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Abstract 1 

Background: Dementia-like cognitive impairment is an increasingly reported 2 

complication of SARS-CoV-2 infection. However, the underlying mechanisms 3 

responsible for this complication remain unclear. A better understanding of causative 4 

processes by which COVID-19 may lead to cognitive impairment is essential for 5 

developing preventive interventions.  6 

Methods: In this study, we conducted a network-based, multimodal genomics 7 

comparison of COVID-19 and neurologic complications. We constructed the SARS-8 

CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9 9 

based genetic assay results, and compared network-based relationships therein with 10 

those of known neurological manifestations using network proximity measures. We also 11 

investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of 12 

Alzheimer’s disease (AD) marker genes from patients infected with COVID-19, as well 13 

as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected 14 

with SARS-CoV-2.  15 

Results: We found significant network-based relationships between COVID-19 and 16 

neuroinflammation and brain microvascular injury pathways and processes which are 17 

implicated in AD. We also detected aberrant expression of AD biomarkers in the 18 

cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses 19 

showed relatively low expression of SARS-CoV-2 entry factors in human brain, 20 

neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic 21 

analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and 22 

antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was significantly elevated 23 
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in brain endothelial cells of AD patients and healthy controls relative to neurons and 1 

other cell types, suggesting a possible role for brain microvascular injury in COVID-19-2 

mediated cognitive impairment. Notably, individuals with the AD risk allele APOE E4/E4 3 

displayed reduced levels of antiviral defense genes compared to APOE E3/E3 4 

individuals.  5 

Conclusion: Our results suggest significant mechanistic overlap between AD and 6 

COVID-19, strongly centered on neuroinflammation and microvascular injury. These 7 

results help improve our understanding of COVID-19-associated neurological 8 

manifestations and provide guidance for future development of preventive or treatment 9 

interventions. 10 

 11 

Keywords: Alzheimer’s disease, brain microvasculature, cognitive impairment, COVID-12 

19, dementia, network medicine, neuroinflammation, SARS-CoV-2, single-cell/nucleus 13 
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Introduction 1 

Patients with COVID-19 commonly develop neurologic symptoms and/or complications, 2 

such as a loss of taste or smell, stroke, delirium, and rarely new onset seizures [1, 2]. 3 

Based on the experience with other coronaviruses, it was predicted early on that 4 

COVID-19 patients might also be at risk for cognitive dysfunction. For example, after the 5 

severe acute respiratory syndrome (SARS-CoV-1) outbreak in 2002 and the Middle 6 

East respiratory syndrome (MERS) outbreak in 2012, both caused by human 7 

coronaviruses (HCoVs), 20% of recovered patients reported ongoing memory 8 

impairment [3]. Evidence now supports similar complications after COVID-19, which due 9 

to the global pandemic, is poised to potentially lead to a surge in cases of Alzheimer’s-10 

like dementia or other forms of neurocognitive impairment in the near future [4, 5]. 11 

Clarification of the underlying molecular mechanisms of COVID-19-induced 12 

cognitive impairment is mandatory for developing effective therapeutic strategies for 13 

patients [6-8]. While some studies have shown that SARS-CoV-2 may directly infect the 14 

brain [9-11], potentially through the olfactory bulb [9], others have shown that SARS-15 

CoV-2 is absent from the brain [12] and cerebrospinal fluid (CSF) [13]. COVID-19 has 16 

also been suggested to cause inflammation within the central nervous system (CNS) [8, 17 

12, 14], as well as microvascular injury [12]. For example, the SARS-CoV-2 spike 18 

protein, which readily crosses the blood-brain barrier (BBB) [15, 16], induces an 19 

inflammatory response within microvascular endothelial cells, leading to BBB 20 

dysfunction [16]. 21 

Multi-omics datasets for patients with COVID-19, such as bulk and single-22 

cell/nucleus transcriptomic [17], proteomic [18], and interactomic (protein-protein 23 
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interactions [PPIs]) datasets [19-23], have been generated in order to conduct unbiased 1 

investigation of the pathophysiological pathways. We reasoned that network-based 2 

drug-disease and disease-disease proximity approaches [24-27], which shed light on 3 

the relationship between drugs (and drug targets) and diseases (gene and protein 4 

determinants of disease mechanisms in the human PPI network), would provide 5 

mechanistic insights into the pathobiology of cognitive dysfunction after SARS-CoV-2 6 

infection, potentially suggesting novel targets for further therapeutic investigation. Thus, 7 

we investigated Alzheimer’s disease (AD)-like pathobiology associated with SARS-CoV-8 

2 infection by using a network-based multimodal omics analytic methodology (Fig. 1). 9 

Specifically, we leveraged bulk and single-cell/nuclei RNA-sequencing, proteomics, and 10 

interactomics (SARS-CoV-2 virus-host PPIs from mass spectrometry assays and 11 

genetic interactions from CRISPR-Cas9 assays) from COVID-19 and AD patients. We 12 

hypothesized that SARS-CoV-2 host factors would be localized in a subnetwork within 13 

the comprehensive PPI network and that proteins associated with certain neurologic 14 

function would be targeted by the virus either directly, or indirectly through PPIs with 15 

virus host factors. As detailed below, our comprehensive analyses show scant evidence 16 

of direct brain and neuron damage by COVID-19, but robust evidence for involvement of 17 

pathways of neuroinflammation and brain microvascular injury in COVID-19. 18 

 19 

Materials and methods 20 

SARS-CoV-2 host factor profiles 21 

In total, we have gathered ten datasets of SARS-CoV-2 (and other HCoVs) target host 22 

genes/proteins from various data sources (Table S1). Specifically, six of these datasets 23 
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were based on CRISPR-Cas9 assay results, including (1-2) CRISPR_A549-H and 1 

CRISPR_A549-L, based on high (-H) and low (-L) multiplicity of infection of SARS-CoV-2 

2 in A549 cells [21]; (3-5) CRISPR_HuH7-SARS2, CRISPR_HuH7-229E, 3 

CRISPR_HuH7-OC43, based on HuH7 cells infected by SARS-CoV-2, HCoV-229E, 4 

and HCoV-OC43, respectively [22]; and (6) CRISPR_VeroE6, based on SARS-CoV-2-5 

infected VeroE6 cells [23]. For the CRISPR-Cas9-based datasets, we considered the 6 

top-100 host factors using the ranking methods described in the respective original 7 

publications [21-23]. We also examined the effect of using top-50, -150, and -200 8 

genes. In addition to the CRISPR datasets, we collected three mass spectrometry-9 

based virus-host PPI datasets [19, 20] for SARS-CoV-2, SARS-CoV-1, and MERS-CoV, 10 

named as SARS2-PPI, SARS1-PPI, and MERS-PPI. The last dataset, HCoV-PPI, was 11 

from our recent studies [28, 29] containing HCoVs target host proteins supported by 12 

literature-based evidence. Functional enrichment analyses, including Kyoto 13 

Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) biological 14 

process enrichment analyses, were performed using Enrichr [30] for the CRISPR 15 

datasets. A list of main SARS-CoV-2 entry factors and proteins involved in antiviral 16 

defense was assembled [8], including ACE2, BSG, NRP1, TMPRSS2, TMPRSS11A, 17 

TMPRSS11B, FURIN, CTSB, CTSL, LY6E, IFITM1, IFITM2, IFITM3, IFNAR1, and 18 

IFNAR2. 19 

Neurological disease gene profiles 20 

We extracted neurologic disease-associated genes/proteins from the Human Gene 21 

Mutation Database (HGMD) [31], and defined a gene to be disease-associated, if it had 22 

