent-based format, in total 3929 SNPs (Swarna*2/Dular) and 1191 SNPs (IR11N121*2/Aus 196) 
with contrasting alleles in parental genotype were retained to be used for construction of linkage maps.

SNP based high density linkage maps.  The genome wide polymorphic SNPs were evaluated for 
expected segregation ratio using Chi-square analyses in both Swarna*2/Dular and IR11N121*2/Aus 196 popu-
lations. For the Swarna*2/Dular population, a total 3929 SNPs with contrasting alleles between the parents were 
mapped on all 12 chromosomes while 1191 polymorphic SNPs were mapped for IR11N121*2/Aus 196 popula-
tion (Supplementary Tables S6 and S7). In total, 20 SNPs for Swarna*2/Dular and 8 SNPs for IR11N121*2/Aus 
196 population had shown segregation distortion and unable to locate on their respective linkage maps. The total 
length of genetic map computed for Swarna*2/Dular population was 1454.68 cM (varied from 89.60 cM in chro-
mosome 9 to 169.52 cM in chromosome 1). Average genetic distance between two SNPs was 0.37 cM across the 
chromosomes, reflecting its utility in fine mapping of QTLs/genes. The number of SNPs mapped to each chromo-
some varied from 245 SNPs on chromosome 10 to 484 SNPs identified on chromosome 1 with an average of 327 
SNPs per chromosome (Table 3). Similarly, genetic map of IR11N121*2/Aus 196 population consisted of 1191 
SNPs with total map length of 1399.8 cM (Table 3). The number of SNPs varied from 47 SNPs on chromosome 6 
to 171 SNPs on chromosome 1 with map length of 99.53 cM to 168.97 cM. An average of 99 SNPs were mapped 
on each chromosome for this population. A calculated average genetic distance between two SNPs across the 
chromosomes was 1.18 cM (ranged from 0.70 cM on chromosome 4 to 2.12 cM on chromosome 6). The devel-
oped high-density genetic maps using filtered polymorphic SNPs were integrated with data for grain yield under 
drought and its associated traits for QTL analysis (Fig. 1).

QTL analysis.  Swarna*2/Dular population.  A total of six qDTY QTLs were identified for GY under severe 
(SS) and moderate (MS) drought conditions through composite interval mapping (CIM) during the years of 
2016 and 2017. Over the two years of testing, three drought QTLs (qDTY1.1 qDTY3.3 and qDTY6.3) were detected 
in both SS and MS conditions during 2016WS and 2017DS while the remaining three QTLs (qDTY1.3, qDTY4.3 
and qDTY4.4) were found only under SS condition during 2016WS (Table 4 and Fig. 2). These identified QTLs 
explained phenotypic variance (PVE) from 4.34 to 13.50% with LOD scores ranging from 2.87 to 32.05. The 
majority of the GY QTLs under SS and MS had positive additive effect indicating that alleles contributed from 
parent Dular increased the phenotypic values. Three QTLs namely qDTY1.1, qDTY3.3 and qDTY6.3 were identified 
as a consistent effect grain yield QTL expressed across the seasons under both SS and MS conditions of drought. 
The consistent effect QTL, qDTY1.1 within the marker interval of S1_40013502–S1_41216734 was positioned at 
159.9–161.4 cM on chromosome 1 and explained PVE ranging from 9.45% to 10.90% with LOD scores of 3.13 
to 3.89 during 2016 and 2017 respectively. The QTLs qDTY3.3 detected on chromosome 3 with PVE 13.50% 

Designation

DTF (days) PHT (cm) GY (kgha−1)

2017DS 2017WS 2017DS 2017WS 2017DS 2017WS

NS MS NS SS NS MS NS SS NS MS NS SS

Dular 80 81 80 82 135 99 162 137 6479 2673 4069 1087

Aus196 87 89 89 93 117 87 146 105 7617 1365 4314 871

Swarna 100 112 110 117 84 65 104 86 7121 371 4500 258

TDK1 91 103 106 116 100 70 120 92 6569 500 4891 343

IR11N121 88 85 93 100 101 75 111 80 5706 1149 4743 678

Anjali 83 75 85 69 100 82 125 81 4151 748 3900 232

M 86 88 91 95 118 86 144 105 5814 1492 4228 514

LSD0.05 9 10 8 15 18 15 32 49 2840 1211 2446 618

H 0.87 0.89 0.85 0.84 0.84 0.79 0.39 0.42 0.54 0.56 0.37 0.57

Table 2.  Trial means for DTF, PHT and GY parameters analyzed from 250 lines derived from five mapping 
populations (TDK1*2/Dular, TDK1*2/Aus196, Swarna*2/Dular, IR11N121*2/Aus 196, IR11N121*2/Dular) 
under NS and RS conditions. Note: DTF = days to flowering, PHT = plant height in cm, GY (kgha−1) = grain 
yield in kg per hectare, NS = non-stress, MS = moderate stress, SS = severe stress, DS = Dry season, WS = Wet 
season, M = population mean, LSD0.05 = least significant difference at 5% confidence level, H = heritability.
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and qDTY6.3 on chromosome 6 with PVE of 8.62% were novel and had consistent effect on grain yield under 
drought. Two QTLs qDTY3.3 and qDTY1.1 explained the highest % PVE for GY under drought from Swarna*2/
Dular population.

