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Abstract

The coronavirus (SARS-CoV-2) exhibited waves of infection in 2020 and 2021 in 

Japan. The number of infected had multiple distinct peaks at intervals of several 

months. One possible process causing these waves of infection is people switching their 

activitities in response to the prevalence of infection. In this paper, we present a simple 

model for the coupling of social and epidemiological dynamics. The assumptions are as 

follows. Each person switches between active and restrained states. Active people move 

more often to crowded areas, interact with each other, and suffer a higher rate of 

infection than people in the restrained state. The rate of transition from restrained to 

active states is enhanced by the fraction of currently active people (conformity), 

whereas the rate of backward transition is enhanced by the abundance of infected people 

(risk avoidance). The model may show transient or sustained oscillations, initial-

condition dependence, and various bifurcations. The infection is maintained at a low 

level if the recovery rate is between the maximum and minimum levels of the force of 

infection. In addition, waves of infection may emerge instead of converging to the 

stationary abundance of infected people if both conformity and risk avoidance of people 

are strong. (197 words)

key words: coupled behavioral-epidemiological dynamics; homoclinic bifurcation; Hopf 

bifurcation; conformity; risk avoidance.
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1. Introduction

Human infectious diseases provide the best examples for studying population 

dynamics. Many key concepts and novel mathematical techniques for analyzing wild 

populations have been developed in the study of infectious disease dynamics, this is not 

surprising, considering the limited availability of time series for of wild animals and 

plants (Grenfell et al. 2002, 2004). 

Some infectious diseases exhibit multiple waves of spreading, as exemplified 

by the COVID-19 infection in Japan (Fig. 1). In particular, from the beginning of 2020 

to the end of 2021, oscillatory behavior was observed in the number of infected patients 

with five peaks occurring in April and August 2020, and January, May, and August 

2021. 

In the standard mathematical theory of infectious disease dynamics, the 

decline in the number of infected individuals after a peak abundance is often explained 

by a decrease in the number of susceptible individuals (Kermack and McKendrick 

1927). However, this mechanism does not necessarily explain the waves of infection in 

COVID-19 in Japan because the cumulative number of patients infected by the end of 

2021 was very low (1.37%; see caption in Fig. 1). 

Rather, the multiple waves of COVID-19 infection from 2020 to 2021 are 

most likely explained by changes in people's behavior in response to the spread of 

infectious diseases. In Japan, as infection prevailed, the government urged people to 

adopt the behavior to reduce the infection risk, such as wearing masks, washing hands, 

and refraining from loud conversations. The government even introduced various legal 

regulations such as limiting the number of customers in restaurants, restricting large 

gatherings, and requesting the closure of sports events or theaters. In addition, people 
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voluntarily changed their behavior by staying at home. These behavioral responses 

often included time delays, which may have caused instabilities in the equilibrium 

abundance, and oscillation. Together, these factors may have led to the transient and 

sustained waves of infection.

One class of models for managing infectious disease dynamics considering 

human behavioral choices assumes that individuals perform a cost-benefit analysis 

when choosing their behavior (Funk et al. 2010). Travelers choose locations to visit by 

avoiding areas with a high disease prevalence (Meloni et al. 2011). Reluga (2010) 

discussed a differential game model for social distancing in response to an epidemic, in 

which each individual maximizes his/her own present value considering future events. 

Fenichel et al. (2011) considered the effect of adaptive human behavior on 

epidemiological dynamics, in which each person chooses the behavior that maximizes 

their utility given the current level of prevalence of infection. Wang et al. (2015) 

throughly reviewed the literature. More recently, Arthur et al. (2021) studied a case in 

which an individual maximizes their own utility function based on delayed information, 

and discussed the interactions between individual voluntary behavioral choices and 

governmental control (see also D nges et al. 2022). These models emphasized the o

effect of infection dynamics on people's behavior. 

The second group of theoretical works on the coupled dynamics of human 

behavior and epidemiology emphasized that people's behavior of people may be 

affected by the behavior of other members in the same community. One way of 

modeling this is to treat "the fear of the disease" as another form of contagion. In this 

model, a person without fear of the disease may acquire fear after making contact with 

another person. As the disease itself is also contagious, the model considers double-
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contagion dynamics (Epstein et al. 2008). Similar models were analyzed to consider the 

prosocial awareness of COVID-19 dynamics by fitting the model to the data obtained 

from Columbia and India (Ghosh and Martcheva 2021). Perra et al. (2011) also treated 

fear of the disease as a contagion. They discussed several alternative models for 

behavioral choices. For example, fear may spread based on the current level of 

prevalence as well as on beliefs. Moreover, the values may be based on local or the 

global populations. Johnston and Pell (2020) studied the dynamics of the fear of 

infection and frustration with social distancing during the COVID-19 spread. The fear 

of contagion may reflect diverse social processes, such as prosociality, social norms, 

people's opinions and sentiments (Bauch 2005; Fu et al. 2010; Oraby et al. 2014; 

Jentsch et al. 2021; Kabir et al. 2021) and the information acquisition (d'Onfrio et al. 

2007; d'Onfrio and Manfredi 2009; Poletti et al. 2009, 2012).

Many of these theoretical studies employed models with a large number of 

variables and parameters. Some of them even adopted individual-based modeling in an 

explicit space or in a network of individuals. Hence, these models were analyzed almost 

entirely numerically or by computer simulations (except for the stability of the disease-

free state).

In this study, we construct a very simplified model for coupled social and 

epidemiological dynamics. To obtain a clear understanding of the behavior of the 

model, we deliberately choose a simple model. We assume that each person switches 

between active and restrained states: active people travel more often to crowded areas, 

interact with others, and suffer a higher rate of infection than people in the restrained 

state. The key assumptions of the model are that the rate of transition from restrained to 

active states is enhanced by the fraction of currently active people (conformity), 
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whereas the rate of backward transition is enhanced by the abundance of infected people 

(risk avoidance). We identify all equilibria and their local stability, perform a 

bifurcation analysis, and obtain insights into the conditions for the different behaviors 

of the dynamics. The model can show temporary or sustained oscillations in the number 

of infected people, initial-condition dependence, and various bifurcations. Multiple 

waves of infection (indicating repeated resurgence of the infection) may appear if (1) 

the recovery rate is between the maximum and minimum values of the force of infection 

and (2) both the risk avoidance and conformity of people are strong. 