at least one disease-associated mutation from HGMD reported in the literature. The 23 
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details of these neurological disease genes can be found in Table S2, including the 1 

reported mutations, disease terms used to identify the neurological diseases [32], and 2 

original references. For AD, we assembled four datasets from AlzGPS 3 

(https://alzgps.lerner.ccf.org/) [33], based on our previous work [34] (Table S2). These 4 

datasets contain experimentally validated genes (denoted as “seed” genes) in amyloid 5 

pathology (amyloid) or tauopathy (tau), as well as high-confidence AD risk genes 6 

identified by genome-wide association study (GWAS) [35]. 7 

 8 

Alzheimer's disease blood and CSF markers 9 

We compiled a list of AD blood and CSF protein markers from previous studies [36-38], 10 

which included 29 blood markers and 31 CSF markers. The expression alteration of 11 

these markers in AD or AD-related pathologies, such as tauopathy, were extracted from 12 

these studies. The details of these markers can be found in Table S3. 13 

 14 

Transcriptomic data analyses 15 

Two categories of transcriptomic datasets, including three from AD patients and three 16 

from COVID-19 patients, were used (Table S4). These datasets are described below. 17 

All single-cell analyses were performed using Seurat v3.1.5 [39] following the 18 

processing steps from the original publication of each dataset. Cell types were identified 19 

using markers based on the original publications, unless already annotated in the 20 

metadata. Differential expression analysis was performed using the “FindMarkers” 21 

function from Seurat for the single-cell/nuclei datasets. For the bulk RNA-sequencing 22 

dataset, differential expression analysis was performed using edgeR v3.12 [40]. 23 
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Differentially expressed genes (DEGs) were determined by false discovery rate (FDR) < 1 

0.05 and |log2foldchange| > 0.5. 2 

GSE147528. This single-nuclei RNA-sequencing dataset from the superior frontal gyrus 3 

and entorhinal cortex regions of 10 males with varying stages of AD [41] was used to 4 

examine the expression of the four key SARS-CoV-2 entry factors: ACE2, TMPRSS2, 5 

FURIN, and NRP1, in neurons. 6 

GSE157827. This single-nuclei RNA-sequencing dataset from the prefrontal cortex 7 

region of 12 AD patients and 9 normal controls [42] was used to test the susceptibility of 8 

brain endothelial cells to SARS-CoV-2 infection and damage. Six cell types were 9 

included: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, 10 

and oligodendrocytes. The APOE genotypes of these individuals are also available in 11 

this dataset. 12 

GSE138852. This single-nuclei RNA-sequencing dataset from the entorhinal cortex of 13 

individuals with AD (n = 6) and healthy controls (n = 6) [43] was used to validate the 14 

findings of the expression of SARS-CoV-2 entry factors in brain endothelial cells. Six 15 

cell types were included: astrocytes, endothelial cells, neurons, microglia, 16 

oligodendrocytes, and oligodendrocyte progenitor cells. 17 

GSE157103. This bulk RNA-sequencing dataset of 125 peripheral blood mononuclear 18 

cell (PBMC) samples [44] was used to examine the expression spectrum of AD blood 19 

biomarkers. DEGs were analyzed by disease severity conditions: 66 intensive care unit 20 

(ICU) patients (COVID-19 patients n = 50 vs. non-COVID-19 patients n = 16), 59 non-21 

ICU patients (COVID-19 patients n = 49 vs. non-COVID-19 patients n = 10), and all 125 22 

patients. Adjustments for the effects of age and sex were made. 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.15.435423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435423
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

GSE149689. This single-cell RNA-sequencing PBMC dataset of 6 samples from severe 1 

COVID-19 patients, 4 samples from mild COVID-19 patients, and 4 samples from 2 

healthy controls [45] was used to examine the expression spectrum of AD blood 3 

markers. 13 cell types were included in this dataset: lgG- B cells, lgG+ B cells, CD4+ T 4 

cell effector memory (EM)-like cells, CD4+ T cell non-EM-like cells, CD8+ T cell EM-like 5 

cells, CD8+ T cell non-EM-like cells, dendritic cells, monocytes, intermediate monocytes, 6 

nonclassical monocytes, natural killer cells, platelets, and red blood cells. 7 

GSE163005. This single-cell RNA-sequencing CSF dataset [46] was used to examine 8 

the expression spectrum of AD CSF markers. This neuro-COVID-19 dataset contains 8 9 

COVID-19 patients, 9 multiple sclerosis (MS) patients, 9 idiopathic intracranial 10 

hypertension (IIH) patients, and 5 viral encephalitis (VE) patients. Based on the original 11 

publication, the cells were categorized into three major cell groups of T cells, dendritic 12 

cells, and monocytes. Four comparisons were performed for each major cell group: 13 

COVID-19 vs. MS, COVID-19 vs. IIH, COVID-19 vs. VE, and COVID-19 vs. non-14 

COVID-19 (MS, IIH, and VE). 15 

 16 

Human protein-protein interactome 17 

The human protein-protein interactome was from our previous studies [24, 25, 47, 48], 18 

and contains 17,706 protein nodes and 351,444 unique PPI edges. Each PPI edge has 19 

one or more source information of five categories of evidence from publicly available 20 

databases and datasets: protein complexes identified by robust affinity purification-mass 21 

spectrometry from BioPlex V2.016 [49]; binary PPIs discovered by high-throughput 22 

yeast two-hybrid systems in three datasets [24, 50, 51]; signaling networks revealed by 23 
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low-throughput experiments from SignaLink2.0 [52]; low-throughput or high-throughput 1 

experiments uncovered kinase-substrate interactions from KinomeNetworkX [53], 2 

Human Protein Resource Database (HPRD) [54], PhosphoNetworks [55], 3 

PhosphositePlus [56], DbPTM 3.0 [57], and Phospho.ELM [58]; and PPIs curated from 4 

literatures identified by yeast two-hybrid studies, affinity purification-mass spectrometry, 5 

low-throughput experiments, or protein three-dimensional structures from BioGRID [59], 6 

PINA [60], Instruct [61], MINT [62], IntAct [63], and InnateDB [64]. Inferred PPIs derived 7 

from evolutionary analysis, gene expression data, and metabolic associations were 8 

excluded. 9 

 10 

Network analyses 11 

We used network proximity metrics to quantify the network associations of two 12 

gene/protein modules. The “shortest” proximity measure was used to evaluate the 13 

overall average distance among all genes in the neurological disease gene sets and the 14 

SARS-CoV-2 host factor profiles: 15 

〈𝑑#$% 〉 =
1

)|𝐴|) × ‖𝐵‖
/ 𝑑(𝑎, 𝑏)

5∈#,7∈$

																(1) 16 

where 𝑑(𝑎, 𝑏) represents the shortest path length between gene 𝑎 from module 𝐴 and 𝑏 17 

from module 𝐵 in the human protein-protein interactome. “closest” proximity measure 18 

was used to quantify the distance among the AD markers and the DEGs from the 19 

COVID-19 omics datasets focusing on the genes that are closest to the genes in the 20 

other module: 21 
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〈𝑑#$9 〉 =
1

