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Abstract: Sophoraflavanone G (SG), isolated from Sophora flavescens, has anti-inflammatory and
anti-tumor bioactive properties. We previously showed that SG promotes apoptosis in human
breast cancer cells and leukemia cells and reduces the inflammatory response in lipopolysaccharide-
stimulated macrophages. We investigated whether SG attenuates airway hyper-responsiveness (AHR)
and airway inflammation in asthmatic mice. We also assessed its effects on the anti-inflammatory re-
sponse in human tracheal epithelial cells. Female BALB/c mice were sensitized with ovalbumin, and
asthmatic mice were treated with SG by intraperitoneal injection. We also exposed human bronchial
epithelial BEAS-2B cells to different concentrations of SG to evaluate its effects on inflammatory
cytokine levels. SG treatment significantly reduced AHR, eosinophil infiltration, goblet cell hyperpla-
sia, and airway inflammation in the lungs of asthmatic mice. In the lungs of ovalbumin-sensitized
mice, SG significantly promoted superoxide dismutase and glutathione expression and attenuated
malondialdehyde levels. SG also suppressed levels of Th2 cytokines and chemokines in lung and
bronchoalveolar lavage samples. In addition, we confirmed that SG decreased pro-inflammatory
cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B cells. Taken together, our data
demonstrate that SG shows potential as an immunomodulator that can improve asthma symptoms
by decreasing airway-inflammation-related oxidative stress.

Keywords: airway hyper-responsiveness; airway inflammation; asthma; sophoraflavanone G; Th2 cell

1. Introduction

The global prevalence of asthma, a chronic allergic respiratory disease, is gradually
increasing [1]. Allergen inhalation or microbial infections can induce the onset of asthma.
In recent years, climate change has expanded allergen exposure, and severe air pollution
has boosted the incidence of respiratory conditions such as asthma and chronic obstructive
pulmonary disease. An acute asthma attack causes chest tightness, rapid coughing, dry
coughing, and difficulty breathing [2]. Repeated asthma attacks, however, can cause the
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smooth muscles of the airway to thicken, and their contraction in asthmatic attacks will
narrow the airway [3]. In addition, epithelial cells release more mucus into the obstructed
airway. If a patient with an acute asthma attack does not urgently use a bronchodilator
to relieve this constriction, the patient will have difficulty breathing or even suffocate to
death [1].

Asthma can be divided into eosinophilic asthma and non-eosinophilic asthma accord-
ing to the distribution of immune cells in bronchoalveolar lavage fluid (BALF) or sputum.
Non-eosinophilic asthma, considered to be non-type 2 asthma, can be categorized into three
types: neutrophilic asthma, mixed granulocytic asthma, and paucigranulocytic asthma [4].
Induced-sputum neutrophil and BALF were higher in patients with smoking asthma, and
treatment with inhaled steroids is ineffective in these patients [5].

In recent years, studies have shown excessive eosinophil infiltration in the lungs of
patients with asthma. Inflammatory eosinophils release inflammation mediators, causing
severe inflammation and an allergic response in the lungs [6]. Moreover, the lungs of
asthmatic patients will exhibit airway hyper-responsiveness (AHR) and airway remodeling
that can induce tracheal goblet cell hyperplasia and increased mucus secretions [7]. Previous
studies have found that the pathological characteristics of asthma and airway remodeling
are closely related to the excessive activation of Th2 cells. Activated Th2 cells will release
a large amount of the cytokines interleukin (IL)-4, IL-5, and IL-13, not only causing an
imbalance in Th2/Th1 cells in the immune system but also aggravating immunoglobulin
(Ig)E production by B cells to induce mast cell activation [8]. Therefore, regulating Th2 cell
activation could ameliorate the development of severe asthma symptoms.

Furthermore, allergens also stimulate pulmonary alveolar epithelial cells and tracheal
epithelial cells to release reactive oxygen species (ROS), which can cause oxidative damage
to lung tissue [9]. Oxidative stress can stimulate tracheal epithelial cells to secrete more
mucus into obstructed airways and induce contraction of airway smooth muscles, leading
to shortness of breath and difficulty breathing during an asthma attack [10]. Previous
studies have shown that ROS and antioxidants can affect the mitochondrial function in
the developing airway smooth muscle [11]. The mitochondrial fatty acid beta-oxidation of
bronchial smooth muscle could exacerbate airway remodeling in asthma [12].