2. Model

Let  be the number of individuals infected with the virus. Assume people 𝑌

with a fraction of  are actively spending their time in densely crowded areas of the 𝑧

city, engaging in loud conversations, and in risky behaviors: these people are referred to 

as "active." Other people (fraction ) tend to stay at home and adopt recommended 1 ― 𝑧

behavior (e.g., universal masking). We refer to this group as " restrained." We denote 

the infection rates of active and restrained people by  and , respectively. Active 𝑏1 𝑏0

individuals have a higher rate of infection than restrained individuals ( ). We 𝑏1 > 𝑏0

consider a situation in which the prevalence of infection is not very high, as was the 

case of COVID-19 in Japan in year 2020-2021, when the fraction of cumulative fraction 

of patients was 1.37%. For simplicity, we assume that the number of susceptible hosts is 

a constant . We consider the dynamics for  as follows:𝑥0 𝑌

(1a)
𝑑𝑌
𝑑𝑡 = (𝑏1𝑧 + 𝑏0(1 ― 𝑧))𝑥0𝑌 ― 𝑐𝑌

The last term of Eq. (1a) indicates the recovery rate for infected people with a per day 

recovery rate , indicating that the mean length of infection is . 𝑐 1 𝑐
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Each individual switches between the two behavioral states (active and 

restrained) at random times. We consider the dynamics satisfied by the fraction of 

active people as follows:

(1b)
𝑑𝑧
𝑑𝑡 = (1 ― 𝑧)𝐵(1 + 𝛾𝑧2) ―𝑧(𝐴0 + 𝐴1𝑌)

The first term on the right-hand side of Eq. (1b) indicates the rate of transition from the 

restrained to active state. The rate is proportional to the current fraction of the restrained 

people  with a basic rate . In addition, owing to the conformity of people, they 1 ― 𝑧 𝐵

become more willing to engage in active behavior when there are more active people. 

Thus, we assume that this conformity effect occurs at an accelerated rate indicated by 

the factor , where  is the strength of the conformity. 1 + 𝛾𝑧2 𝛾

The second term on the right-hand side of Eq (1b) indicates the rate of 

transition from restrained to active. It increases with the prevalence of viral infection . 𝑌

 denotes the basic rate of return to the restrained state. In the absence of infection, 𝐴0

people stay in the active state for  on average. The presence of infection at  1 𝐴0 𝑌 > 0

would make this period  shorter than in the absence of infection. 1 (𝐴0 + 𝐴1𝑌)

Eq. (1a) indicates that the number of infected individuals  continues 𝑌

increasing with time if , leading to the indefinite growth of . This is not 𝑏0𝑥0 > 𝑐 𝑌

consistent with a situation in which the infection level remains small relative to the total 

number of susceptible individuals. In contrast,  continues decreasing with time if 𝑌

, indicating that the infection is eventually eradicated from the system. This 𝑐 > 𝑏1𝑥0

also does not correspond to the situation being considered. Hence, in the following, we 

focus our analysis by considering  as between  and  ( ). 𝑐 𝑏0𝑥0 𝑏1𝑥0 𝑏0𝑥0 < 𝑐 < 𝑏1𝑥0

This inequality indicates that the recovery rate is higher than the minimum force of 
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infection (when all individuals are restrained) and lower than the maximum force of 

infection (when all individuals are active). 

To reduce the number of parameters, we introduce rescaled variables  𝑦 =
𝐴1

𝐵𝛾𝑌

and . We also introduce three quantities: , 𝜏 = (𝑏1 ― 𝑏0)𝑥0𝑡 𝑧0 =
𝑐 ― 𝑏0𝑥0

(𝑏1 ― 𝑏0)𝑥0
𝜎 =

, and . Then Eq. (1) can be rewritten as follows:
𝐵𝛾

(𝑏1 ― 𝑏0)𝑥0
𝜆 =

𝐴0

𝐵𝛾

 (2a)
𝑑𝑦
𝑑𝜏 = (𝑧 ― 𝑧0)𝑦

(2b)
𝑑𝑧
𝑑𝜏 = 𝜎𝑧(𝑓(𝑧) ― 𝜆 ― 𝑦)

where  is defined as follows: 𝑓(𝑧)

(2c)𝑓(𝑧) = (1 ― 𝑧
𝑧 )(𝑧2 +

1
𝛾)

See Appendix A for the derivation. We have  from . 0 < 𝑧0 < 1 𝑏0𝑥0 < 𝑐 < 𝑏1𝑥0

2.1 Equilibria 

Let  and  be the levels of the two variables in the equilibrium of Eq. (2). 𝑦 𝑧

According to the calculations in Appendix B, the dynamics may have multiple 

equilibria. We distinguish these into the two types as follows.

[Type 1] Equilibrium with some infected individuals ( ).𝑦 > 0

 and . (3a)𝑧 = 𝑧0 𝑦 = 𝑓(𝑧0) ―𝜆

At the equilibrium,  and  hold.  0 < 𝑧0 < 1 𝑓(𝑧0) > 𝜆

[Type 2] Equilibrium without infectious people ( ). 𝑦 = 0

 and (3b)𝑦 = 0 𝑓(𝑧) = 0
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The dynamics of Eq. (2) have at most one equilibrium of type 1. They have multiple 

type-2 equilibria: these are calculated as the solutions of  satisfying 𝑓(𝑧) = 0 0 < 𝑧

. In general, a type-2 equilibrium has , which is different from . < 1 𝑧 𝑧0

The distinction between type-1 and type-2 equilibria is important from an 

epidemiological perspective. A type-1 equilibrium refers to a population that maintains 

an infectious disease. In contrast, a type-2 equilibrium corresponds to a population in 

which the infection is eradicated. 

We can draw trajectories of the dynamics on the phase plane (or -plane), (𝑧,𝑦)

as illustrated in Fig. 2. The horizontal axis indicates  and the vertical axis indicates , 𝑧 𝑦

Several parts of the figure show the dynamics given in Eq. (2) for different parameters. 

The solid circles and open circles represent the locally stable and unstable equilibria of 

the dynamics, respectively. In Fig. 2a, there is a stable limit cycle showing a perpetual 

oscillation of people's activity and infection abundance. The number, location, and 

stability of the equilibria can be calculated mathematically. However, the sizes and 

shapes of the limit cycles can be known only numerically. By changing the parameters, 

the number of equilibria and their stability may change. Additionally, the limit cycle for 

perpetual oscillation may appear or disappear. These represent bifurcation phenomena 

of several types common to nonlinear dynamics (Strogatz 1994).

2.2 Stability of the equilibria

In Appendix B, we derive the local stability of the equilibria for the dynamics 

given in Eq. (2). 

2.3.1. Local stability of the type-1 equilibrium.
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An equilibrium with a positive abundance of infected ( ) corresponds to a 𝑦 > 0

type-1 equilibrium. It is . The local stability is determined from the slope (𝑧0,𝑓(𝑧0) ― 𝜆)

of the isocline  at equilibrium as follows:𝑦 = 𝑓(𝑧) ―𝜆

      is locally stable if . (4a)(𝑧0,𝑓(𝑧0) ― 𝜆) 𝑑𝑓
𝑑𝑧(𝑧0) < 0

      is unstable if . (4b)(𝑧0,𝑓(𝑧0) ― 𝜆) 𝑑𝑓
𝑑𝑧(𝑧0) > 0

See Appendix B for derivation. 