)|𝐴|) + ‖𝐵‖
;/𝑚𝑖𝑛7∈$
5∈#

𝑑(𝑎, 𝑏) +/𝑚𝑖𝑛5∈#
7∈$

𝑑(𝑎, 𝑏)?																(2) 1 

All network proximities were converted to Z scores based on permutation tests of 2 

1000 repeats: 3 

𝑍BCD =
𝑑#$ − 𝑑FGGG

𝜎F
								(3) 4 

where 𝑑FGGG and 𝜎F are the mean and standard deviation of the proximities, respectively. A 5 

P value was computed using the permutation test accordingly. Gene set pairs with P < 6 

0.05 and Z < -1.5 were considered significantly proximal. 7 

The largest connect component (LCC) was computed by NetworkX [65]. 8 

Significance of LCC was computed in the same way as the network proximity using 9 

permutation test repeated 1000 times. Eigenvector centrality [66] of the nodes in the 10 

networks were computed using Gephi 0.9.2 [67] to evaluate the influence of the nodes 11 

considering the importance of their neighbors. 12 

 13 

Tissue and brain region expression specificity 14 

We retrieved the transcriptomic data in raw count and transcripts per million (TPM) from 15 

the GTEx v8 release [68] for 33 human tissues and 13 brain regions, and examined 16 

expression across different tissues and brain regions. At the tissue level, the brain 17 

regions were combined as one “brain” tissue. We first defined a gene to be tissue- or 18 

brain region-expressed if it had a count per million (CPM) ≥ 0.5 in over 90% samples. 19 

Then, to quantify the significance of the expression of a gene in a tissue or brain region, 20 

we normalized its expression using the z score method. 21 

 22 
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Innate immune genes 1 

We retrieved a list of 1031 human innate immunity genes from InnateDB [64], which 2 

were associated in the published literature with roles in innate immunity. 3 

 4 

Statistical analysis and network visualization 5 

Python package SciPy v1.3.0 [69] was used for the statistical tests unless specified 6 

otherwise. P < 0.05 (or FDR < 0.05 when applicable) was considered statistically 7 

significant throughout the study. Networks were visualized with Gephi 0.9.2 [67] and 8 

Cytoscape 3.8.0 [70]. 9 

 10 

 11 

Results 12 

A network-based, multimodal omics analytic framework 13 

In this study, we present a network-based, multimodal omics (including bulk and single-14 

cell/nuclei RNA-sequencing, proteomics, and interactomics) analysis method for 15 

investigating the underlying mechanisms of COVID-19-associated cognitive dysfunction 16 

or impairment. We hypothesized that for COVID-19 to have neurological impacts in the 17 

host CNS, its host factors (genes/proteins) should be localized in the corresponding 18 

subnetwork within the human PPI network, and either directly target the neurological 19 

disease-associated genes/proteins or indirectly affect them through PPIs (Fig. 1). We 20 

utilized single-cell/nuclei RNA-sequencing data from both COVID-19 patients with 21 

neurological manifestations (neuro-COVID-19) and brains of AD patients not infected by 22 

SARS-CoV-2, brain-region specific gene expression data from the GTEx database [68], 23 
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14 

SARS-CoV-2 virus-host PPIs from mass spectrometry assays, genetic interactions from 1 

CRISPR-Cas9 assays (Table S1), and disease-related genetic data (Table S2). 2 

We compiled ten virus-host interaction datasets across SARS-CoV-2, SARS-3 

CoV-1 and MERS-CoV, and other common HCoVs, including six datasets from 4 

CRISPR-Cas9 assays and four datasets for virus-human PPIs (Table S1). Functional 5 

enrichment analyses of each dataset revealed that virus-host PPIs and host factors are 6 

significantly enriched in pathways well-known to be involved in SARS-CoV-2 infection 7 

and related immune responses (Supplementary Results, Fig. S1). Using these 8 

datasets, we computed their network associations with ten neurological diseases or 9 

conditions. To determine whether brain damage was caused by SARS-CoV-2 direct 10 

infection of the brain, we evaluated expression levels of SARS-CoV-2 entry genes at 11 

brain region and brain single-cell levels. Neuroinflammation was evaluated by 12 

identifying alterations in expression of AD blood and CSF biomarkers in COVID-19 13 

patients using data from peripheral blood mononuclear cell (PBMC) and CSF samples 14 

(neuro-COVID-19 dataset). Lastly, microvascular injury was evaluated by examining the 15 

expression of SARS-CoV-2 entry factors and antiviral defense genes in brain 16 

endothelial cells of AD and healthy control samples. We also compared the expression 17 

of SARS-CoV-2 entry factors and antiviral defense genes in individuals with different 18 

APOE genotypes. 19 

 20 

Strong network-based relationships of COVID-19 to neurological manifestations 21 

We assembled experimentally validated gene/protein profiles for ten neurological 22 

diseases or conditions, including AD, amyotrophic lateral sclerosis, cognitive decline, 23 
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dementia, frontotemporal dementia, multiple system atrophy, neuronal ceroid 1 

lipofuscinosis, Parkinson's disease (PD), spinal muscular atrophy, and spinocerebellar 2 

ataxia (Table S2). First, we quantified the network distance of the SARS-CoV-2 host 3 

factor datasets and neurological diseases in the human protein-protein interactome. A 4 

close network distance between SARS-CoV-2 host factors and neurological disease-5 

associated genes/proteins suggests related or shared mechanistic pathways between 6 

COVID-19 and specific neurological disease [29]. Using state-of-the-art network 7 

proximity measures (see Methods), we evaluated the network-based relationship for the 8 

gene/protein sets between virus-host factors and each disease/condition under the 9 

human interactome network model (Fig. 2a and Fig. S2). We found significant 10 

proximities between the SARS-CoV-2 virus-host interactome (including PPIs and 11 

genetic interactions) and genes associated with neurological diseases in the human 12 

interactome network (average Z = -1.82). The SARS-CoV-2 virus-host PPIs (average Z 13 

= -2.54) showed more significant network proximities (white circles, Fig. 2a) compared 14 

to CRISPR-Cas9-derived host factors (average Z = -1.34). The top three neurological 15 

diseases or conditions with the smallest network proximities to SARS-CoV-2 were: AD 16 

(average Z = -2.75) [6, 7], cognitive decline (average Z = -2.77), and PD (average Z = -17 

2.94). Recent case reports of COVID-19 patients developing parkinsonism suggest that 18 

COVID-19 patients may have increased risk of PD later in life [71]. We noticed that 19 

amyloid pathology has significant network proximity (average Z = -1.55) with the PPI 20 

datasets. However, there are no significant network-based relations between tauopathy-21 

related genes and the SARS-CoV-2 interactome. One possible explanation is the 22 

incompleteness of genes/proteins related to tauopathy in the datasets. In addition to 23 
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SARS-CoV-2, HCoV-229E also showed a significant network proximity to neurological 1 

diseases, suggesting a common association between coronaviruses and cognitive 2 

dysfunction [72]. 3 

 4 

A network-based relationship between COVID-19 and Alzheimer's disease 5 

To examine further why cognitive impairment has such significant network-based 6 

association with the SARS-CoV-2 interactome, we focused on AD and visualized the 7 

PPIs among AD seed genes/proteins (Fig. 2b, green nodes) and host genes/proteins 8 

illustrated by the four SARS-CoV-2 virus-human PPI datasets (Fig. 2b, blue nodes). We 9 

found a large number of PPIs among these proteins, including multiple blood and CSF 10 

biomarkers and SARS-CoV-2 entry factors (nodes with gene symbols). Here, we 11 

discuss several markers that may have important roles in COVID-19-associated AD 12 