Herbal medicine has been widely used in China and other parts of Asia for thou-
sands of years. Chinese herbal complex formulas, including Ding Chuan Tang and Xiao-
Qing-Long-Tang, have shown potential to relieve asthma symptoms [13]. Some pure
compounds of Chinese herbal medicines may improve asthma, possibly by regulating
specific inflammation or immune cell targets, and offer a straightforward way to inves-
tigate molecular mechanisms [14]. In traditional Chinese medicine, the root of Sophora
flavescens is used to treat liver inflammation, diuresis, and swelling [15]. Previous studies
found that S. flavescens could attenuate granulomatous inflammation during Mycobacterium
tuberculosis infection [16]. The ethyl acetate extracts of S. flavescens could also reduce the
expression of pro-inflammatory cytokines and mediators in lipopolysaccharide-stimulated
mouse macrophages [17]. Several pure compounds have been isolated from the roots
of S. flavescens, including matrine, oxymatrine, kushenol, kuraridine, kurarinone, and
sophoraflavanone G (SG) [18]. Kurarinone has an anti-inflammatory and antioxidant ef-
fect for improving rheumatoid arthritis in mice [19]. Matrine ameliorated lung injury in
mice and reduced the inflammatory response in lung epithelial cells [20]. Oxymatrine
reduced ROS production in RANKL-induced osteoclast formation by suppressing SREBP2
and NFATc1 expression [21]. Kushenol C isolated from the roots of S. flavescens could
prevent ROS production in tert-butyl hydroperoxide-induced HaCaT keratinocytes [22].
We previously showed that matrine can improve airway inflammation and eosinophil
infiltration in asthmatic mice [23], and that SG reduces the inflammatory response in
lipopolysaccharide-stimulated macrophages [24]. SG could inhibit the neuroinflammation
in lipopolysaccharide-activated microglia through regulated MAPKs and Nrf2/HO-1 sig-
naling pathways [25]. In the current work, we investigated the ability of SG to improve
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AHR, airway inflammation, and oxidative stress, and evaluated its effects on immune
regulation function in asthmatic mice.

2. Results
2.1. SG Attenuates AHR in Mice

The experimental protocol for the sensitized asthma mouse model is shown in Figure 1A.
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Figure 1. Effect of sophoraflavanone G (SG) on pulmonary function in asthmatic mice. (A) Exper-
imental procedures for asthmatic mouse studies. (B) Enhanced pauses (Penh) were detected by
methacholine inhalation (0–40 mg/mL) in mice. (C) Numbers of inflammatory and total cells in
BALF. The data are presented as mean ± SEM of three independent experiments (n = 10 per group);
* p < 0.05, ** p < 0.01 versus OVA group.

First, we evaluated whether SG ameliorates abnormal airflow of the respiratory tract
in asthmatic mice. To measure AHR and evaluate lung function in mice, we exposed
the animals to aerosolized methacholine. With inhalation of 40 mg/mL methacholine,
OVA-induced asthmatic mice exhibited markedly elevated enhanced pause values com-
pared with unsensitized control mice. Our results demonstrated that SG could effectively
attenuate enhanced pause values when compared with the OVA mice (OVA, 7.97 ± 1.56 vs.
SG5, 6.12 ± 0.94 (p < 0.05) and SG10, 4.06 ± 0.81 (p < 0.01)) (Figure 1B).