If ,  is a monotonically decreasing function of  and the 𝛾 < 27 𝑦 = 𝑓(𝑧) ―𝜆 𝑧

equilibrium is stable. This implies that the dynamics may converge to an endemic 

population with some infected hosts. 

In contrast, if , the function  has a local minimum and a local 𝛾 > 27 𝑓(𝑧)

maximum denoted by  and , respectively. These satisfy . In 𝑧1 𝑧2 0 < 𝑧1 < 𝑧2 <
1
2

addition, if  is between these two values ( ), the function  has a 𝑧0 𝑧1 < 𝑧0 < 𝑧2 𝑦 = 𝑓(𝑧)

positive slope at . If , point  is an unstable type-1 𝑧 = 𝑧0 𝑓(𝑧0) > 𝜆 (𝑧0,𝑓(𝑧0) ― 𝜆)

equilibrium and an unstable focus. This equilibrium may or may not be accompanied by 

a stable limit cycle, as is known from numerical analyses. Even if , if  𝛾 > 27 𝑧0 < 𝑧1

or , the equilibrium is stable and the dynamics converge to the stationary 𝑧0 > 𝑧2

abundance of infected hosts. 

 

2.3.2 Local stability of a type-2 equilibrium

The boundary equilibrium (type 2) is  with . The stability of (𝑧,0) 𝑓(𝑧) = 0

the equilibrium needs to be examined as the deviation from the equilibrium is 

constrained to the half plane . According to the calculations in Appendix B, the 𝑦 > 0

local stability of the boundary equilibrium is as follows: 
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    is locally stable if both  and  hold. (5a)(𝑧,0)
𝑑𝑓
𝑑𝑧(𝑧) < 0 𝑧 < 𝑧0

    is unstable if  holds or if  holds. (5b)(𝑧,0)
𝑑𝑓
𝑑𝑧(𝑧) > 0 𝑧 > 𝑧0

The local stability of the type-2 equilibrium ( ) depends on the sign of the slope of 𝑦 = 0

the isocline , or on the sign of . However, it also depends on the sign 𝑦 = 𝑓(𝑧) ―𝜆
𝑑𝑓
𝑑𝑧(𝑧)

of , unlike the type-1 equilibrium. 𝑧 ― 𝑧0

3. Bifurcations and other nonlinear behavior of the dynamics

As the parameters change continuously, the dynamics may exhibit a transition 

in qualitative behavior called a "bifurcation" (Strogatz 1994). 

Below, we discuss how the number of equilibria and their local stability 

change as the parameters change. In Appendix C, we explain the dependence on two 

key parameters  and . To analyze the appearance and disappearance of a limit 𝜆 𝑧0

cycle, we need to adopt numerical analyses. Then, we can determine bifurcations of 

several types. 

In this section, we illustrate the several types of bifurcation shown by the 

model given in Eq. (2). We also show that the dynamics may exhibit a relaxation-

oscillation.

3.1 Homoclinic bifurcation

If the type-1 equilibrium ( ) is unstable, based on numerical analysis, it is 𝑦 > 0

an unstable focus. Both sustained and transient oscillations are observed around 

equilibrium. In this case, there are two qualitatively different situations. There can be a 

stable limit cycle surrounding the unstable focus showing perpetual oscillation of the 
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dynamics, as illustrated in Fig. 2(a). Alternatively, there may be no limit cycle, and 

trajectories starting near the unstable focus may exhibit oscillation for a finite number of 

times, and then converge to an equilibrium at the -axis ( ). In this case, the 𝑧 𝑦 = 0

infection is eradicated, as illustrated in Fig. 2(c). Distinguishing between these two 

requires numerical analyses. 

In Fig. 2, the transition of the dynamics is caused by an increase in . If 𝜆 𝑧1

 is satisfied, the type-2 equilibrium is an unstable focus. If  is small, the < 𝑧0 < 𝑧2 𝜆

unstable focus is surrounded by a stable limit cycle (Fig. 2(a)). As  increases, the 𝜆

limit cycle approaches an unstable type-2 equilibrium ( ). The oscillation period 𝑦 = 0

along the limit cycle becomes longer because the movement of the state point near an 

equilibrium is slow. When they merge, a trajectory starting from the unstable 

equilibrium shows a round trip returning to the same equilibrium: this is called a 

"homoclinic orbit" (Guckenheimer and Holmes 1983; Strogatz 1994) (Fig. 2(b)). As  𝜆

increases further, the trajectory converges to a stable type-2 equilibrium where there is 

no infection (Fig. 2(c)). The transition of dynamics of this type is called "homoclinic 

bifurcation."

The top and bottom parts of Fig. 3(a) illustrate the amplitudes of oscillation of 

 and  in the limit cycle with the parameter . As  increases, the difference 𝑦 𝑧 𝜆 𝜆

between the maximum and minimum of  in the limit cycle does not change 𝑦

significantly and the oscillation of  and  stops when . For , 𝑦 𝑧 𝜆 = 0.1276 𝜆 > 0.1276

the final outcome is the equilibrium without infection ( ). Fig. 3(b) indicates the 𝑦 = 0

time change of  for different values of . As  approaches the critical value 0.1276, 𝑦 𝜆 𝜆

the period of oscillation becomes longer, and it becomes infinitely long at the critical 

value (Strogatz 1994). 
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3.2 Hopf bifurcation

In Fig. 4(a), the top and bottom parts indicate y and z, respectively. The 

horizontal axis is for . As mentioned before, the strength of conformity  needs to be 𝛾 𝛾

sufficiently large for the system to exhibit persistent oscillation. In particular, for 𝛾 <

, the system does not have an unstable type-1 focus, suggesting that the limit cycle 27

may be possible if  exceeds 27. Fig. 4(a) illustrates the dependence on . A 𝛾 𝛾

supercritical Hopf bifurcation takes place at approximately .  𝛾 ≈ 27.2

Another example of Hopf bifurcation is illustrated in Fig. 4(b). The top and 

bottom parts illustrate  and , respectively. The horizontal axis indicates the 𝑦 𝑧

parameter . For  and , the system shows convergence to the stable 𝑧0 𝑧0 > 𝑧2 𝑧0 < 𝑧1

type-1 equilibrium. For  between  and , the equilibrium  is unstable. At 𝑧0 𝑧1 𝑧2 𝑧 = 𝑧0

 and , a supercritical Hopf-bifurcation occurs (Guckenheimer and 𝑧0 = 𝑧1 𝑧0 = 𝑧2

Holmes 1983; Strogatz 1994). In Fig. 4(b), the unstable focus is surrounded by the 

stable limit cycle for all values of  within . 𝑧0 𝑧1 < 𝑧0 < 𝑧2

3.3 Transcritical bifurcation

As a parameter changes, a type-1 equilibrium decreases the abundance of 

infected hosts , and ultimately becomes a type-2 equilibrium with . When this 𝑦 𝑦 = 0

transition occurs, the type-1 equilibrium merges with an unstable type-2 equilibrium, 

leaving a single stable type-2 equilibrium. This transition is called a "transcritical" 

bifurcation (Guckenheimer and Holmes 1983; Strogatz 1994). Further details are 

provided in Appendix D. 
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3.4. Relaxation oscillation

The dynamics of Eq. (2) have another aspect typical of nonlinear dynamics. 