(Table S5) according to network measures (connectivity and eigenvector centrality 13 

[EC]), including vascular cell adhesion protein 1 (VCAM1) (connectivity K = 73), ras-14 

related protein Rab-7a (RAB7A) (K = 30), and transforming growth factor beta 1 15 

(TGFB1) (K = 10). These proteins also have high EC values, a measure of potential 16 

node (gene/protein) influence on the network that considers the influence of its 17 

neighbors: VCAM1 EC = 0.59 (rank 6 out of 153 AD genes/proteins), RAB7A EC = 0.17 18 

(rank 25), and TGFB1 EC = 0.19 (rank 22). 19 

VCAM1 is located at the endothelial cell surface and is activated by cytokines 20 

[73]. It is also an AD biomarker with elevated expression in the blood [74, 75] and CSF 21 

[36, 37] of AD patients. VCAM1 levels were also significantly associated with the 22 

severity of dementia and structure changes of white matter [75], and brain endothelial 23 
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VCAM1 at the blood-brain barrier has been proposed as a target for treating age-related 1 

neurodegeneration [76]. Serum VCAM1 levels were also significantly elevated in severe 2 

COVID-19 patients compared to mild patients and controls, and significantly decreased 3 

in the convalescence phase compared to severe patients [77]. Notably, VCAM1 also 4 

plays an important role in COVID-19-induced vasculitis [78]. RAB7A is a direct target of 5 

non-structural protein 7 (nsp7) of SARS-CoV-2 [20], and also one of the top host factors 6 

in CRISPR-Cas9-based SARS-CoV-2 datasets. RAB7A knockout reduces cell surface 7 

angiotensin converting enzyme 2 (ACE2) levels, which thereby reduces SARS-CoV-2 8 

entry into cells [21]. RAB7A is also a potential AD biomarker whose blood expression 9 

level is positively associated with high memory test performance [38]. TGFB1 is a 10 

cytokine that controls cell growth and differentiation [79, 80] and a potential AD marker 11 

with decreased expression in the blood of AD patients [38]. The anti-inflammatory and 12 

neuroprotective role of TGFB1 against AD has already been demonstrated in animal 13 

models [81, 82]. Using bulk RNA-sequencing data from PBMC samples of COVID-19 14 

patients, we also found that TGFB1 expression was significantly decreased in both mild 15 

COVID-19 patients and those requiring intensive care unit (ICU) level care, as 16 

compared to non-COVID-19 patients (Table S3). 17 

Altogether, these results encouraged us to explore further the pathological 18 

relationships between COVID-19 and AD, and to identify potential pathological 19 

pathways by which SARS-CoV-2 infection could lead to AD-like dementia. 20 

 21 

Neuroinflammation-mediated association between neuro-COVID-19 and AD 22 
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We next turned to investigate whether neuroinflammation was a shared mechanism 1 

between COVID-19 and AD by investigating the expression levels of well-known AD 2 

blood and CSF marker genes in COVID-19 patients with neurological manifestations 3 

(neuro-COVID-19). To this end, we compiled a list of blood and CSF protein markers for 4 

AD from previous studies [36-38] (Table S3) with their expression alterations in AD or 5 

AD-related pathologies. We then examined their expression in COVID-19 patient PBMC 6 

[44, 45] and CSF [46] samples. We performed differential expression analyses for the 7 

PBMC bulk RNA-sequencing dataset [44] of COVID-19 patients vs. non-COVID-19 8 

patients. For the other single-cell level PBMC dataset [45], we compared mild / severe 9 

COVID-19 patients to healthy controls. We used an additional single-cell RNA-10 

sequencing dataset generated from CSF samples of neuro-COVID-19 patients with 11 

well-defined neurological manifestations [46]. 12 

We first examined the degree of overlap between AD markers and differentially 13 

expressed genes (DEGs) in PBMCs or CSF from COVID-19 patients and found 14 

significant overlap in CSF monocytes (p = 0.004, Fisher's exact test, Table S3), but not 15 

in PBMCs (p = 0.807, Table S3). We further computed the network proximities of the 16 

AD markers and DEGs and found that blood markers and DEGs from PBMCs do not 17 

show significant network proximities, whereas CSF markers and DEGs from CSF 18 

monocytes were significantly proximal (Table S3, Z = -3.69, p = 0.002). Altogether, we 19 

found a more significant network-based relationship between COVID-19 and AD in CSF 20 

(including monocytes) compared to PBMCs from COVID-19 patients. We next 21 

examined the overall expression spectrum of these markers in both PBMCs and CSF 22 

(Fig. 3a-b). 23 
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In PBMCs, the expression of several AD markers was altered by SARS-CoV-2 1 

infection, such as TGFB1, SERTA domain-containing protein 3 (SERTAD3), glutathione 2 

S-transferase M3 (GSTM3), kinase D-interacting substrate of 220 kDa (KIDINS220), 3 

natural killer tumor recognition sequence (NKTR), arylsulfatse B (ARSB), and insulin 4 

like growth factor 1 (IGF1) (Fig. 3a). Some of the markers have expression changes in 5 

the same direction in COVID-19 and AD or AD-related pathologies, including TGFB1, 6 

GSTM3, and NKTR. Using the PBMC single-cell RNA-sequencing data, we found that 7 

prostaglandin-endoperoxide synthase 2 (PTGS2) and period circadian regulator 1 8 

(PER1) were significantly elevated in monocytes (Fig. S3) of severe COVID-19 patients. 9 

PTGS2 expression was also elevated in the bulk PBMC dataset, although not 10 

significantly. PER1 is a circadian clock gene involved in AD [83]. In the CSF, several AD 11 

markers were also altered, such as secreted phosphoprotein 1 (SPP1), C-X-C motif 12 

chemokine ligand 10 (CXCL10), and TNF receptor superfamily member 1B 13 

(TNFRSF1B) (Fig. 3b). TNFRSF1B showed consistent expression changes in AD or 14 

AD-related pathologies, as well as in COVID-19 patient CSF samples. We also found 15 

that CXCL10 protein level was increased in CSF of COVID-19 patients [84] (Fig. 3b). 16 

To understand the potential pathological consequences of these alterations by 17 

SARS-CoV-2 infection, we interrogated the human protein-protein interactome, the ten 18 

HCoVs host factor datasets, and the transcriptome data from PBMCs (Fig. 3c) of 19 

COVID-19 patients and CSF samples of neuro-COVID-19 patients (Fig. 3d). We 20 

selected three AD blood markers (TGFB1, GSTM3, and NKTR) and three CSF markers 21 

(SPP1, CXCL10, and TNFRSF1B) as examples. Fig. 3c and Fig. 3d show the PPIs 22 

among these markers (centered nodes) and their neighbors, which interact with many 23 
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DEGs or SARS-CoV-2 host factors. For example, NKTR interacts with zinc finger CCH-1 

type containing 18 (ZC3H18) (SARS-CoV-2 host factor), small nuclear interacting 2 

protein 1 (SNIP1) (SARS-CoV-1 and SARS-CoV-2 host factor), and casein kinase II 3 

subunit alpha (CSNK2A2) (SARS-CoV-1, SARS-CoV-2, and MERS-CoV host factor). 4 

NKTR and its PPI partners transcription initiation factor TFIID subunit 1 (TAF1), 40S 5 

ribosomal protein S14 (RPS14), and arrestin beta 2 (ARRB2) are differentially 6 

expressed in the PBMCs of COVID-19 patients. ARRB2 inhibits toll-like receptor 4 7 