2.2. SG Reduces Eosinophil Numbers in BALF

We calculated the number of inflammatory cells in the BALF to investigate whether SG
reduced the inflammatory response in asthmatic mice. Inflammatory cells were stained with
Giemsa stain. We detected a larger number of eosinophils in BALF from the OVA group
compared with the unsensitized control mice. In addition, SG10 decreased eosinophils and
total cell number in BALF of OVA-sensitized mice compared with controls (Figure 1C).
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2.3. SG Reduces Eosinophil Infiltration and Goblet Cell Hyperplasia in Murine Lung

In the lungs of asthmatic patients, a large infiltration of activated eosinophils could
cause an allergic and inflammatory response [26]. Asthmatic mice treated with SG had
reduced eosinophil infiltration of the lungs compared with their OVA-sensitized untreated
counterparts (Figure 2A,B). Next, a lung biopsy was stained with PAS solution to observe
goblet cell hyperplasia in the trachea of mice [27]. The PAS staining results showed
remarkably upregulated tracheal goblet cell hyperplasia in the OVA-sensitized group.
SG-treated animals, however, had notably reduced hyperplasia compared with their OVA-
sensitized untreated counterparts (Figure 3A,B).
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Figure 2. Sophoraflavanone G (SG) reduces eosinophil infiltration in the mouse lung. (A) H&E
staining showing eosinophil infiltration (200× magnification). (B) Inflammatory scores are for lung
sections. The data are presented as mean ± SEM of three independent experiments (n = 4–6 per
group); ** p < 0.01 versus the OVA group (scale bar = 100 µm).
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Figure 3. Sophoraflavanone G (SG) reduces goblet cell hyperplasia in the mouse lung. (A) PAS
staining showing goblet cell hyperplasia (200× magnification). (B) PAS-positive cells were calculated
per 100 µm in the trachea. The data are presented as mean ± SEM of three independent experiments
(n = 4–6 per group); * p < 0.05, ** p < 0.01 versus the OVA group (scale bar = 100 µm).
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2.4. SG Regulates Cytokine and Chemokine Expression in BALF and Lung Tissue

Asthma is an allergic disease of immune imbalance, and overactivation of Th2 cells is
induced in the lung to exacerbate the secretion of IL-4, IL-5, and IL-13 cytokines [28]. In
BALF, SG significantly decreased IL-4, IL-5, IL-13, TNF-α, IL-6, CCL11, and CCL24 levels
in comparison with OVA-induced asthmatic mice (Figure 4). Real-time PCR was applied to
assess relative mRNA expression in murine lung tissue, with results indicating reduced
IL-4, IL-5, IL-13, TNF-α, IL-6, CCL11, and CCL24 gene expression in SG-treated asthmatic
mice compared with the OVA-only control group (Figure 5). Furthermore, in BALF and
lung tissue, SG was associated with significantly elevated interferon (IFN)-γ expression
compared with the OVA group (Figures 4D and 5D).
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Figure 4. Sophoraflavanone G (SG) regulates BALF cytokine and chemokine levels. (A) IL-4, (B) IL-5,
(C) IL-13, (D) IFN-γ, (E) TNF-α, (F) IL-6, (G) CCL11, and (H) CCL24 as measured by ELISA. The
data are presented as mean ± SEM of three independent experiments (n = 10 per group); * p < 0.05,
** p < 0.01 versus the OVA group.

2.5. SG Modulates GSH, SOD, and MDA Expression in the Lungs

Continuous asthma attacks will stimulate oxidative stress in the lung and weaken lung
function [29]. Previous studies demonstrated that GSH, CAT, and SOD have anti-oxidative
stress effects, reducing lung damage in patients with asthma [30]. Compared with untreated
OVA-sensitized mice, asthmatic mice treated with SG had elevated GSH, CAT, and SOD
activity in lung tissue (Figure 6A–C). Treatment with SG also notably reduced MDA levels
compared with levels in the OVA-sensitized mice (Figure 6D).
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(A) IL-4, (B) IL-5, (C) IL-13, (D) IFN-γ, (E) IL-6, (F) TNF-α, (G) CCL11, and (H) CCL24 were de-
termined by real-time PCR. Fold values relative to β-actin expression. The data are presented as
mean ± SEM of three independent experiments (n = 10 per group); * p < 0.05, ** p < 0.01 versus the
OVA group.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 14 
 

 

± SEM of three independent experiments (n = 10 per group); * p < 0.05, ** p < 0.01 versus the OVA 
group. 