Here, we consider the behavior when parameter  is very large ( ), i.e., the speed 𝜎 𝜎 ≫ 1

of the change in  is much faster than that in . This is the case when people adjust 𝑧 𝑦

their activity quickly to the current level of infection: correspondingly, the change in the 

number of infected hosts is slower. 

We choose , and the type-1 equilibrium is an unstable focus. The 𝑧1 < 𝑧0 < 𝑧2

oscillation illustrated in Fig. 5(a) is an example of the "relaxation oscillation" which 

appears in many nonlinear dynamics in engineering and biology (Strogatz 1994; Murray 

1989; Iwasa and Pomiankowski 1995). We can imagine a quasi-equilibrium level of 

activity  for each level of infected . For any value of  between the local 𝑧 𝑦 𝑦

maximum and local minimum of the curve ( ), the fast dynamics of  𝑓(𝑧1) < 𝑦 < 𝑓(𝑧2) 𝑧

have two stable equilibria. As  changes slowly,  also changes slowly, remaining in 𝑦 𝑧

the high or low branches of the quasi-equilibrium: that is called "slow dynamics." While 

 remains at the branch of the higher quasi-equilibrium,  increases slowly and  𝑧 𝑦 𝑧

declines with time. When  becomes as low as ,  quickly moves to the lower 𝑧 𝑧2 𝑧

branch of the quasi-equilibrium. Subsequently, slow dynamics occur along the lower 

branch, in which y decreases and z increases. When  reaches ,  quickly moves to 𝑧 𝑧1 𝑦

the higher branch of the two quasi-stable equilibria. Taken together,  moves between 𝑦

the maximum value  and minimum value . 𝑓(𝑧2) 𝑓(𝑧1)

In contrast, Fig. 5(b) illustrates the oscillation when  is smaller. The length 𝜎

of period is longer and the amplitude is larger than in Fig. 5(a).

4. Persistence of infection and perpetual or transient oscillation
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The COVID-19 infection in 2020 and 2021 in Japan had the following three 

characteristics. First, the infection was maintained in the population, rather than being 

eradicated. Second, the number of infected individuals remained at a low level instead 

of an indefinite expansion. Third, it exhibited multiple waves rather than a smooth 

convergence to a stationary state. The latter suggests a transient or sustained oscillation 

around an unstable equilibrium. In this section, we investigate whether the simple 

model in Eq. (2) can explain these qualitative behaviors. 

Fig. 6 shows a phase plane indicating the parameter regions differing in the 

presence of an equilibrium, including some infected hosts (type-1) and their local 

stability. The horizontal axis indicates the recovery rate  for the infected hosts and the 𝑐

vertical axis indicates , i.e., the rate of active people returning to the 𝜆 = 𝐴0 𝐵𝛾

restrained state in the absence of enhancement by infection risk ( ). In region 𝐴1𝑦 = 0

labeled E, the infection level continues to decrease with time. In contrast, in the region 

labeled G, the number of infected individuals continues to increase with time. Neither of 

these results is consistent with the behavior observed in Fig. 1. In Fig. 6, the curve 

represents the graph of . Only under this curve do the dynamics have a 𝜆 = 𝑓( 𝑐 ― 𝑏0𝑥0

𝑏1𝑥0 ― 𝑏0𝑥0)
type-1 equilibrium with a finite and positive abundance of infected hosts. This occurs 

when the recovery rate  is larger than the minimum force of infection when all people 𝑐

are restrained: correspondingly, it is smaller than the maximum force of infection when 

all people are active ( ). 𝑏0𝑥0 < 𝑐 < 𝑏1𝑥0

In Fig. 6(a), the graph for  has one local minimum and one 𝜆 = 𝑓( 𝑐 ― 𝑏0𝑥0

𝑏1𝑥0 ― 𝑏0𝑥0)
local maximum. The curve has a positive slope for  between the two values. When a 𝑐

type-1 equilibrium exists (under the curve), the parameter region under the curve 0 <
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 is separated into two areas according to the local stability of the type-λ < 𝑓( 𝑐 ― 𝑏0𝑥0

𝑏1𝑥0 ― 𝑏0𝑥0)
1 equilibrium. It is locally stable when  is a value corresponding to a negative slope 𝑐

of the curve. In this case, the number of infected converges smoothly to the stationary 

state. In contrast, the type-1 equilibrium is an unstable focus when  is a value 𝑐

corresponding to a positive slope of the curve. Then the dynamics show an oscillation 

near the equilibrium (Fig. 2(a) and 2(b)). The parameter region corresponding to the 

latter situation is indicated by the shaded region in Fig. 6(a). 

In Fig. 6(b), we illustrate the phase diagram with a smaller . The function 𝛾

 is monotonically decreasing with , and there is no region for the 𝜆 = 𝑓( 𝑐 ― 𝑏0𝑥0

𝑏1𝑥0 ― 𝑏0𝑥0) 𝑐

type-1 equilibrium to be stable. Hence, the model does not show oscillation around the 

equilibrium. A comparison between Fig. 6(a) and 6(b) indicates that a sufficiently 

strong conformity (large ) is needed for either transient or sustained oscillation. 𝛾

5. Discussion

In the present paper, we discussed a simple model for the coupling of disease 

spread and human behavioral changes. In ecological and environmental sciences, the 

coupled dynamics of human behavior and ecological systems are called "Social-

Ecological Systems" or "Human Environmental Systems" (Folke et al. 2005; Walker et 

al. 2004; Manuel-Navarrete et al. 2007; Bailey et al. 2019). One example is a model for 

a lake-water pollution level, where the results are strongly affected by the cooperation 

levels of local residents (Iwasa et al. 2007, 2010; Suzuki and Iwasa 2009a, 2009b). 