(TLR4)-mediated inflammatory signaling [85], which is activated by the SARS-CoV-2 8 

spike protein [86]. In CSF, innate immune genes SPP1, CXCL10, and TNFRSF1B are 9 

differentially expressed in COVID-19 vs. non-COVID-19 patients. Many of their PPI 10 

partners are also SARS-CoV-2 host factors, among which some are innate immune 11 

gene products, such as integrin subunit beta 1 (ITGB1), which is highly expressed in 12 

airway epithelial cells [87], and TNF receptor associated factor 3 (TRAF3), which 13 

controls type I interferon (IFN-I) production [88]. Integrins may function as an alternative 14 

docking receptor for SARS-CoV-2 [89], and ITGB1 is also essential for migration of 15 

monocytes across the endothelium [90]. 16 

In summary, expression of these selected AD markers was significantly altered 17 

by SARS-CoV-2 infection. Using network and multi-omics data analysis, we found that 18 

SARS-CoV-2 infection impacts several immune-related genes/pathways that could lead 19 

to AD-like neurologic impairment. 20 

 21 

Elevated expression of SARS-CoV-2 host factors in brain endothelial cells 22 
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We next evaluated the susceptibility of brain endothelial cells to SARS-CoV-2 infection 1 

and potential microvascular injury. For this, we analyzed the single-nuclei RNA-2 

sequencing dataset from the prefrontal cortex region of 12 AD patients and 9 cognitively 3 

healthy controls [42] (Fig. 4a). We examined expression of SARS-CoV-2 entry factors 4 

across the six cell types: astrocytes, endothelial cells, excitatory neurons, inhibitory 5 

neurons, microglia, and oligodendrocytes (Fig. 4b). We observed low expression levels 6 

of ACE2, transmembrane serine protease 2 (TMPRSS2), furin (FURIN), and neuropilin 7 

1 (NRP1) in neurons in both AD patients and healthy controls. For example, ACE2 and 8 

TMPRSS2 are mostly absent across all six cell types. However, NRP1 is expressed in 9 

endothelial cells, astrocytes, and microglia, and expression is elevated in these cell 10 

types than in neurons. NRP1 was reported to mediate SARS-CoV-2 cell entry in 11 

addition to ACE2 and TMPRSS2 [91, 92]. Basigin (BSG) is much more strongly 12 

expressed in endothelial cells than other cell types, and has been reported as a docking 13 

receptor for SARS-CoV-2 [93], in addition to ACE2 and NRP1. Among the proteases, 14 

FURIN has an elevated expression in endothelial cells compared to other cell types, 15 

and cystatin B (CSTB) is highly expressed in microglia. Differential gene expression 16 

analysis confirmed that BSG and FURIN have significantly higher expression in the 17 

brain endothelial cells than in other cell types (Table S6). In addition to these SARS-18 

CoV-2 entry factors, we also found elevated expression of antiviral defense system 19 

genes in brain endothelial cells, including lymphocyte antigen 6 family member E 20 

(LY6E), interferon induced transmembrane protein 2 (IFITM2) and 3 (IFITM3), and 21 

interferon alpha and beta receptor subunit 1 (IFNAR1). These findings are further 22 

confirmed in a second single-nuclei RNA-sequencing dataset [43] (Fig. S4). LY6E 23 
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impairs entry of coronavirus by inhibiting spike protein-mediated membrane fusion [94]. 1 

IFN-I receptors (IFNAR) play important roles in IFN-I-mediated antiviral immunity [95], 2 

and IFN-induced transmembrane protein 3 (IFITM3) inhibits SARS-CoV-2 cell entry [96, 3 

97]. IFITM3 is also associated with AD through its ability to bind and upregulate γ-4 

secretase, which leads to increased Aβ production [98]. Network analysis also revealed 5 

several important PPI partners of these antiviral defense genes (Fig. 4c), such as signal 6 

transducer and activator of transcription 3 (STAT3) and janus kinase 1 (JAK1). These 7 

immune genes are the HCoVs host factors, and have significantly elevated expression 8 

in endothelial cells compared to other cell types of the brain. The JAK-STAT signaling 9 

pathway mediates the biological functions of several cytokines involved in cytokine 10 

release syndrome (CRS) [99], which is common in COVID-19 [100]. Notably, JAK 11 

inhibition reduces SARS-CoV-2 infection in liver and reduces overall morbidity and 12 

mortality in COVID-19 patients in a pilot clinical trial [101]. Inhibition of JAK-STAT 13 

signaling has therefore been proposed as a treatment strategy for COVID-19 [102]. 14 

 15 

Lack of expression of antiviral defense genes in APOE E4/E4 individuals 16 

It has been suggested that SARS-CoV-2 neurotropism in neurons and astrocytes may 17 

be affected by the APOE genotype [103]. Individuals carrying APOE E2 have decreased 18 

AD risk [104, 105], and those carrying APOE E4 have increased risk [105], relative to 19 

carriers of the normal APOE E2 allele. Therefore, we examined expression of these 20 

genes in endothelial cells (Fig. 4d) and other cell types (Fig. S5). Expression of BSG, 21 

NRP1, FURIN, and CTSB varies by APOE genotype. For example, NRP1 is more highly 22 

expressed in E3/E3 AD patients than in E4/E4 AD patients (Table S7). Importantly, 23 
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LY6E, IFITM2, IFITM3, and IFNAR1 have higher expression in E3/E3 AD patients than 1 

in E4/E4 AD patients. These results suggest that AD patients with APOE E4/E4 2 

genotype may have a less active antiviral defense system, which could render them at 3 

increased risk for SARS-CoV-2 infection. 4 

 5 

Overall low expression of SARS-CoV-2 host factors in human brain 6 

As SARS-CoV-2 infection depends on key entry factors, including ACE2, TMPRSS2, 7 

FURIN, and NRP1, we first examined expression of these entry factors in healthy 8 

tissues using GTEx data [68]. We found overall low expression of SARS-CoV-2 entry 9 

factors (ACE2, TMPRSS2, FURIN, and NRP1) in the human brain (Fig. S6). Brain-10 

specific expression of the four SARS-CoV-2 entry factors (blue bars in the highlighted 11 

yellow column of Fig. 5a) are lower than in other tissues. 12 

It is possible that these entry factors express in certain brain regions, such as 13 

thalamus, brain stem, and hippocampus, which may be targeted by SARS-CoV-2 from 14 

the olfactory bulb [106, 107]. Therefore, we further examined expression of these entry 15 

factors across different brain regions. Among the 13 brain regions, no region showed 16 

high specificity for ACE2, TMPRSS2, FURIN, or NRP1 (Fig. 5b and Fig. S7). The 17 

Spearman's rank correlation coefficient (ρ) for TMPRSS2, FURIN, and NRP1 with ACE2 18 

does not show a co-expression (|ρ|max=0.42 for ACE2 and FURIN in nucleus 19 

accumbens) in any of the 13 brain regions (Fig. 5C). 20 

It has been reported that ACE2 has an overall low expression in lung [108, 109], 21 

as also shown in Fig. 5a, but higher expression in certain cell types such as lung 22 

alveolar type II (AT2) epithelial cells [108], bronchial secretory cells [110], nasal mucosa 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.15.435423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435423
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