2.5. SG Modulates GSH, SOD, and MDA Expression in the Lungs 
Continuous asthma attacks will stimulate oxidative stress in the lung and weaken 

lung function [29]. Previous studies demonstrated that GSH, CAT, and SOD have anti-
oxidative stress effects, reducing lung damage in patients with asthma [30]. Compared 
with untreated OVA-sensitized mice, asthmatic mice treated with SG had elevated GSH, 
CAT, and SOD activity in lung tissue (Figure 6A–C). Treatment with SG also notably re-
duced MDA levels compared with levels in the OVA-sensitized mice (Figure 6D). 

 
Figure 6. Sophoraflavanone G (SG) regulates oxidative stress factors. (A) CAT, (B) GSH, (C) SOD, 
and (D) MDA were measured in lung tissues. The data are presented as mean ± SEM of three inde-
pendent experiments (n = 10 per group); * p < 0.05, ** p < 0.01 versus the OVA group. 

2.6. SG Inhibits Levels of Serum OVA-Specific IgG1 and IgE  
Activated Th2 cells produce IL-4, which is responsible for IgE production by B cells 

to activate eosinophils and mast cells [31]. We used ELISA to evaluate the effect of SG on 
serum levels of OVA-specific antibodies. The OVA group had the highest levels of OVA-
IgG1 and OVA-IgE, and SG-treated OVA-sensitized mice had significantly decreased 
OVA-IgG1 and OVA-IgE levels compared with the OVA group (Figure 7A,B). Further-
more, OVA-IgG2a levels were significantly elevated in the SG10 groups compared with 
levels in the OVA-sensitized animals (Figure 7). 

Figure 6. Sophoraflavanone G (SG) regulates oxidative stress factors. (A) CAT, (B) GSH, (C) SOD,
and (D) MDA were measured in lung tissues. The data are presented as mean ± SEM of three
independent experiments (n = 10 per group); * p < 0.05, ** p < 0.01 versus the OVA group.
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2.6. SG Inhibits Levels of Serum OVA-Specific IgG1 and IgE

Activated Th2 cells produce IL-4, which is responsible for IgE production by B cells
to activate eosinophils and mast cells [31]. We used ELISA to evaluate the effect of SG
on serum levels of OVA-specific antibodies. The OVA group had the highest levels of
OVA-IgG1 and OVA-IgE, and SG-treated OVA-sensitized mice had significantly decreased
OVA-IgG1 and OVA-IgE levels compared with the OVA group (Figure 7A,B). Furthermore,
OVA-IgG2a levels were significantly elevated in the SG10 groups compared with levels in
the OVA-sensitized animals (Figure 7).
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(B) OVA-IgG1, and (C) OVA-IgG2a were detected by ELISA. The data are presented as mean ± SEM
of three independent experiments (n = 10 per group); * p < 0.05, ** p < 0.01 versus the OVA group.

2.7. SG Inhibits Th2-Associated Cytokine Expression in Splenocytes

Splenocytes were cultured with 100 µg/mL OVA for 5 continuous days. In the OVA
group, splenocytes showed increased IL-4, IL-5, and IL-13 secretions relative to splenocytes
from normal mice. However, splenocytes from asthmatic mice treated with SG had signifi-
cantly decreased IL-4, IL-5, and IL-13 levels compared with the OVA animals (Figure 8A–C).
Furthermore, SG was associated with increased IFN-γ production compared with the OVA
group (Figure 8D).

2.8. SG Reduces the Inflammatory Response in BEAS-2B Cells

After BEAS-2B cells were treated with SG and with 10 ng/mL TNF-α for 24 h, SG-
treated cells had significantly decreased levels of CCL5, MCP-1, IL-8, and IL-6 compared
with untreated, activated BEAS-2B cells (Figure 9A–D). Levels of CCL11 and CCL24 also
were significantly decreased with SG treatment in IL-4/TNF-α-activated BEAS-2B cells
(Figure 9E,F).
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Figure 9. Sophoraflavanone G (SG) reduces inflammatory cytokine and chemokine production in
BEAS-2B cells. BEAS-2B cells (6–8 passages) were treated with SG, then stimulated with TNF-α
(10 ng/mL) for 24 h. (A) IL-6, (B) IL-8, (C) MCP-1, and (D) CCL5 were examined by ELISA. Values
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also were treated with SG and then stimulated with 10 ng/mL TNF-α/IL-4 for 24 h. (E) CCL11 and
(F) CCL24 were detected. The data are presented as mean ± SEM of three independent experiments
(n = 12 per group); * p < 0.05, ** p < 0.01 versus BEAS-2B cells stimulated with TNF-α /IL-4.