Recently, mathematical bases for such models have been studied (Sun and Hilker 2020; 

Heggerud et al. 2022). Other examples include forest harvesting, where the quality of 

each site is affected by the land use of surrounding sites (Satake and Iwasa 2006; Satake 
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et al. 2007a, 2007b, 2008); illegal logging in tropical forests (Lee et al. 2015a, 2017, 

2018, 2019), ecotourism in Jeju islands (Lee and Iwasa 2011, 2020), and the migration 

of herders in Mongolian rangeland (Lee et al. 2015b).

5.1 Coupled behavioral and epidemiological dynamics

Many papers have been published on epidemiological dynamics considering 

people's behavioral responses. Some works have considered the contact rate chosen by 

each person to maximize his/her own utility dependent on the prevalence of infection. 

As the number of infected increases, susceptible individuals recognize the risk and 

reduce their activity (Fenichel et al. 2011; Arthur et al. 2021). Other studies have 

considered dynamic optimization, including the risk of harming the expected future 

payoff (Reluga 2010). Another approach to representing the behavioral change of 

people is to consider the "fear of infection" as a contagion itself. An individual without 

fear may encounter with another individual with fear and acquire said fear. In 

corresponding studies, the model considered both the infection and fear of infection as 

contagions transmitted between people (Epstein et al. 2008; Johnston and Pell 2020). 

There have also been studies considering how individual behavior depend both on the 

presence of other individuals with fear and the presence of infected individuals (Perra et 

al. 2011). There are also diverse choices for the functional forms (Perra et al. 2011). All 

of these models include many variables. Many have discussed individual-based models 

including explicit consideration of the space and network structures of individuals 

(Wang et al. 2015). The analyses were performed numerically (except for a few; e.g. 

Poletti et al. 2009). 
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In the present study, we considered a model with only two variables. A simple 

model has a merit of providing us explicit mathematical conditions for different 

behaviors of the system, such as the maintenance of infection and the oscillation. We 

obtained the conditions for the various bifurcations, such as the homoclinic bifurcation, 

transcritical bifurcation, Hopf bifurcation, and saddle-node bifurcation. 

Fig. 6(a) illustrates the parameter regions for the different behaviors of the 

model. G indicates the parameter region where the number of infected individuals 

continues growing, and E indicates the region where the number of infected individuals 

continues decreasing. If , the number of infected individuals continues 𝑏0𝑥0 > 𝑐

increasing, and does not remain much smaller than the entire population. In contrast, if 

, the number of infected continues decreasing, and the infection is eventually 𝑐 > 𝑏1𝑥0

eradicated. Neither of these is consistent with the situation being considered, in which 

the infection remained at a rather low level in the population. We focused our analysis 

for the case , i.e., where the recovery rate  was larger than the force 𝑏0𝑥0 < 𝑐 < 𝑏1𝑥0 𝑐

of infection when all individuals are restrained ( ) and smaller than the force of 𝑏0𝑥0

infection when all individuals are active ( ). 𝑏1𝑥0

Fig. 6(a) indicates that the model has an equilibrium with a positive 

abundance of infected individuals only when  is below the curve ( ). 𝜆 𝜆 < 𝑓( 𝑐 ― 𝑏0𝑥0

𝑏1𝑥0 ― 𝑏0𝑥0)
The parameter range is further separated according to whether the equilibrium is locally 

stable or unstable. For the dynamics to exhibit an oscillatory abundance of the number 

of infected individuals, the equilibrium must be an unstable focus, which is possible in 

the region shaded in Fig. 6(a). The unstable equilibrium may be surrounded by a limit 

cycle implying a perpetual oscillation, or it may be accompanied by trajectories that 

lead to the eradication of the infection after transient oscillation. 
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Perpetual oscillation is possible only when equilibrium with some infected 

individuals exists, and it is unstable. For this to occur, the function  must have a 𝑓(𝑧)

portion with a positive derivative. In addition, the balance of  and  𝑐 ― 𝑏0𝑥0 𝑏1𝑥0 ―𝑐

makes  be within this portion. As shown in Appendix B, the function  has a 𝑧0 𝑓(𝑧)

portion with a positive derivative only when the conformity  is sufficiently strong. In 𝛾

addition, if we adopt a linear function , instead of a quadratic function , 1 + 𝛾𝑧 1 + 𝛾𝑧2

the equilibrium with a positive abundance of infected individuals is always locally 

stable, and oscillation does not occur (Appendix B). We conclude that the oscillation 

requires accelerating conformity. 

Second, for the presence of the equilibrium with a positive abundance of 

infected  needs to be small.  is the relative rate for newly active people 𝜆 = 𝐴0 𝐵𝛾 𝜆

returning to inactive, independent of the number of infected people. If  is large, the 𝜆

fraction of active people stays low and an equilibrium with a positive abundance of 

infected becomes difficult to maintain. In contrast, if  is small, the fraction of active 𝜆

people can become large in the absence of infected people and can be controlled by the 

risk avoidance processes owing to the infected people, thereby realizing the equilibrium 

of positive abundance of infected ( ). Thus, the smallness of  is related to the 𝑦 > 0 𝜆

need for the risk avoidance of people to be sufficiently strong. 

Among the many theoretical papers for coupled behavioral and epidemiological 

dynamics, some have assumed that people's activity is reduced by the prevalence of infection 

in the population (Fenichel et al. 2011; Arthur et al. 2021; Reluga 2010), i.e., risk 

avoidance. Other works have considered the contagion of the fear of infection among people 

(Epstein 2008; Perra et al. 2011; Johnston and Pell 2020): this approach represents the 

conformity of the people. The model we employed in this study incorporates both effects in a 
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simplified manner. Interestingly, in the current study, both risk avoidance and conformity 

are needed for oscillation to occur.

5.2 Future studies

Even if people's behavior does not change, infectious diseases can produce 

oscillations through several other mechanisms. The simplest would be an annual 

oscillation in the transmission rate or supply of susceptible people. Annual fluctuations 

may produce an oscillation with clear periodicity of two or three years in nonlinear 

epidemiological dynamics (Earn et al. 2000; Kamo and Sasaki 2005). A nonlinear 

transmission rate might produce a periodic oscillation in a constant environment 

(Capasso and Serio 1978; Liu et al. 1986, 1987), which can be interpreted as 

representing people's reactions to disease prevalence. The number of newly infected 

could be a nonlinear function of the current number of infected (Grenfell et al. 2002; 

Tkachenko et al. 2021). How these processes interact with the people's behavioral 

changes as analyzed herein, this behavior would be an interesting theme for future 

theoretical study. 

The number of infected of COVID-19 in 2020-2021 in Japan stayed rather 

low and exhibited characteristic oscillation. According to the analysis herein, this 

behavior is possible only under limited conditions. Testing the predicted conditions is 

an interesting theme of future study. We need to examine both the nature of the virus 

(their infection rate is between two levels of the force of infection) and that of society 

(people respond sensitively to the spread of infection and they have strong conformity). 