Five QTLs for days to flowering (DTF) including two stable ones were expressed under both SS and MS 
conditions while three QTLs for PH were identified in MS conditions only (Table 4 and Fig. 2). Two significant 
QTLs (qDTF3.3 and qDTF6.3) for DTF mapped under both SS and MS conditions were consistent and one of them 
(qDTF6.3) was located at similar genetic locations with the grain yield QTL qDTY6.3 in Swarna*2/Dular popu-
lation. One of the DTF QTL (qDTF1.1) detected under SS in marker interval of S1_42655097S1_42885648 was 
detected nearly 1 Mb away from the GY QTL under drought, qDTY1.1 identified in Swarna*2/Dular population. 
Phenotypic variations explained by DTF QTLs were significantly low (4 to 6%) as compared to GY QTLs under 
drought (4.34 to 13.50%). For plant height (PH), three QTLs (qPH1.2, qPH1.3 and qPH5.1) were detected with PVE 
ranged from 3 to 27% under MS on chromosomes 1 and 5. No stable QTL for PH under drought had been iden-
tified in Swarna*2/Dular population.

IR11N121*2/Aus 196 population.  A total of eight qDTY QTLs for GY under severe (SS) and moderate (MS) 
drought conditions were detected from IR11N121*2/Aus 196 population during the years of 2016WS and 
2017DS (Table 5 and Fig. 3. These QTLs explained from 4.56 to 14.92% of the PVE and were distributed over the 
six chromosomes (1, 2, 3, 4, 8 and 11). Four QTLs (qDTY1.1, qDTY3.4, qDTY4.5 and qDTY4.6) were detected under 
SS in 2016 and two QTLs (qDTY1.4 and qDTY8.1) identified under MS in 2017. Two QTLs (qDTY2.4 and qDTY11.2) 
was found as a stable QTLs identified in both the environments (MS and SS) during 2016 and 2017. The stable 
QTL qDTY2.4 in marker interval of S2_16924409–S2_17554671 had explained PVE ranged from 8.84 to 14.92% 
while qDTY11.2 was flanked by markers S11_23405441 and S11_25462601 with PVE ranged from 4.75 to 9.35% 
under MS and SS conditions respectively. Additive effect for most of the QTLs except qDTY1.4, qDTY3.4, qDTY8.1 
had negative values suggesting parent IR11N121 contributed alleles for increased GY under drought. The QTL 
qDTY1.1 identified under MS in this population (IR11N121*2/Aus 196) was also detected in Swarna*2/Dular 
population under MS and SS drought conditions. This common QTL qDTY1.1 in both the populations lying in 
the QTL-region of qDTY1.1, may have a key region of rice genome to explore the underlying variation related to 
drought. Several QTLs for DTF and PH under SS and MS conditions were observed at chromosomes 1, 2, 3, 5 
and 11 under SS or MS conditions (Table 5 and Fig. 3). However only two of the identified QTLs (qDTF2.2 and 
qDTF11.2) were detected in both SS and MS conditions across the years. Stable QTLs for DTF namely, qDTF2.2 and 
qDTF11.2 had explained PVE from 3 to 11%. The positive allele for duration increase was contributed by IR11N121 
parent for most of the DTF QTLs except qDTF3.4. One of the DTF QTL qDTF11.2 was co-located with qDTY11.2 
detected in IR11N121*2/Aus 196 population. Four QTLs for PH including one stable QTL (qPH11.2) were mapped 
at chromosomes 1, 5 and 11. The plant height QTL qPH11.1 was also co-located with QTL for DTF (qDTF11.2) and 
GY (qDTY11.2) under drought in IR11N121*2/Aus 196 population.

Co-localization of qDTY QTLs.  Many of the previously reported qDTY QTLs including qDTY1.1 were 
linked with undesirable alleles of tallness/earliness and fine mapping approach was to be followed before intro-
gression of any such QTLs. In the present study, we have detected four stable QTLs (qDTY2.4, qDTY3.3, qDTY6.3 
and qDTY11.2). One QTL (qDTY1.1) was co-located at the same position as previously reported. We found that 
qDTY6.3 was linked with the QTL for DTF (qDTF6.3) and qDTY11.2 with the QTLs for DTF (qDTF11.2) and PH 
(qPH11.2).