3. Discussion

S. flavescens is a plant mainly grown in China and other Asian countries [32]. Tradi-
tional Chinese medicine relies on S. flavescens to treat liver inflammation, jaundice, and
fever [15]. Complex formulas containing S. flavescens also have been found to improve
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asthma and atopic dermatitis [32]. Earlier studies have shown that an anti-asthma herbal
medicine intervention (containing Ganoderma lucidum, S. flavescens, and Glycyrrhiza uralen-
sis) can effectively reduce AHR, airway smooth muscle contraction, and activation of Th2
cells in asthmatic mice [33]. According to these previous studies, S. flavescens may contain
active ingredients that can improve asthma symptoms [33]. We have found that SG inhibits
the inflammatory response in LPS-activated macrophages [24], which led us to speculate
that SG might dampen airway inflammation in asthmatic mice. The results of the current
study suggest that SG reduced AHR, eosinophil infiltration, and goblet cell hyperplasia
in OVA-sensitized mice. SG also reduced Th2-associated cytokine and eotaxin expression
in BALF in the lung and decreased OVA-specific IgE in serum of OVA-induced allergic
asthmatic mice.

AHR is an important indicator of lung function, mainly for detecting airway flow and
respiratory rate, and can be used to assess respiratory system function in patients with
asthma [34]. In patients with chronic asthma, because of repeated asthma attacks, airway
elasticity is reduced, and airway contraction force is attenuated. Moreover, alveolar surface
tension is reduced in asthmatic patients, resulting in a sudden asthma attack that interferes
with inhalation and produces shortness of breath [3]. Our findings are that SG reduced
AHR in asthmatic mice and could improve shortness of breath and respiratory function.

Higher IL-13 levels have been detected in BALF and lung tissue of patients with
asthma, and previous studies have confirmed that excessive IL-13 secretion from Th2 cells
deteriorates respiratory function [31]. Mice with asthma induced by house dust mites and
treated with anti-IL-13 therapy show reduced AHR [35], and AHR cannot be triggered in
knockout IL-13 mice with induced asthma [36]. Our experiments confirmed that SG-treated
asthmatic mice can effectively show reduced IL-13 expression in the lungs and BALF, along
with inhibited IL-13 from spleen cells. These results indicate that SG could slow AHR in
asthmatic mice and restore lung function through inhibition of IL-13 expression.

Goblet cell hyperplasia is a characteristic of airway remodeling in patients with asthma.
Allergens that chronically stimulate airway epithelial cells may induce their differentiation
into goblet cells [37]. As noted, activated goblet cells secrete excessive mucus, causing
airway obstruction during an asthma attack and aggravating breathing difficulties, even
to the point of suffocation and death [38]. For these reasons, reducing tracheal goblet cell
hyperplasia is an important strategy for improving the pathological symptoms of asthma.
IL-13 and IL-4 are important cytokines in goblet cell hyperplasia induction [37], and
treatment with anti-IL-13 or anti-IL-4 suppresses this hyperplasia in asthmatic mice [31].
Because PAS mainly stains glycoproteins, which drive the activation of goblet cells in
tracheal epithelium and mucus secretion [39], we used this staining to detect tracheal goblet
cell hyperplasia in lung sections. We found that SG treatment significantly reduced tracheal
goblet cell hyperplasia in asthmatic mice. SG treatment in asthmatic mice thus appears
to effectively reduce IL-4 and IL-13 expression in lung, BALF, and spleen cells, implying
reduced mucus hypersecretion in the airway.