Many other processes can modify the model parameters. As the proportion of 

vaccinated individuals increases, the number of susceptible  declines. If a viral strain is 𝑥0
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replaced with a mutant, some of the parameters may change. In addition, society and 

medical treatment systems might change to cope with the infection more effectively. 

Novel mutants tend to start from a small number of infected individuals: 

hence, they suffer a high risk of stochastic extinction. This may have an important effect 

on viral evolution (e.g. Haraguchi and Sasaki 1997; Sasaki and Haraguchi 2000; Sasaki 

et al. 2012; see also literatures explained in Hayashi et al. 2022). Incorporating 

stochasticity owing to the small number of individuals is also an interesting issue for 

future theoretical studies. 
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Appendix A

Simplification of the dynamics

We start with the dynamics of  and , as follows:𝑌 𝑧

(A.1a)
𝑑𝑌
𝑑𝑡 = (𝑏0𝑧 + 𝑏1(1 ― 𝑧))𝑥0𝑌 ― 𝑐𝑌

(A.1b)
𝑑𝑧
𝑑𝑡 = (1 ― 𝑧)𝐵(1 + 𝛾𝑧2) ―𝑧(𝐴0 + 𝐴1𝑌)

To reduce the number of parameters and simplify the behavior of the dynamics, we 

introduce rescaled variables and parameters. We rewrite Eq. (A1.a) as follows:

𝑑𝑌
𝑑𝑡 = [(𝑏0𝑧 + 𝑏1(1 ― 𝑧))𝑥0 ― 𝑐]𝑌

  (A.2a)= (𝑏1 ― 𝑏0)𝑥0[ 𝑏1𝑥0 ― 𝑐
(𝑏1 ― 𝑏0)𝑥0

― 𝑧]𝑌

Eq. (A.1b) is rewritten as follows:

(A.2b)
𝑑𝑧
𝑑𝑡 = 𝐵𝛾𝑧[1 ― 𝑧

𝑧 (1
𝛾 + 𝑧2) ―

𝐴0

𝐵𝛾 ―
𝐴1

𝐵𝛾𝑌]
We introduce the rescaled variables , . Eqs. (A.2a) and (A.2b) 𝑦 =

𝐴1

𝐵𝛾𝑌 𝜏 = (𝑏1 ― 𝑏0)𝑥0𝑡

become as follows:

(A.3a)
𝑑𝑦
𝑑𝜏 = [𝑧 ―

𝑐 ― 𝑏0𝑥0

(𝑏1 ― 𝑏0)𝑥0]𝑦

(A.3b)
𝑑𝑧
𝑑𝜏 =

𝐵𝛾
(𝑏1 ― 𝑏0)𝑥0

𝑧[1 ― 𝑧
𝑧 (1

𝛾 + 𝑧2) ―
𝐴0

𝐵𝛾 ― 𝑦]
We also introduce three quantities calculated from the parameters: , 𝑧0 =

𝑐 ― 𝑏0𝑥0

(𝑏1 ― 𝑏0)𝑥0
𝜎 =

, and . Then Eqs. (A.3a) and (A.3b) can be rewritten as follows:
𝐵𝛾

(𝑏1 ― 𝑏0)𝑥0
𝜆 =

𝐴0

𝐵𝛾

 (A.4a)
𝑑𝑌
𝑑𝜏 = (𝑧 ― 𝑧0)𝑦

(A.4b)
𝑑𝑧
𝑑𝜏 = 𝜎𝑧[1 ― 𝑧

𝑧 (1
𝛾 + 𝑧2) ― 𝜆 ― 𝑦]

These are Eqs. (2a) and (2b) in the text. 
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Appendix B  

Equilibria and their local stability

We consider the following dynamics as follows:

(B.1a)
𝑑𝑦
𝑑𝜏 = (𝑧 ― 𝑧0)𝑦

(B.1b)
𝑑𝑧
𝑑𝜏 = 𝜎(𝑓(𝑧) ― 𝜆 ― 𝑦)

At the equilibria of these dynamics,  and  hold. The (𝑧 ― 𝑧0)𝑦 = 0 𝑓(𝑧) ―𝜆 ― 𝑦 = 0

equilibria are of the following two types:

[type 1] Equilibrium with positive abundance of infected individuals:

 and  (B.2)𝑧 = 𝑧0 𝑦 = 𝑓(𝑧0) ―𝜆 > 0

[type 2] Equilibria with no infected patients:

 and  (B.3)𝑦 = 0 𝑓(𝑧) ―𝜆 = 0

If , there is no type-1 equilibrium. 𝑓(𝑧0) ≤ 𝜆

The model has either a single type-1 equilibrium or no type-1 equilibrium. If 

there is one type-1 equilibrium, it can be locally stable or unstable. If it is unstable, it 

can be accompanied by a stable limit cycle, indicating perpetual oscillation and repeated 

resurgence of infections. Otherwise, after oscillation of a finite number of times, the 

trajectories proceed to the equilibrium without infection (type 2).

In contrast, there is always one or more type-2 equilibrium, because the 

function  has one or more roots satisfying . If there are multiple 𝑓(𝑧) = 𝜆 0 < 𝑧 ≤ 1

type-2 equilibria, they can be locally stable or unstable. 

B.1 Stability of the equilibrium with infection (type 1)

According to numerical analyses, if there is a stable limit cycle indicating a 

perpetual oscillation of infection abundance, there exists an unstable equilibrium 
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surrounded by a limit cycle. Hence, we first consider the condition in which there is an 

unstable type-1 equilibrium. The type-1 equilibrium indicates a population containing 

some infected hosts. The local stability of this equilibrium can be determined from the 

eigenvalue of the linearized dynamics. We calculate the Jacobian matrix at the 

equilibrium ( , ), the four elements of which are as follows: 𝑧 𝑦

; ; , and . (B.4)
∂

∂𝑦
𝑑𝑦
𝑑𝜏 = (𝑧 ― 𝑧0) = 0

∂
∂𝑧

𝑑𝑦
𝑑𝜏 = 𝑦 > 0

∂
∂𝑌

𝑑𝑧
𝑑𝜏 = ― 𝜎 < 0

∂
∂𝑧

𝑑𝑧
𝑑𝜏 = 𝑓′(𝑧0)

The characteristic equation for the eigenvalues  of the linearized matrix is as follows:𝜉

𝑑𝑒𝑡‖ ―𝜉 𝑦
―𝜎 𝜎𝑓′(𝑧0) ― 𝜉‖ = 0

This equation becomes as follows:

. (B.5)𝜉2 ―𝜎𝑓′(𝑧0)𝜉 + 𝜎𝑦 = 0

Eq. (B.3) has two eigenvalues both with negative real parts if ; this is the 𝑓′(𝑧0) < 0

condition for the local stability of the equilibrium. In contrast, if , the 𝑓′(𝑧0) > 0

equilibrium is unstable. Note that  is the slope of isoline  on the 𝑓′(𝑧0) 𝑦 = 𝑓(𝑧) ―𝜆

-plane. Hence, we conclude that the positive equilibrium is locally stable if the (𝑧,𝑦)

isocline has a negative slope at the equilibrium, and it is unstable if the isoline has a 

positive slope at the equilibrium. 