Validation of qDTY1.1 allele across the five mapping populations.  We identified a common grain 
yield QTL (qDTY1.1) between 40.01 to 41.21 Mb (1.2 Mb) expressed in both the mapping populations (Swarna*2/

Swarna*2 × Dular IR11N121*2 × Aus 196

Chromosome 
Number

Filtered 
SNPs

SNPs 
mapped

Distance 
(cM)

Average 
marker 
distance

Filtered 
SNPs

SNPs 
mapped

Distance 
(cM)

Average 
marker 
distance

1 786 484 169.52 0.35 547 171 168.97 0.99

2 590 360 140.63 0.39 410 95 130.23 1.37

3 477 307 142.53 0.46 314 79 139.23 1.76

4 610 417 139.16 0.33 482 198 139.16 0.70

5 492 348 116.67 0.34 326 116 110.15 0.95

6 579 367 121.80 0.33 257 47 99.53 2.12

7 511 311 113.32 0.36 329 108 109.84 1.02

8 345 230 110.37 0.48 216 60 107.87 1.80

9 412 300 89.60 0.30 309 99 88.87 0.90

10 459 245 90.15 0.37 385 78 89.60 1.15

11 548 310 113.27 0.37 369 58 110.40 1.90

12 434 250 107.66 0.43 303 82 105.78 1.29

Total 6243 3929 1454.68 0.37 4247 1191 1399.68 1.18

Table 3.  Features of the genetic maps in Swarna*2 × Dular and IR11N121*2 × Aus 196 drought mapping 
populations in rice.
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Dular and IR11N121*2/Aus 196) under RS drought conditions and it was overlapped with the chromosomal 
regions carrying qDTY QTLs detected within 36.75–40.70 Mb earlier by Vikram et al.1. The SSR markers present 
within the vicinity of the newly mapped QTL region was utilized on 250 lines derived from five mapping popula-
tions to validate the qDTY1.1. Out of tested six SSRs, two markers (RM12091and RM12146-at 40.21 Mb & 40.7 Mb 
respectively) were found polymorphic between the parents and were utilized for the validation. SSR markers 
reported in the study, presented in the vicinity of the fine mapped QTLs (1.2 Mb), free from undesirable linkages 
shall be utilized in the breeding programs. Lines with and without qDTY1.1 QTL and their GY data under drought 
is provided in Table S8. A significant difference was found in comparative mean for grain yield under drought 
among the lines with having qDTY1.1 and lines without having qDTY1.1 QTL (Table S9). The estimation of QTL 
effect had shown an advantage of 473.43 kgha−1 in the lines with having positive allele for qDTY1.1 QTL compared 
to the lines without qDTY1.1 QTL (Table S9).

Candidate genomic regions for breeding for drought tolerance.  In this study, three novel qDTYs 
(qDTY2.4, qDTY3.3 and qDTY6.3) constitutively expressed under variable situations of drought from moderate to 
severe conditions were found consistent on grain yield under drought with the maximum variation of 14.92% 
explained by qDTY2.4. The QTL size for above mentioned QTLs was varied from 0.1–1.0 Mb and free from unde-
sirable linkages to plant height. One of the stable QTL (qDTY1.1) detected between 40.01 to 41.21 Mb (1.2 Mb) 
in this study was located near to the previously mapped qDTY1.1 within 36.75–40.70 Mb on the long arm of 
chromosome 1. The undesirable linkages such as tallness and earliness in maturity started from 36.70–38.89 Mb 
has been linked with drought QTL (qDTY1.1) mapped upto 40.70 Mb in the previous study by Vikram et al.1. 
The qDTY1.1 with detected in this study was free from undesirable linkages due to minimal QTL size of 1.2 Mb 
compared to 3.95 Mb QTL size of previous mapped by Vikram et al.1. A comparative map showing the narrowed 
down genomic region of previously mapped qDTY1.1 using high density linkage map in the present study has 
been depicted in Supplementary Fig. S1(a,b). The genomic regions underlying these fine mapped QTLs (qDTY2.4, 
qDTY3.3 and qDTY6.3) including qDTY1.1 will be an important candidate region for its utilization in marker 
assisted selection, sequencing and allele mining for drought tolerance in rice.

Discussion
Marker assisted breeding had enormous potential to achieve desirable phenotypic variation in less time through 
deployment of markers linked to QTLs for desirable trait37. However, discovery and development of SSR markers, 
their scoring across populations is time consuming, labor intensive and costly process38,39. Even large QTL regions 
identified through low density SSR markers may introduce undesirable linkages through MAS and can make 

Figure 1.  Integration of GBS derived high density SNPs and multi-season phenotyping data for mapping of 
drought QTLs in rice.
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the introgression line unacceptable for release and cultivation40. Such limitations of SSR marker makes it unre-
alistic in fine mapping of complex traits and for full use in accelerated breeding programme compare to recent 
available sequencing technologies at much cheaper cost. In some of the recent studies, undesirable linkages were 
successfully eliminated using next generation markers such as SNPs by identifying the recombinants to break 