Asthma with eosinophil infiltration is the most common type of asthma [40]. Ex-
cessive IL-5 secretion by activated Th2 cells stimulates cell differentiation into more
mature eosinophils in the bone marrow and induces greater proliferation of activated
eosinophils [41]. IL-4 and TNF-α can stimulate tracheal epithelial cells to release more
eotaxins (CCL11, CCL24, and CCL26) [42], and IL-4 can stimulate lung epithelial cells to
release high amounts of CCL26 [43]. In this way, the lungs and tracheal epithelial cells
release a large amount of eotaxins, which attract mature eosinophil migration into the lungs,
leading to high eosinophil infiltration. Activated eosinophils release inflammation-related
molecules and induce oxidation proteins, including major eosinophil cationic proteins and
basic proteins, which cause inflammation and oxidative damage to alveolar cells. These
proteins also cause tracheal epithelial cell inflammation and stimulate goblet cell activation
to release more mucus, obstructing the airway [44]. In the current study, lung sections from
OVA-induced asthmatic mice also showed high eosinophil infiltration, and eosinophils
in BALF samples were significantly higher than in normal mice. Of note, SG treatment
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significantly reduced the number of eosinophils in the lungs and BALF. SG can inhibit Th2
and eosinophil activation and IL-5 release. In addition, SG reduced lung inflammation and
suppressed activation of pulmonary macrophages to release more TNF-α. Therefore, SG
reduced IL-4/TNF-α release from immune cells and the subsequent stimulation of tracheal
epithelial cell activation and eotaxin secretion. As SG likely reduced IL-5 release by Th2
cells and blocked eosinophil differentiation, this plant-derived compound may improve
lung inflammation and oxidative damage.

Asthma is an allergic disease, and patients with allergies have high serum IgE. In
asthma patients, Th2 cells secrete more IL-4 to induce B cell activation, leading to excessive
IgE secretion [8]. When lung mast cells in asthmatic patients combine with IgE and allergens,
they are activated to release a large amount of histamine and inflammatory mediators.
This release causes allergic and inflammatory reactions in the lungs, increasing lung cell
damage and reducing lung function [31]. In this study, SG significantly reduced serum
OVA-IgE and contributed to regulation of the immune system. As noted, asthma is also
a manifestation of excessive activation of Th2 cells, which leads to increased secretion of
IL-4, IL-5, and IL-13 in asthmatic mice [31]. This activation inhibits Th1 cell activation and
reduces IFN-γ secretion. Here, we confirmed that SG could reduce levels of OVA-IgG1 (a
subtype of Th2 cells) and increase OVA-IgG2a (a subtype of Th1 cells) levels in the serum
of asthmatic mice. These findings confirm that SG indeed can improve immunomodulation
in this asthma model and reduce excessive Th2 cell activation.

The lungs of patients with asthma are in a state of inflammation, showing high
levels of TNF-α and IL-6 in lung tissue and BALF [45], mainly released by activated
macrophages [31]. The continuous inflammation also causes collagen deposition in alveolar
cells, leading to pulmonary fibrosis [46]. SG also reduced the levels of IL-6 and TNF-α
in BALF and lung tissue of asthmatic mice. These inflammatory cytokines can stimulate
tracheal epithelial cells to secret more inflammatory cytokines, which damages the physio-
logical function of lung tissue. Therefore, we thought that SG inhibited IL-6 production of
inflammatory BEAS-2B cells, which could contribute to attenuate pulmonary inflamma-
tion in asthmatic mice. In addition, these inflammatory cytokines can stimulate tracheal
epithelial cell activation, leading to more chemokines (MCP-1, CCL5, and IL-8), attracting
macrophage and neutrophil migration into the lung and aggravating oxidative stress and
cell damage [47]. Our experiments confirmed that SG treatment leads to reduced expression
of inflammatory cytokines in the lungs and BALF of asthmatic mice and inhibits the release
of more inflammatory cytokines and chemokines in activated tracheal epithelial cells. In
this way, SG can dampen the inflammatory airway response in asthmatic mice.