The shape of  is examined by considering its derivative.  𝑦 = 𝑓(𝑧) 𝑓′(𝑧) = 0

is rewritten as follows:

(B.6)𝑓′(𝑧) =
1
𝑧2(𝑧2 ― 2𝑧3 ―

1
𝛾)

From this, we have the following:

If ,  for all 0 < 𝛾 < 27 𝑓′(𝑧) < 0 0 < 𝑧 < 1

If , there are two solutions of ,  and , satisfying 𝛾 > 27 𝑓′(𝑧) = 0 𝑧1 𝑧2 0 <

. Then, the derivative  has a sign as follows:𝑧1 < 𝑧2 < 0.5 𝑓′(𝑧)
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 for  and , (B.7a)𝑓′(𝑧) < 0 0 < 𝑧 < 𝑧1 𝑧2 < 𝑧 < 1

 for . (B.7b)𝑓′(𝑧) > 0 𝑧1 < 𝑧 < 𝑧2

Hence, we can conclude as follows:

If ,  is a monotonically decreasing function.0 < 𝛾 < 27 𝑓(𝑧)

If ,  has a local minimum at  and a local maximum at , 𝛾 > 27 𝑓(𝑧) 𝑧1 𝑧2

where . For the interval between  and , there is a portion for 0 < 𝑧1 < 𝑧2 < 0.5 𝑧1 𝑧2

which  has a positive slope. 𝑦 = 𝑓(𝑧)

By combining these results with the local stability of the equilibrium with 

some infectied (type 1), we can conclude that the dynamics have an unstable 

equilibrium if the following three conditions are met: [1] ; [2]  is between  𝛾 > 27 𝑧0 𝑧1

and  ( ); and [3] . Please note that, even if these conditions are 𝑧2 𝑧1 < 𝑧0 < 𝑧2 𝑓(𝑧0) > 𝜆

met, there may not be a stable limit cycle surrounding the unstable equilibrium. The 

existence of unstable type-1 equilibrium is a necessary but not sufficient condition for a 

limit cycle. 

B.2 Stability of the equilibrium without infection (type 2)

Next, we consider the stability of the equilibrium with . It satisfies 𝑦 = 0 𝑓

 and . We examine the dynamics starting near the equilibrium. Let (𝑧) = 𝜆 0 < 𝑧 < 1 𝑧

 and , where both  and  are small and  can be (𝑡) = 𝑧 +𝜀(𝑡) 𝑌(𝑡) = 𝜅(𝑡) 𝜀(𝑡) 𝜅(𝑡) 𝜀(𝑡)

positive or negative, but  is nonnegative. Using these, Eqs. (B.1) become as 𝜅(𝑡)

follows:

(B.8a)
𝑑𝜀
𝑑𝑡 = 𝜎𝑧𝑓′(𝑧)𝜀(𝑡) ―𝜎𝑧𝜅(𝑡) +𝑂(...)

(B.8b)
𝑑𝜅
𝑑𝑡 = (𝑧 ― 𝑧0)𝜅(𝑡) +𝑂(...)
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In the above,  indicate small terms of second or higher order with respect to  𝑂(...) 𝜀

and . Because we should consider only a small deviation with  only, the 𝜅 𝑌 ≥ 0

deviation  is constrained as , and we have the following results:𝜅(𝜏) 𝜅(𝜏) ≥ 0

This boundary equilibrium is locally stable if  and .𝑓′(𝑧) < 0 𝑧 < 𝑧0

It is unstable if either inequality with the reversed direction holds. 

(B.9)

This is consistent with the numerical analyses shown in Fig. 4. 

B.3 Bifurcation diagram

Here, we consider the bifurcation diagram where the horizontal axis is the 

parameter  and the vertical axis is . Suppose  is chosen with  having a 𝜆 𝑧 𝑧0 𝑌 = 𝑓(𝑧)

positive slope, implying . Let  which is the value of  𝑧1 < 𝑧0 < 𝑧2 𝜆1 = 𝑓(𝑧1) 𝑌 = 𝑓(𝑧)

at the local minimum . We also define , i.e., which is the value of 𝑧1 𝜆0 = 𝑓(𝑧0) 𝑌 = 𝑓

 when . (𝑧) 𝑧 = 𝑧0

Concerning the equilibria of the dynamics, we have the following results:

If , the system has one type-1 equilibrium (with  and 0 < 𝜆 < 𝜆1 = 𝑓(𝑧1) 𝑧 = 𝑧0 𝑦 = 𝑓

). This is an unstable focus. There is a single type-2 equilibrium satisfying (𝑧0) = 𝜆
1
2

, which is locally unstable. < 𝑧 < 1

At , a saddle-node bifurcation takes place. For , there is 𝜆 = 𝜆1 𝜆1 < 𝜆 < 𝜆0

one type-1 equilibrium ( ), and three type-2 equilibria (with ). Among the 𝑧 = 𝑧0 𝑦 = 0

type-2 equilibria, the one with smallest  is locally stable, but the other two are 𝑧

unstable. 
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At , a bifurcation takes place and the type-1 equilibrium satisfying 𝜆 = 𝜆0

 is merged with an unstable boundary equilibrium (with ). However, 𝑧 = 𝑧0 𝑧1 < 𝑧 < 𝑧0

this is not very important, because both of them are unstable. 

Somewhere between  and , there occurs a homoclinic bifurcation at 𝜆1 𝜆0

. For , there is a stable limit cycle surrounding the unstable 𝜆 = 𝜆ℎ𝑐 𝜆1 < 𝜆 < 𝜆ℎ𝑐

equilibrium. In contrast, for , there is no limit cycle and the trajectories 𝜆 > 𝜆ℎ𝑐

converge to a type-2 equilibrium without infection. At , the stable limit cycle 𝜆 = 𝜆ℎ𝑐

merges with the unstable type-2 equilibrium. The transition of the dynamics is called a 

homoclinic bifurcation. Fig. 2 illustrates these changes. The location of the homoclinic 

bifurcation is important, but it can only be identified numerically.