Trait
QTL 
Name

Stable 
QTLs^ Chrom* Position$ Marker Interval

Previously 
mapped LOD§

PVE 
(%)¶ Add†† Dom‡‡ Left CI#

Right 
CI#

GYMS qDTY1.1 qDTY1.1
1 159.9 S1_40013502–S1_40089754 36.75–40.70 

Mb1
3.89 10.90 141.56 −256.0 156.4 160.4

GYSS qDTY1.1 1 161.4 S1_41176753–S1_41216734 3.13 9.45 135.35 −211.46 161.2 161.5

GY_MS qDTY3.3 qDTY3.3
3 10.2 S3_2625614–S3_2686581

novel QTL
4.18 11.42 231.89 −177.33 10.1 10.7

GY_SS qDTY3.3 3 10.4 S3_2686581–S3_2727277 7.80 13.50 1.22 1285.29 10.4 10.9

GY_SS qDTY6.3 qDTY6.3
6 57.8 S6_14604291–S6_15072250

novel QTL
21.26 4.91 6.36 1078.65 57.3 58.3

GY_MS qDTY6.3 6 58.8 S6_14604291–S6_15072250 2.98 8.62 16.45 447.55 57.3 59.3

GY_SS qDTY1.3 — 1 21.9 S1_5575869–S1_5622569 — 7.17 4.52 2.79 832.30 21.4 22.4

GY_SS qDTY4.3 — 4 29.2 S4_7142266–S4_8718094 32.05 4.90 7.32 1102.25 28.7 29.7

GY_SS qDTY4.4 — 4 119.2 S4_30374971–S4_30570019 — 2.87 4.34 −5.85 371.073 118.7 119.7

DTF_MS qDTF3.3 qDTF3.3
3 8.4 S3_1990671S3_2352329

—
3.68 5.96 −2.19 −0.96 6.9 8.9

DTF_SS qDTF3.3 3 9.6 S3_2467421S3_2625614 4.25 8.53 −7.19 −0.58 9.6 10.4

DTF_SS qDTF6.3 qDTF6.3
6 57.8 S6_14604291S6_15072250

—
5.26 8.15 −6.58 44.73 57.1 58.7

DTF_MS qDTF6.3 6 58.8 S6_14604291S6_15072250 3.67 7.74 1.52 −3.13 58.3 59.3

DTF_MS qDTF1.2 — 1 167.9 S1_42655097S1_42885648 — 3.00 4.95 −1.78 0.4 167.4 168.9

DTF_MS qDTF7.1 — 7 75.1 S7_18706568S7_19334027 — 6.48 4.78 −3.07 2.46 74.6 75.6

DTF_MS qDTF8.1 — 8 27.1 S8_6585662S8_7225748 — 6.14 9.72 0.04 24.42 25.6 27.6

PH_MS qPH1.2 — 1 17.9 S1_4486055S1_4950915 — 4.08 5.53 −3.75 −0.91 17.4 18.4

PH_MS qPH1.3 — 1 150.9 S1_38286810S1_38613195 — 25.79 27.66 8.80 5.33 150.4 151.4

PH_MS qPH5.1 — 5 26.5 S5_6678640S5_6883481 — 3.36 3.52 3.38 −3.12 26.2 27.1

Table 4.  Results of QTL analysis in Swarna*2/Dular backcross mapping population in rice. Note: ^QTLs 
detected in both the years (2016 and 2017) under SS and MS conditions of drought. *Chromosome number 
on which QTL was identified. $The scanning position in cM on the chromosome. §LOD score calculated from 
composite interval mapping. ¶Phenotypic variation explained by QTL. ††Estimated additive effect of QTL. 
‡‡Dom: Estimated dominance effect of QTL. #Confidence interval calculated by one-LOD drop from the 
estimated QTL position, DTF = days to flowering in days, PH = plant height in cm, GY (kgha−1) = grain yield in 
kg per hectare.

Figure 2.  Genotyping-by-sequencing (GBS) derived high density genetic map and distribution of QTLs 
associated with drought tolerance in Swarna*2/Dular population. The twelve chromosomes were shown as 
vertical bars and each horizontal line on the bar represent single SNP marker. Aggregation on horizontal lines 
reflects higher marker density on that chromosome. The scale on left side represents genetic position in cM.
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Trait QTL Name
Stable 
QTLs^ Chrom* Position$ Marker Interval