[109], and absorptive enterocytes in the ileum [111]. This prompted us to investigate the 1 

brain expression of the entry factors at the single-cell/nuclei level. Using single-nuclei 2 

RNA-sequencing data of the caudal entorhinal cortex and the superior frontal gyrus 3 

from AD patients [41], we examined expression of the four key SARS-CoV-2 entry 4 

factors in the excitatory neuron and inhibitory neuron cells (Fig. 5d). Notably, we found 5 

very low expression of SARS-CoV-2 entry factors as well, consistent with our findings 6 

shown in Fig. 4b. In addition, co-expression of TMPRSS2, FURIN, or NRP1 with ACE2 7 

is low (Fig. 5e, |ρ|max=0.03 for ACE2 and FURIN in inhibitory neurons in the entorhinal 8 

cortex region). These results suggest that neurons are unlikely to be a direct target for 9 

SARS-CoV-2 infection. However, we should note that even though its expression is low 10 

overall, NRP1 has a relatively higher expression than the other three genes. Together, 11 

these expression results at the tissue, brain region, and single-nuclei levels suggest that 12 

SARS-CoV-2 is unlikely to directly invade brain, and that cognitive impairment with 13 

COVID-19 is more likely caused by neuroinflammation (Fig. 3) and microvascular injury 14 

(Fig. 4). 15 

 16 

 17 

Discussion 18 

The negative effects of COVID-19 on the CNS may have a long-term impact that could 19 

possibly increase the likelihood of developing AD-like dementia [1, 2, 4, 5, 112]. Here, 20 

we investigated the potential mechanisms for this effect. Using network proximity 21 

measure in the human PPI, we found strong network-based relationship between 22 

SARS-CoV-2 host factors (based on PPI assays and CRISPR-Cas9 genetic assays) 23 
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and disease-associated genes/proteins of dementia-like cognitive impairment. Network 1 

analysis of the SARS-CoV-2 host factors and AD-associated genes/proteins reveals 2 

that these two sets have significant network proximities in the human interactome. 3 

Several AD-associated proteins were highlighted, including RAB7A, TGFB1, and 4 

VCAM1, with potentially high impact on the network according to their degrees and 5 

eigenvector centralities. In addition, expression of these genes is also altered in COVID-6 

19 patients based on the results of transcriptomic analyses. 7 

Previous studies have shown that SARS-CoV-2 is absent from the brain [12] and 8 

CSF [13]. However, evidence also exists that SARS-CoV-2 may directly infect the brain 9 

[9-11]. To test the possibility of direct brain invasion by SARS-CoV-2, we investigated 10 

the expression of key entry factors of SARS-CoV-2 at three levels: tissue, brain regions, 11 

and brain cell types. We found very low expression of ACE2 and TMPRSS2 in the brain 12 

and neurons. ACE2 is the main known SARS-CoV-2 docking receptor [108-110]; yet, it 13 

has little to no expression in neurons (Fig. 4b and Fig. 5d). Recent studies found two 14 

additional SARS-CoV-2 docking receptors, NRP1 [91, 92] and BSG [93]. BSG, NRP1, 15 

and FURIN have elevated expression in the endothelial cells in the prefrontal cortex 16 

region of both AD patients and healthy controls compared to other brain cell types (Fig. 17 

4b). Our results suggest that it is unlikely for SARS-CoV-2 to target neurons directly via 18 

ACE2. However, we cannot rule out the possibility that SARS-CoV-2 may enter the 19 

brain through the cerebral endothelium using receptors such as BSG and NRP1 or 20 

other unknown entry factors. In addition, other HCoVs, including HCoV-229E and 21 

HCoV-OC43, have been detected in human brains [113]. 22 
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Neuroinflammation is a major hallmark of AD, and we analyzed the expression of 1 

AD blood and CSF markers in PBMCs and CSF of COVID-19 patients. We identified 2 

several AD marker genes (e.g., NKTR, GSTM3, TGFB1, TNFRSF1B, SPP1, and 3 

CXCL10) which may provide insights into the shared pathobiology of cognitive 4 

dysfunction in COVID-19 and AD. These genes were significantly altered in PBMCs or 5 

CSF of COVID-19 patients. Network analysis showed that these genes are enriched in 6 

PPIs of immune-related gene products, such as ITGB1 and ARRB2. Moreover, many of 7 

the PPI partners of these genes are either the host factors of SARS-CoV-2, or are 8 

significantly altered in COVID-19 patients, or both. In addition, the endothelial cells also 9 

have elevated expression of antiviral defense genes (LY6E, IFITM2, IFITM3, and 10 

IFNAR1) (Fig. 4b). We identified important PPI partners (STAT3 and JAK1) of these 11 

genes using network analysis combined with SARS-CoV-2 host factor datasets and 12 

differential expression analyses. Due to the inflammation role of the JAK-STAT 13 

signaling pathway in COVID-19, its inhibition by baricitinib has been studied as a 14 

potential treatment [102] in several clinical trials (NCT04320277 and NCT04321993). 15 

We also found that individuals with APOE E4/E4 have lower expression of antiviral 16 

defense genes compared to individuals with APOE E3/E3, suggesting lack of 17 

expression of these genes and potentially an elevated risk of SARS-CoV-2 infection. 18 

Human-induced pluripotent stem cell models showed an elevated susceptibility to 19 

SARS-CoV-2 infection in APOE E4/E4 brain cells [103]. Further observations of APOE-20 

related susceptibility to SARS-CoV-2 infection are warranted. 21 

In summary, our observations provide mechanistic insights into two questions: 22 

(a) whether SARS-CoV-2 infection could potentially increase the risk of AD and AD-like 23 
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dementia; and (b) whether individuals with AD and AD-like dementia have increased 1 

risk of SARS-CoV-2 infection. Our analyses show a low possibility of direct brain 2 

invasion by SARS-CoV-2 (Fig. 5). However, we found significant mechanistic overlap 3 

between AD and COVID-19 (Fig. 2) centered on neuroinflammation and microvascular 4 

injury pathways or processes (Fig. 3 and Fig. 4). It was found that dementia patients 5 

had twice the risk of COVID-19 compared to those without dementia [6]. Although 6 

nursing home stays were adjusted in this study [6], it could still potentially explain the 7 

high risk in dementia patients, due to a higher nursing home stay tendency in these 8 

patients. We found that the SARS-CoV-2 entry factors and the antiviral defense genes 9 

have similar transcriptomic expression in the brain cells between AD patients and 10 

control individuals (Fig. 4b and Fig. S4). These observations do not suggest an 11 

elevated risk of COVID-19 in AD patients. Therefore, longitudinal clinical and functional 12 

studies are warranted to inspect the causal relationship of dementia and an elevated 13 

risk of SARS-CoV-2 infection in the near future. 14 

 15 

Limitations 16 

We acknowledge several limitations. First, our human protein-protein interactome was 17 

built using high-quality data from multiple sources; yet it is still incomplete. The PPIs in 18 

our interactome is undirected. However, it has been shown that incorporating 19 

directionality of the human PPI does not change network proximity results [114]. 20 