Activated immune cells and inflamed tracheal epithelial cells will release oxida-
tive molecules and induce oxidative stress that damages the lung cells in patients with
asthma [38]. Oxidative stress not only increases proliferation and contraction of tracheal
smooth muscle but also stimulates mucus secretions from tracheal epithelial cells [48].
Continuous oxidative stress can also induce apoptosis and DNA damage in alveolar and
tracheal epithelial cells [47]. As a result, lung function of asthmatic patients will continue to
deteriorate, exacerbating dyspnea and suffocation. In the current work, we found that SG
significantly increased expression of SOD, CAT, and GSH and reduced MDA production
in the lungs of asthmatic mice. Superoxide is an important ROS that can kill bacteria and
cause cell damage [9]. SOD could catalyze superoxide radicals to form hydrogen peroxide,
which has a bactericidal effect and also can cause oxidative cell damage [29]. CAT can
decompose H2O2 to produce water and oxygen, reducing cellular damage [9]. GSH is an-
other antioxidant that can eliminate ROS and reduce lung cell damage [10], and MDA is an
important indicator of cellular oxidative stress, as both lipid metabolism and peroxidation
will increase its production [29]. Our results suggest that SG is a natural compound that
effectively reduces oxidative stress and related damage in asthmatic lungs.
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4. Materials and Methods
4.1. Materials

SG (purity ≥98% by HPLC) was purchased from ChemFaces (Wuhan, China). For
cell experiments, SG was dissolved in dimethylsulfoxide (DMSO) in a stock solution of
30 mM SG. For animal experiments, SG was formulated as 5 mg/50 µL and 10 mg/50 µL
in DMSO.

4.2. Mouse Sensitization and Administration of SG

Female BALB/c mice, age 6–8 weeks, were purchased from the National Laboratory
Animal Center (Taipei, Taiwan). Mice were housed in a temperature-controlled animal
room, under a 12 h light/dark cycle, and allowed free access to standard chow diet and wa-
ter. The animal experiments were approved by the Animal Care and Protection Committee
of Chang Gung University of Science and Technology (approval number: 2018-004). The
experimental protocol for the sensitized asthma mouse model is shown in Figure 1A. All
mice were randomly divided into four groups (n = 10 in each group): a normal control (N
group), treated with nothing; an ovalbumin (OVA)-sensitized control (OVA group; OVA
from Sigma Aldrich, St. Louis, MO, USA); and an OVA-sensitized group treated with
5 mg/kg or 10 mg/kg SG (SG5 and SG10 groups, respectively). Mice were sensitized with
a solution containing 50 µg OVA and 0.8 mg AlOH3 adjuvant in 200 µL normal saline, ad-
ministered by intraperitoneal injection on days 1–3 and day 14. The lung allergy challenge
was triggered with 2% atomized OVA by a compressor nebulizer (Medical Depot, Inc., Port
Washington, NY, USA) on days 14, 17, 20, 23, and 27. Mice were administered SG or DMSO
(as negative control) by intraperitoneal injection 1 h before OVA challenge or methacholine
inhalation (see below). On day 28, mice were evaluated for AHR, as described below. On
day 29, the animals were sacrificed to allow for investigation of the pathological features of
asthma, inflammatory airway, and immunomodulatory effects.

4.3. Lung Function Analysis

AHR was measured 24 h after the last OVA challenge, as described previously [49].
Briefly, mice were placed in a closed system to inhale aerosolized methacholine (0 to
40 mg/mL) for 3 min. Subsequently, the animals were placed in a closed chamber for
detection of the enhanced pause data using a whole-body plethysmograph system (Buxco
Electronics, Troy, NY, USA).

4.4. Serum Collection and Splenocyte Culture

Animals first were placed in an anesthesia box with 4% isoflurane to induce adequate
anesthesia. Immediately afterwards, blood was taken from the orbital vascular plexus and
centrifuged at 6000 rpm to collect serum for OVA-specific antibody detection. The super-
natant was obtained for detection of cytokine concentrations as described previously [50].
Furthermore, spleens were removed, and splenocytes (5 × 106 cells/mL) were seeded on
culture plates containing 100 µg/mL OVA solution for 5 days.

4.5. Bronchoalveolar Lavage Fluid (BALF)

After animals were anesthetized and killed, an indwelling needle was intubated into
the trachea and lungs washed with 1 mL sterile normal saline. The collected wash solution
was defined as BALF, which we used to detect chemokines and cytokines by ELISA. BALF
cells were stained using Giemsa stain (Sigma) for identification and counting of different
types of immune cells.