Previously 
mapped LOD§

PVE 
(%)¶ Add†† Dom‡‡ Left CI#

Right 
CI#

GY_SS qDTY2.4 qDTY2.4
2 69.4 S2_17630922–S2_17731936

novel QTL
2.92 14.92 −86.62 −511.43 68.9 69.9

GY_MS qDTY2.4 2 67.4 S2_16924409–S2_17554671 6.81 8.84 −14.39 1361.98 66.3 68.1

GY_SS qDTY11.2 qDTY11.2
11 98.1 S11_25462601–S11_26923782

novel QTL
7.35 9.35 −923.53 −927.91 95.6 98.6

GY_MS qDTY11.2 11 105.1 S11_27252113–S11_28165211 2.75 4.75 133.04 243.107 105.6 108.6

GY_SS qDTY1.1 — 1 163.6 S1_41767801–S1_42906879 36.75–40.70 
Mb1 2.95 5.55 −182.08 −4.60 163.1 168.6

GY_MS qDTY1.4 — 1 107.6 S1_25580728–S1_27768807 — 2.82 4.82 125.042 455.64 104.1 109.1

GY_SS qDTY3.4 — 3 93.4 S3_23410049–S3_24443082 2.52 4.52 42.36 1009.02 92.9 95.9

GY_SS qDTY4.5 — 4 76.8 S4_18967234–S4_19812844 2.98 4.98 −48.57 1135.91 76.3 77.3

GY_SS qDTY4.6 — 4 116.8 S4_29797214–S4_29868104 — 3.05 5.05 −127.12 78.13 116.3 117.3

GY_MS qDTY8.1 — 8 107.6 S11_27252113–S11_28165211 24–26 Mb65 2.96 4.56 202.67 270.53 106.1 107.6

DTF_SS qDTF2.2 qDTF2.2
2 86.4 S2_22001414–S2_22831782 — 13.29 3.21 −0.31 −80.67 85.98 86.98

DTF_MS qDTF2.2 2 90.4 S2_23011317–S2_23246520 — 12.96 3.29 −0.72 −80.90 89.98 90.98

DTF_MS qDTF11.2 qDTF11.2
11 97.1 S11_23405441–S11_25462601 — 4.68 11.10 −4.53 −4.40 95.62 98.62

DTF_SS qDTF11.2 11 100.1 S11_25462601–S11_26203565 — 13.13 3.21 40.26 40.25 99.62 100.6

DTF_SS qDTF1.1 1 164.6 S1_39508386–S1_41216734 — 15.00 5.21 −40.44 39.68 163.1 166.1

DTF_MS qDTF2.3 2 70.4 S2_17732007–S2_19367035 — 4.47 3.08 −16.57 17.09 69.98 70.98

DTF_MS qDTF3.4 3 97.4 S3_24443082–S3_24882499 — 4.68 5.16 0.83 −0.58 95.91 97.91

DTF_MS qDTF5.1 5 83.3 S5_21166454–S5_23610966 — 11.07 10.03 −8.29 −8.43 82.83 83.83

PH_MS qPH11.2 qPH11.2
11 98.1 S11_23405441–S11_25462601 — 4.72 6.06 −8.31 −8.87 96.62 99.62

PH_SS qPH11.2 11 104.1 S11_26203632–S11_26665891 — 5.05 5.30 46.01 49.62 103.6 104.6

PH_MS qPH1.1 1 152.6 S1_38752441–S1_39380942 — 6.90 7.71 −5.53 −1.47 152.1 153.1

PH_MS qPH5.1 5 4.3 S5_951816–S5_1195956 — 3.11 1.82 3.25 1.43 3.83 5.83

Table 5.  Results of QTL analysis in IR11N121*2/AUS 196 backcross mapping population in rice. Note: ^QTLs 
detected in both the years (2016 and 2017) under SS and MS conditions of drought. *Chromosome number 
on which QTL was identified. $The scanning position in cM on the chromosome, §LOD score calculated from 
composite interval mapping, ¶Phenotypic variation explained by QTL. ††Estimated additive effect of QTL, 
‡‡Dom: Estimated dominance effect of QTL, #Confidence interval calculated by one-LOD drop from the 
estimated QTL position, DTF = days to flowering in days, PH = plant height in cm, GY (kgha−1) = grain yield in 
kg per hectare.

Figure 3.  Genotyping by sequencing (GBS) derived high density genetic map and distribution of QTLs 
associated with drought tolerance in IR11N121*2/Aus 196 population. The twelve chromosomes were shown as 
vertical bars and each horizontal line on the bar represent single SNP marker. Aggregation on horizontal lines 
reflects higher marker density on that chromosome. The scale on left side represents genetic position in cM.
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linkage a favorable allele conferring drought tolerance and an unfavorable allele for tall plant height41. Currently, 
next generation sequencing (NGS) technologies have become powerful tools for discovery of millions of SNPs in 
cost effective manner to develop high density linkage maps, dissect the complex traits and identify key genomic 
regions underlying the associated traits.

A rapid, robust and cost-effective genotypic platform called GBS is nowadays becoming more feasible in 
genomics assisted breeding by providing many markers for QTL/gene discovery at much cheaper rate14,18,42. In 
this study, we have developed two high density genetic maps using GBS approach to identify QTLs for grain yield 
under various drought conditions (SS and MS) using multi-season phenotypic data from two mapping popula-
tions. The average inter-marker distance between two SNPs varied from 0.37 cM to 1.18 cM in both populations 
used in this study which may be one of the most saturated genetic maps developed for QTL identification in 
rice for drought tolerance. Drought donors (Dular and Aus 196) used in this study for population development 
belongs to a distinct genetic group so called aus-type43 and known for valuable genetic resource for abiotic stress 
tolerance including drought5,44. Recently, drought-responsive metabolite associated with tolerance had been iden-
tified in two Aus rice varieties (Dular and N22) underlying genes and pathways for drought tolerance in rice45. 
Both donors (Dular and Aus 196) used in this study gave significantly higher yields than the recipient parents 
(Swarna, IR11N121 and TDK1) under various drought conditions tested over two years, suggesting their useful-
ness and reliability in utilization as donors.