Therefore, the network associations could be either positive or negative, and require 21 

further investigation. In addition, as our network proximity analysis relies on disease-22 

associated genes, literature bias could affect the results because more highly-studied 23 
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genes are more likely to appear in the dataset. Second, we analyzed expression levels 1 

of the key SARS-CoV-2 entry factors and found low expression levels for ACE2 and 2 

TMPRSS2. However, we cannot rule out the possibility of SARS-CoV-2 directly 3 

targeting the brain via as-yet unidentified mechanisms. Third, possible pathways of 4 

neuroinflammation and microvascular injury were tested using data of either individuals 5 

with AD or COVID-19, but not both. Future studies using genetics and multi-omics data 6 

from individuals with both AD and COVID-19 will be needed to confirm and extend 7 

these network-based findings. The significance of our findings in the context of the 8 

general population of COVID-19 frequently suffering from "brain fog" without a formal 9 

diagnosis of AD needs further investigation. 10 

 11 

Conclusions 12 

In this study, we investigated COVID-19-assoicated neurological manifestations using 13 

both network medicine methodologies and bulk/single-cell/single-nuclei transcriptomic 14 

data analyses. We identified strong shared neuroinflammatory responses between 15 

COVID-19 and AD. Several AD markers (CXCL10, TNFRSF1B, SPP1, TGFB1, 16 

GSTM3, and NKTR) have significantly altered expression in COVID-19 patients. Low 17 

expression levels of SARS-CoV-2 entry factors were found in human brains, indicating 18 

low possibility of direct brain damage by the virus. Transcriptomic analyses showed 19 

elevated expression levels of SARS-CoV-2 host factors (BSG and FURIN) and antiviral 20 

defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) in brain endothelial cells 21 

compared to other cell types, suggesting possible brain microvascular injury by SARS-22 

CoV-2 infection. In addition, individuals with APOE E4/E4 may have increased risk of 23 
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SARS-CoV-2 infection by loss of expression of antiviral defense genes (LY6E, IFITM2, 1 

IFITM3, and IFNAR1) compared to individuals with APOE E3/E3. Altogether, these 2 

results can improve our understanding of COVID-19-associated neurological 3 

manifestations and provide guidance for future risk management of potential cognitive 4 

impairment by SARS-CoV-2 infection. Our findings could lay the foundation for future 5 

research that ultimately leads to testable and measurable serum biomarkers that could 6 

identify patients at highest risk of neurological complications with COVID-19. 7 
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Availability of data and materials 2 

The transcriptomic datasets used in this study (GSE147528, GSE157827, GSE138852, 3 

GSE157103, GSE149689, and GSE163005) were downloaded from the NCBI GEO 4 

database (https://www.ncbi.nlm.nih.gov/geo/). The GTEx v8 dataset was downloaded 5 

from https://gtexportal.org/home/. The human protein-protein interactome and the 6 

network proximity code can be found in https://github.com/ChengF-Lab/COVID-7 

19_Map. The AD datasets can be found in https://alzgps.lerner.ccf.org/. 8 
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 33 

Figure Legends 34 

Fig. 1. Overall workflow of this study. We compiled ten SARS-CoV-2 host factor 35 

datasets based on CRISPR-Cas9 assays or protein-protein interaction assays, and 36 
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collected neurological disease-associated genes/proteins. We utilize network proximity 1 

analysis to investigate network-based relationship between SARS-CoV-2 host factors 2 

and neurological disease-associated genes/proteins under the human interactome 3 

network model. Utilizing bulk/single-cell/single-nuclei transcriptomics data, AD markers, 4 

and SARS-CoV-2 entry factors, we tested three potential mechanisms of SARS-CoV-2 5 

neurological manifestations: direct brain invasion, neuroinflammation, and 6 

microvascular injury. The susceptibility of SARS-CoV-2 infection was also compared 7 

among AD patients with different APOE genotypes. 8 

 9 

Fig. 2. A network landscape of COVID-19 and neurological diseases. (a) Network 10 

proximity analysis shows strong network associations between COVID-19 and 11 

neurological diseases. Heatmap shows the “shortest” network proximities in Z score 12 

(see Methods). Smaller Z scores indicate smaller network proximities between the two 13 

gene sets. (b) Protein-protein interaction network of the SARS-CoV-2 and other human 14 

coronaviruses host factors and the Alzheimer’s disease-associated genes/proteins. 15 

SARS-CoV-2 entry factors, antiviral defense genes, and AD biomarkers are highlighted 16 

by their gene symbols. 17 

 18 

Fig. 3. Neuroinflammation-mediated association between COVID-19 and 19 

Alzheimer's disease (AD). The expression of (a) AD blood and (b) cerebrospinal fluids 20 

(CSF) protein markers in COVID-19 patients. Heatmaps show the fold change (FC) of 21 

the comparisons indicated above. (c) and (d) Network analyses of the AD markers that 22 

are differentially expressed in COVID-19 vs. non-COVID-19. Neighbors of these 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2021.03.15.435423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.15.435423
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

markers that are the SARS-CoV-2 host factors (non-circle nodes) or are DEGs (denoted 1 

by “+”) in the COVID-19 datasets are shown. Node shape indicates the number of 2 

SARS-CoV-2 host factor datasets that contain the node. Edge colors indicate the 3 

protein-protein interaction source type. PBMC, peripheral blood mononuclear cells. 4 

DEG, differentially expressed genes. 5 

 6 

Fig. 4. Elevated expression of SARS-CoV-2 host factors in human brain 7 

endothelial cells. (a) UMAP visualization of the single-nuclei RNA-sequencing dataset 8 

from the prefrontal cortex region of Alzheimer’s disease (AD, n=12) patients and healthy 9 

controls (CT, n=9). (b) Expression of the entry factors and antiviral defense proteins in 10 

different cell types in AD and CT groups. (c) Network analyses of the antiviral defense 11 

genes that are differentially expressed in brain endothelial cells vs. other cell types. 12 

Node shape indicates the number of SARS-CoV-2 host factor datasets that contain the 13 

node. Edge colors indicate the protein-protein interaction source type. (d) Expression of 14 

the entry factors and antiviral defense proteins in individuals with different APOE 15 

genotypes (AD-E3/E3 n=4, AD-E4/E4 n=2, AD-E3/E4 n=5, AD-E2/E4 n=1, CT-E2/E3 16 

n=2, CT-E3/E3 n=5, CT-E3/E4 n=2). 17 

 18 

Fig. 5. Expression of key SARS-CoV-2 entry factors across 33 human tissues, 13 19 

brain regions, and brain cell types/subpopulations. (a) Expression specificity of key 20 

SARS-CoV-2 entry factors in 33 tissues and (b) expression specificity of these genes in 21 

13 brain regions using data from the GTEx database (see Methods). (c) Co-expression 22 

of TMPRSS2, FURIN, and NRP1 vs. ACE2 in the brain regions. (d) Expression of key 23 
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SARS-CoV-2 entry factors in the neuron cells. (e) Co-expression of TMPRSS2, FURIN, 1 

and NRP1 vs. ACE2 in the neuron. SCC, Spearman's rank correlation coefficient. EC, 2 

entorhinal cortex. SFG, superior frontal gyrus. 3 

 4 
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Supplementary Results 

We compiled ten SARS-CoV-2 and other HCoVs host factor profiles, including six 

datasets from CRISPR-Cas9 assays (CRISPR_A549-H, CRISPR_A549-L, 

CRISPR_HuH7-229E, CRISPR_HuH7-OC43, CRISPR_HuH7-SARS2, and 

CRISPR_VeroE6), and four datasets for virus-human PPIs (SARS2-PPI, SARS1-PPI, 

MERS-PPI, and HCoV-PPI) (see Methods). The six CRISPR-Cas9-based datasets 

adopted genome-scale CRISPR loss-of-function screening methods in the SARS-CoV-2 

infected cell lines (as indicated in the dataset name) to identify host factors required for 

the infection. 