4.6. ELISA

Chemokine and cytokine levels were detected in splenocyte culture medium and
BALF using ELISA kits (R&D Systems, Minneapolis, MN, USA). For detection of OVA-IgE
levels, serum was diluted 5-fold and results reported as OD450 values. Standard curves
for OVA-IgG2a and OVA-IgG1 were generated based on values from pooled serum from
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OVA-sensitized mice. All serum OVA-specific antibodies were detected using the respective
specific ELISA kit (BD Biosciences, Franklin Lakes, NJ, USA).

4.7. Glutathione (GSH), Catalase (CAT), and Superoxide Dismutase (SOD) Assay

Lung tissues were homogenized using a homogenizer (FastPrep-24, MP Biomedicals,
Santa Ana, CA, USA). We used specific assay kits for CAT, SOD, and GSH (Sigma) to assay
levels in the lung tissues according to the manufacturer’s instructions. CAT, SOD, and
GSH levels were detected on a multi-mode microplate reader (SpectraMax i3X, Molecular
Devices, San Jose, CA, USA).

4.8. Malondialdehyde (MDA) Assay

Lung tissues were homogenized, and a lipid peroxidation assay kit was used to detect
MDA levels (Abcam, Waltham, MA, USA) as described previously [49]. Briefly, a lung
tissue solution was incubated with the MDA color reagent solution, followed by incubation
with reaction solution for 30 min. MDA levels were detected at 695 nm using a microplate
reader (Multiskan FC, Thermo, Waltham, MA, USA).

4.9. Lung Tissue Histopathology

Lungs were fixed and embedded in paraffin, and 6 µm sections were prepared. Lung
tissues were stained with hematoxylin and eosin (HE, Sigma-Aldrich) for evaluation
of eosinophil infiltration and with periodic acid–Schiff (PAS) solution (PAS; Sigma) for
assessment of tracheal goblet cell hyperplasia, as described previously [51].

4.10. Real-Time PCR Analysis

Lung tissues were homogenized, and RNA was extracted using TRIzol reagent solu-
tion (Life Technologies, Carlsbad, CA, USA). Subsequently, RNA was reverse transcribed
into cDNA using a cDNA synthesis kit, and gene expression was examined using a real-time
PCR system (iCycler; Bio-Rad, San Francisco, CA, USA), as described previously [27].

4.11. SG Treatment of BEAS-2B Cells

Human bronchial epithelial cells (BEAS-2B) (American Type Culture Collection, Manas-
sas, VA, USA) were seeded at a density of 2 × 105 cells on a 24-well plate with DMEM/F12
medium and incubated with SG (0–30 µM) for 1 h, followed by stimulation with 10 ng/mL
tumor-necrosis factor (TNF)-α for 24 h. The supernatants were collected for detection of
chemokine or cytokine production using the respective ELISA kits [52]. BEAS-2B cells
treated with SG also were stimulated with 10 ng/mL IL-4/TNF-α for 24 h for analysis of
eotaxin (CCL11 and CCL24) secretions. BEAS-2B cells used passages 6–8 for cell experiment.

4.12. Statistical Analysis

All experiments were repeated at least three times. Statistical analysis was performed
with one-way ANOVA followed by the Tukey–Kramer post hoc test. The values are shown
as the mean ± SEM, and p < 0.05 was considered statistically significant.

5. Conclusions

Our findings collectively show that SG treatment significantly reduced AHR, eosinophil
infiltration, goblet cell hyperplasia, and airway inflammation in the lungs of asthmatic mice.
SG inhibited oxidative stress in the lungs of asthmatic mice. SG also suppressed levels of
Th2 cytokines and chemokines in BALF and lung tissue. We confirmed that SG decreased
pro-inflammatory cytokine, chemokine, and eotaxin expression in inflammatory BEAS-2B
cells. In conclusion, we suggest that SG has extremely potential pharmacologic benefits as
an immunomodulator in reducing anti-oxidative stress and inflammation in asthma.
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