Drought screening in rain-out shelter during 2016WS was more effective than field screening in 2017 DS and 
could be attributed to precise control and monitoring of the amount and timing of irrigation. Broad-sense herita-
bility (H) for GY was moderate under SS, MS and NS conditions while it was moderate to high for DTF and PH in 
both the populations and in both years. Previous studies also reported moderate heritability of grain yield under 
drought and high heritability for DTF and PH under non-stress and drought conditions5,46,47.

A total of fourteen QTLs for GY under SS and MS conditions were detected from the two populations used in 
this study. Most of the GY QTLs identified in this study were expressed either in SS or MS conditions of drought 
and only few of them were detected in both SS and MS drought across the years 2016 and 2017. Three such QTLs 
(qDTY1.1, qDTY3.3 and qDTY6.3) for Swarna*2/Dular and two QTLs (qDTY2.4 and qDTY11.2) in IR11N121*2/Aus 
196 population were found stable across the environments/seasons. The lack of stability of QTL effects across the 
environments/genetic backgrounds has been one of the most limiting factors in successful deployment of QTLs 
through MAS breeding for various complex traits including drought5,48–50.

One of the stable grain yield QTL qDTY3.3 identified in our study was located far away from previously 
mapped qDTY3.1 at 30–31 Mb physical position in rice genome reported by Venuprasad et al.3. One of the GY 
QTLs qDTY4.3 identified at 0.7–0.8 Mb in Swarna*2/Dular population under SS was co-located with qDTY4.1 
reported earlier by Swamy et al.51, however this QTL was not detected under moderate level of drought stress 
in the present study. It is interesting to note that we have detected QTL qDTY1.1 with significant effects under 
varying severity of drought (SS and MS) in both the populations used in this study. Also, the physical position 
(S1_40013502–S1_41216734) of this QTL was nearly same of previously identified QTL qDTY1.1

1 a most relevant 
grain yield QTL under drought. It indicates authenticity, reliability of this study and usefulness of the stable QTLs 
under drought.

Furthermore, we have validated the effect of this QTL qDTY1.1 in five alternate mapping populations derived 
from three genetic backgrounds (TDK1, Swarna and IR11N121) developed in this study. Consistency of qDTY1.1 
in multiple genetic backgrounds were also found in many previous studies in both (lowland and upland) the eco-
systems of rice1,2,52. The positive alleles of qDTY1.1 was found in 64%53 and >50%54 of the drought tolerant lines 
from a panel of random drought-tolerant lines used. These findings clearly suggest that the qDTY1.1 on chromo-
some 1 could be a hot spot for alleles with positive effect on GY under drought and useful candidate region for 
explore in genomics assisted breeding.

Two of the consistent QTL qDTY2.4 and qDTY11.2 in IR11N121*2/Aus 196 population located at 17 Mb and 
27 Mb were far from qDTY2.1

3 and qDTY11.1
55. The QTLs for GY under drought with PVE upto 14.92% were 

detected in this study, which was low, despite using the highly saturated genetic map and multiple season of pre-
cise phenotyping. However, use of high-density maps could be helpful in precise detection of QTLs for complex 
traits by reducing the chances of getting false positive29. Similar finding was discussed in earlier reports, where 
upto 15% PVE was achieved using GBS based QTL mapping for fusarium wilt resistance in pigeon pea and 
flag leaf traits in bread wheat29,33. Most of previously identified major effect drought QTLs except qDTY12.1 had 
explained 10 to 30% PVE with yield advantage of 300–500 kg ha−1 under RS drought stress5,56 and QTL pyramid-
ing looks a feasible strategy here to achieve the desired level of phenotypic variation (yield advantage of 1.0 t ha−1) 
under severe drought stress5,57.

In this study, a stable GY QTL stable qDTY6.3 was co-located with QTLs for DTF qDTF6.3 in Swarna*2/Dular 
population while qDTY11.2 was co-located with qDTF11.2 and qPH11.2 in IR11N121*2/Aus 196 population. Many of 
the previous studies also reported the co-existence of drought grain yield QTLs with QTLs for DTF and PH under 
stress. For instance, qDTY1.1 was coinciding with QTLs for DTF and PH1, qDTY3.1 co-located with DTF3 and 
qDTY12.1 with QTLs for DTF, PH and other morphological traits4. Three QTLs (qDTY1.1, qDTY2.4, qDTY3.3) found 
in this study were critical and desirable loci without any linkage drag and can be introgressed in multiple genetic 
backgrounds to find their individual and combined effects. Transfer of major grain yield QTLs under drought 
co-located with PH is not preferable in MAS breeding as positive alleles of tallness could make the introgression 
line unacceptable for varietal release. Most of the consistent QTLs for grain yield under drought detected in this 
study (qDTY1.1, qDTY2.4 and qDTY3.3) were free from undesirable linkages with positive alleles of tallness/earli-
ness except qDTY11.2 linked with QTLs for PH and DTF and qDTY6.3 had linked with QTLs for DTF. Introgression 
of GY QTLs unlinked from PH QTLs will led to development of rice varieties tolerant to drought with optimal 
plant stature and higher yield. The association of QTL for DTF and PH with grain yield QTLs under drought pre-
vailed for two qDTYs found in this study and a suitable breeding strategy should be followed before introgression 
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of such QTLs in elite varieties of rice. Recently, marker assisted linkage –elimination strategy was followed to 
remove the undesirable linkages of PH QTLs from grain yield QTLs such as qDTY1.1, qDTY3.1 and qDTY12.1

58.