As we hypothesized that the SARS-CoV-2 host factors form a subnetwork within 

the comprehensive human protein interactome, we first computed the largest connected 

components (LCC) of the CRISPR-Cas9-based datasets. LCC quantifies the number of 

genes/proteins in the largest subnetwork formed by a dataset. We found that three of 

these datasets, including CRISPR_A549-H, CRISPR_A549-L, and CRISPR_HuH7-

229E, consistently show significantly large LCC (Table S2), when we used top-50, -100, 

and -150 genes. Top-100 revealed the highest number of significant LCCs for the 

SARS-CoV-2 datasets (CRISPR_A549-H p = 0.007, CRISPR_A549-L p < 0.001, 

CRISPR_VeroE6 p = 0.037, permutation test, Table S2, Fig. S1). Therefore, we 

selected top-100 genes from these datasets for downstream analyses. These results 

suggest that these datasets form disease modules in the human protein interactome 

and offer opportunities for network-based discoveries. 

Next, we performed functional enrichment analyses for these datasets (Fig. S1). 

We identified several common pathways and GO terms that are enriched in more than 
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three datasets, including autophagy, lysosome, vesicle-mediated transport, endosomal 

transport, intracellular pH reduction, macromolecule catabolic process, regulation of 

lysosomal lumen pH, cytosolic transport, and selective autophagy. These datasets also 

have different functional enrichment. For example, CRISPR_VeroE6 is enriched in 

functions related to cell cycle, cell growth, and chromatin remodeling, and 

CRISPR_HuH7-SARS2 is enriched in heparan sulfate biosynthetic functions. These 

results suggest that the SARS-CoV-2 host factors participate in various essential 

cellular functions. In addition, these datasets contain complementary information of the 

cellular states of the SARS-CoV-2 infection and host response. 
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Table S4. Transcriptomic datasets used in this study. 

GEO ID Type Organism Sample / Brain 
region 

Groups Cell types 

GSE147528 single-nuclei 
RNA-seq 

Homo 
sapiens 

superior frontal 
gyrus and 
entorhinal cortex 

10 males with varying 
stages of Alzheimer’s 
disease (AD) 

astrocytes, excitatory 
neurons, inhibitory neurons, 
and microglia 

GSE157827 single-nuclei 
RNA-seq 

Homo 
sapiens 

prefrontal cortex 12 AD patients and 9 
normal controls 

astrocytes, endothelial cells, 
excitatory neurons, inhibitory 
neurons, microglia, and 
oligodendrocytes 

GSE138852 single-nuclei 
RNA-seq 

Homo 
sapiens 

entorhinal cortex AD (n = 6) and 
healthy controls (n = 
6) 

astrocytes, endothelial cells, 
neurons, microglia, 
oligodendrocytes, and 
oligodendrocyte progenitor 
cells 

GSE157103 bulk RNA-
seq 

Homo 
sapiens 

peripheral blood 
mononuclear cell 
(PBMC) 

66 intensive care unit 
(ICU) patients 
(COVID-19 patients n 
= 50 vs. non-COVID-
19 patients n = 16), 59 
non-ICU patients 
(COVID-19 patients n 
= 49 vs. non-COVID-
19 patients n = 10), 
and all 125 patients 

N/A 

GSE149689 single-cell 
RNA-seq 

Homo 
sapiens 

PBMC 6 samples from 
severe COVID-19 
patients, 4 samples 
from mild COVID-19 
patients, and 4 
samples from healthy 
controls 

lgG- B cells, lgG+ B cells, 
CD4+ T cell effector memory 
(EM)-like cells, CD4+ T cell 
non-EM-like cells, CD8+ T 
cell EM-like cells, CD8+ T cell 
non-EM-like cells, dendritic 
cells, monocytes, 
intermediate monocytes, 
nonclassical monocytes, 
natural killer cells, platelets, 
and red blood cells 

GSE163005 single-cell 
RNA-seq 

Homo 
sapiens 

Cerebrospinal fluid 8 COVID-19 patients, 
9 multiple sclerosis 
patients, 9 idiopathic 
intracranial 
hypertension patients, 
and 5 viral 
encephalitis patients 

T cells, dendritic cells, and 
monocytes 
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Fig. S1

CRISPR_A549-H

Fig. S1. Functional enrichment analysis and
largest connected component of the six
CRISPR-Cas9-based SARS-CoV-2 host
factor datasets. Top 100 genes from each
dataset were used for the analyses.
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Fig. S1 continued

CRISPR_A549-L
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Fig. S1 continued

CRISPR_HuH7-229E
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Fig. S1 continued

CRISPR_HuH7-OC43
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Fig. S1 continued

CRISPR_HuH7-SARS2
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Fig. S1 continued

CRISPR_VeroE6
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Fig. S2

Fig. S2. Network proximity results using different numbers of top genes from the CRISPR-
Cas9-based SARS-CoV-2 host factor datasets. Heatmap shows the proximities of the
CRISPR-Cas9-based SARS-CoV-2 host factor datasets and 10 neurological diseases using
different numbers of top genes (i.e., top-50, -100, -150, and -200) from the CRISPR-Cas9
assay.
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Fig. S3

Fig. S3. Single-cell level expression of AD blood markers in the PBMC samples of COVID-
19 patients. Heatmap shows the expression change in mild / severe COVID-19 patients
versus healthy controls. Data source: GSE149689.
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Fig. S4

Fig. S4. Expression spectrum of the SARS-CoV-2 entry factors in the entorhinal cortex from
Alzheimer’s disease patients and controls. AD, Alzheimer’s disease patients. CT, controls.
OPC, oligodendrocyte progenitor cell. Data source: GSE138852.
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Fig. S5

Fig. S5. Expression spectrum of the SARS-CoV-2 entry factors in individuals with different
APOE genotypes. AD, Alzheimer’s disease patients. NC, normal controls. Data source:
GSE157827.
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Fig. S6
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Fig. S6. Expression of the key SARS-CoV-2 entry factors in different tissues. Data source:
GTEx v8.
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Fig. S7
lo

g 2
TP

M

Am
yg

da
la

An
te

rio
r 

ci
ng

ul
at

e 
co

rte
x 

(B
A2

4)

C
au

da
te

 (
ba

sa
l g

an
gl

ia
)

C
er

eb
el

la
r 

H
em

is
ph

er
e

C
er

eb
el

lu
m

C
or

te
x

Fr
on

ta
l C

or
te

x 
(B

A9
)

H
ip

po
ca

m
pu

s

H
yp

ot
ha

la
m

us

N
uc

le
us

 a
cc

um
be

ns
(b

as
al

 g
an

gl
ia

)

Pu
ta

m
en

 (
ba

sa
l g

an
gl

ia
)

Sp
in

al
 c

or
d 

(c
er

vic
al

 c
-1

)

Su
bs

ta
nt

ia
 n

ig
ra

Fig. S7. Expression of the key SARS-
CoV-2 entry factors in different brain
regions. Data source: GTEx v8.
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