Conclusion
The developed high-density genetic maps in this study could be a strong foundation for fine mapping of grain 
yield QTLs under drought stress and identified genomics regions could be utilized in breeding programs. We have 
identified some novel candidate genomic regions from two populations that contained four stable QTLs for grain 
yield under drought in multiple environments. Two novel qDTY QTLs (qDTY2.4 and qDTY3.3) along with qDTY1.1 
detected at same position of previously known drought QTL qDTY1.1 in rice genome, free from any undesirable 
linkages have suggested the importance and utility of these QTL cluster regions for rice breeders to be utilized in 
MAS work and candidate gene identification for higher grain yield under drought stress situation.

Methods
Plant materials.  Two drought tolerant donors (Dular and Aus196) and three recipient parents (Swarna, 
IR11N121, and TDK1), were utilized for the development of five BC1F3 bi-parental mapping populations 
(Swarna*2/Dular, IR11N121*2/Dular, TDK1*2/Dular, IR11N121*2/Aus 196 and TDK1*2/Aus196). Dular, a 
drought-tolerant donor identified at IRRI is an early maturing, low yielding, blast resistant, traditional cultivar 
originated from India43. Aus 196, an improved drought tolerant cultivar belongs to aus subspecies and origi-
nated from Eastern India43,59. Recipient parent, Swarna is a long duration, high yielding, mega variety for rainfed 
and irrigated rice ecosystems of India, Nepal and Bangladesh but highly susceptible to reproductive stage (RS) 
drought stress1,3. IR11N121 is a high yielding rice variety released for lowland rice ecology of South East Asia, sus-
ceptible to drought. TDK1 is a high yielding, long duration, glutinous Lao variety, highly susceptible to drought 
and submergence60.

Phenotypic evaluation and statistical analysis.  A total of 12 experiments were conducted using five 
mapping populations during 2016 and 2017 under non-stress (NS) and reproductive stage drought (RS) condi-
tions at IRRI Los Baños, Laguna, Philippines (14°30′N, 121°15′E). Two BC1F3 mapping populations (Swarna*2/
Dular and IR11N121*2/Aus 196) consisted of 350 lines each were used for phenotyping and genotyping in the 
process of QTL identification. A validation panel consisted of 250 lines randomly selected from five mapping 
populations [TDK1*2/Dular (50 lines), TDK1*2/Aus196 (50 lines), Swarna*2/Dular (50 lines), IR11N121*2/
Aus196 (50 lines), IR11N121*2/Dular (50 lines)] was utilized for the confirmation of positive alleles of any stable 
QTLs found in the present study.

The two mapping populations (Swarna*2/Dular and IR11N121*2/Aus 196) were screened under RS and 
NS conditions during 2016 and 2017. The 2016 wet season (WS) reproductive stage drought stress phenotyp-
ing screening was performed at IRRI rain out shelter facility while 2017 dry season (DS) screening was carried 
out directly in field. Experiments were laid out in augmented- RCBD design using repeated drought tolerant 
(Sahbhagi dhan) and susceptible checks (Swarna, IR64 and MTU1010), along with parents in 5-meter row plot 
with row spacing of 0.20 m under both NS and RS conditions. A total of 250 lines pooled from five mapping pop-
ulations as described above for QTL validation were also phenotyped under NS and RS in alpha-lattice design 
with 2 replications during 2017DS in field and 2017WS in rain out shelter.

Crop management practices in the field were followed as in Vikram et al.1. The standard protocol for repro-
ductive stage drought (RS) screening was adopted as described previously by Kumar et al.5. In brief, the stress was 
imposed by draining out water from the field at 50 DAS (days after seeding) in 2016WS and 2017DS, respectively 
and the cyclic soil moisture deficit stress was maintained till the maturity stage. Water table depth was measured 
using PVC pipe of 1.1 m length installed at regular places across the field. When water table level in the PVC fell 
below 1 meter from soil surface and all the susceptible checks started showing severe leaf rolling and dying, a 
life-saving irrigation through flash flooding was provided. Water was drained out immediately after 24 hrs to 
initiate next cycle of stress.

Data on days to 50% flowering (DTF) in days, plant height (PH) in cm and grain yield (GY) in kg ha−1 
(GYKGPHA) from NS and RS trials were collected and analyzed using PBTools (http://bbi.irri.org/products) 
for computation of means, LSD and heritability (H). Experiments with grain yield reduction of more than 65% 
were classified as severe stress (SS), while 31–64% yield reduction was classified as moderate stress (MS)39. Linear 
mixed model was used for analysis of variance considering the lines/genotypes as fixed and the effect of replica-
tions and blocks within replications as random.

The model used for augmented-RCBD design was:

= + + +Yijk M Gi Bl Eilk

where, Yijk is measurement recorded in plot, M is the overall mean of plot, Gi is the effect of the ith genotype, Bl is 
the effect of the lth block and Eilk is the experimental error.

The model used for alpha-lattice design was:

= + + + +Yijk M Gi Rj Blj Eilk

where, Yijk is measurement recorded in plot, M is the overall mean of plot, Gi is the effect of the ith genotype, Rj is 
the effect of the jth replicate, Blj is the effect of the lth block within jth replicate, and Eilk is the experimental error.

To estimate broad sense heritability (H), variance components were estimated for a model using PBTools 
software packages by considering all the variables and genotypes as random. Broad sense heritability (H) or 
repeatability was calculated as
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where, H is broad sense heritability, σG
2  represents the genetic variance, σE

2 the error variance and r the number of 
replications.

The QTL effect on grain yield under drought stress were estimated using mixed model analysis (REML) in 
CROPSTAT version 7.2.3 using the lines with and without QTL. The effects of the QTL and genotypes within the 
QTL are considered as fixed while the replicate and blocks within replicate effects are considered random. We 
first computed the genotype means using PB tools by adjusting blocks in augmented RCBD design and in second 
stage these genotype means were used to analyze the QTL mean comparisons involving the two classes “with” and 
“without” QTLs using CROPSTAT.

Leaf tissue sampling, DNA extraction and preparation of GBS libraries.  The fresh leaf tissue sam-
ples from six plants per line were collected at 42 DAS. High throughput automated leaf sampling and genomic 
DNA extraction from leaf tissue was performed using Brooks PlantTrak Hx rice leaf tissue sampler and LGC 
Genomics oKtopure systems at IRRI genotyping service laboratory. The assessment of DNA quality and quality 
was done by running on 1% agarose gel. Using this platform, a high-quality DNA yield ranges from 40–60 ng/µl 
was achieved for SNP genotyping. GBS libraries were prepared using the protocol adapted from Elshire et al.14. 
For GBS a type II restriction endonuclease (ApeKI) was used for DNA digestion, and the digested DNAs were 
ligated to the adapter, and then 96-plex library was constructed as per GBS protocol14. GBS was carried out using 
HiSeq2500 sequencing platform with Macrogen Inc. (Korea).

SNP identification and genotyping.  The sequence reads generated in FASTQ file were processed and 
analyzed for SNP identification using TASSELGBS analysis pipeline61. Pipeline allows searching of all raw 
sequencing reads with perfectly matched barcode and expected remnant bp of restriction cut site and reads were 
further sorted, de-multiplexed and trimmed to create a unique, 64-bp long sequences called tags. These good 
quality tag sequences were aligned with the reference genome using Burrows-Wheeler Alignment (BWA) soft-
ware62, while reads carrying “N” within first 64 bases had removed from further analysis. The perfectly matched 
and aligned sequences was processed further for SNP calling and genotyping through GBS analysis pipeline. 
SNPs were further filtered for minor allele frequency (MAF) below 0.05 and for the percentage of missing data 
(≤90%) per SNP using TASSEL GBS analysis pipeline using default parameters. Filtered data file having final 
set of SNPs in nucleotide-based hap map format was converted to an ABH-based format using ABH-plugin in 
TASSEL pipeline where “A” represents donor allele, “B” represents recipient allele and “H” represents heterozy-
gous allele. Finally, imputed SNPs of lines were filtered against parental alleles and only polymorphic SNPs were 
retained to be used in construction of linkage map.

Linkage map construction and QTL mapping.  The genotypic data for 350 lines from each mapping 
population with filtered SNP markers was used for linkage map construction using the linkage mapping func-
tion implemented in the QTL IciMapping software v4.163. The grouping and ordering of 3929 and 1191 poly-
morphic SNP markers for both the populations were carried out using regression mapping algorithm RECORD 
(REcombination Counting and ORDering) based on recombination events between adjacent markers. Further, 
Rippling was done for fine-tuning of the ordered markers on their respective chromosomes by sum of adjacent 
recombination fractions (SARF) algorithm with a default window size. QTL mapping for GY QTLs and other 
traits under drought was performed using composite interval mapping (CIM) functions implemented in the QTL 
IciMapping software v4.164. The threshold LOD value to declare a significant.

QTL was computed by a permutation test involving 1000 runs at a significance level of p = 0.05. After com-
pletion of permutation test, window size of 10 cM and walk speed of 1 cM was set to start analysis of composite 
interval mapping.

Data Availability
The data sets supporting the results of this article are included within the article.
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