The amplitude of oscillation of the stable limit cycle for  depends on 𝜆 < 𝜆ℎ𝑐

, the relative speed of the two variables.  is the magnitude of the speed of variable  𝜎 𝜎 𝑦

relative to . As  becomes larger, the amplitude of the oscillation is larger, but this 𝑧 𝜎

causes the homoclinic bifurcation to occur earlier.

B.4 When conformity factor is of a linear function

In the model shown in Eq. (1), the conformity factor is , a quadratic 1 + 𝛾𝑧2

function of . This implies that the conformist tendency becomes increasingly stronger 𝑧

as  increases in an accelerating manner. If instead, the conformity factor is a linear 𝑧

function , the equilibrium with some infected is locally stable. 1 + 𝛾𝑧

We start from a calculation as follows:

(B.10)
𝑑𝑧
𝑑𝑡 = (1 ― 𝑧)𝐵(1 + 𝛾𝑧) ―𝑧(𝐴0 + 𝐴1𝑌)

We consider the dynamics by combining Eq. (1a) in the text and Eq. (B.10). Then, we 

introduce , , and , which have a modified symbol  𝑦 =
𝐴1

𝐵𝛾𝑌 𝜎 =
𝐵𝛾

(𝑏1 ― 𝑏0)𝑥0
𝜆 =

𝐴0

𝐵𝛾 𝛾



29

instead of ; as well as  and . We then obtaine Eq. (2) 𝛾 𝜏 = (𝑏1 ― 𝑏0)𝑥0𝑡 𝑧0 =
𝑐 ― 𝑏0𝑥0

(𝑏1 ― 𝑏0)𝑥0

in the text with , which is different from that in the text. The 𝑓(𝑧) =
1 ― 𝑧

𝑧 (𝑧 +
1
𝛾)

equilibria are obtained in the same way as in Appendix A, as far as adopting this 

modified function . We have a type-1 equilibrium with some infection in the 𝑓(𝑧)

population as  and . The equilibrium is locally stable if , 𝑧 = 𝑧0 𝑦 = 𝑓(𝑧0) 𝑓′(𝑧0) < 0

and is unstable if . As  is a monotonically decreasing 𝑓′(𝑧0) > 0 𝑓(𝑧) =
1 ― 𝑧

𝑧 (𝑧 +
1
𝛾)

function of  for , it is always stable.𝑧 0 < 𝑧 < 1



30

Appendix C

Value of  at equilibria for different 𝒛 𝝀

Fig. C.1 illustrates the value of  at the equilibria. The horizontal axis is for 𝑧

. The different parts of the figure indicate cases with different values for . A type-1 𝜆 𝑧0

equilibrium ( ) appears as a horizontal line ( ). Stable and unstable type-1 𝑦 > 0 𝑧 = 𝑧0

equilibria are indicated by solid and dotted lines, respectively. Type-2 equilibria ( ) 𝑦 = 0

appear as a curve  on these figures. They may be stable or unstable, as shown 𝑓(𝑧) = 𝜆

by the solid portion and dotted portions of the curve, respectively. Fig. C.1(a) and 

C.1(c) are bifurcation diagrams, because the trajectories converge to one of the stable 

branches appearing as solid line or solid portion of a curve. However, Fig. C.1(b) 

cannot be regarded as a bifurcation diagram, because the trajectories may converge to a 

limit cycle. To avoid the complicated figure, we did not show the limit cycles on Fig. 

C.1(b). 

In Fig. C.1(a), the type-1 equilibrium ( ) is locally stable because 𝑦 > 0 𝑓′(𝑧0)

 holds. In addition, there are type-2 equilibria which appear as points on the curve < 0

, which may be stable or unstable. (n.b. , , and 𝑓(𝑧) = 𝜆 𝜆1 = 𝑓(𝑧1) 𝜆0 = 𝑓(𝑧0) 𝜆2 = 𝑓

 are adopted in Fig. C.1(a).) For , there is a single type-1 equilibrium, (𝑧2) 𝜆 < 𝑓(𝑧1)

which is globally stable according to numerical analysis. When  passes , a 𝜆 𝑓(𝑧1)

saddle-node bifurcation occurs, and a pair of stable and unstable type-2 equilibria 

appear ( ). For , the dynamics are bistable, with two attractors: 𝑦 = 0 𝑓(𝑧1) < 𝜆 < 𝑓(𝑧0)

one at a type-1 equilibrium ( ) and the other at a type-2 equilibrium ( ). As  𝑦 > 0 𝑦 = 0 𝜆

increases, the value of  at the type-1 equilibrium decreases and  holds. 𝑦 𝜆 = 𝑓(𝑧0)

Then, the type-1 equilibrium and unstable type-2 equilibrium merge. For  larger than 𝜆

, there is no type-1 equilibrium with a positive . The type-2 equilibrium which 𝑓(𝑧0) 𝑦
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was unstable for  becomes a stable equilibrium for . This transition 𝜆 < 𝑓(𝑧0) 𝜆 > 𝑓(𝑧0)

is named a "transcritical bifurcation" or "alternation of stability" (Guchenheimer and 

Holmes 1983; Strogatz 1994) (see Appendix D and Fig. D.1). The dynamics are bistable 

(having two attractors) for . At , the stable type-2 𝑓(𝑧0) < 𝜆 < 𝑓(𝑧2) 𝜆 = 𝑓(𝑧2)

equilibrium merges with the unstable equilibrium and they disappear, indicating a 

saddle-node bifurcation. For , the system only has a globally stable type-2 𝜆 > 𝑓(𝑧2)

equilibrium. 

Fig. C.1(b) show the case for . The type-1 equilibrium is locally 𝑧1 < 𝑧0 < 𝑧2

unstable. The dynamics may have a limit cycle or the trajectories may converge to a 

type-2 equilibrium. For , the type-1 equilibrium is surrounded by a stable limit 𝜆 < 𝜆ℎ𝑐

cycle, as illustrated in Fig. 2(a). The limit cycle is not shown in Fig. C.1(b). At , 𝜆 = 𝜆ℎ𝑐

a homoclinic bifurcation takes place (see Fig. 2(b)). For  slightly larger than , no 𝜆 𝜆ℎ𝑐

limit cycle exists. As  changes, the dynamics show various transitions with 𝜆

bifurcations of different types, which can be traced by numerical analyses. 

In Fig. C.1(c) in which  holds, the type-1 equilibrium is stable for 0 < 𝑧0 < 𝑧1

, because  holds. At , the dynamics exhibit 0 < 𝜆 < 𝑓(𝑧0) 𝑓′(𝑧0) < 0 𝜆 = 𝑓(𝑧0)

transcritical bifurcation (see Appendix D). For , the type 2 equilibrium 𝜆 > 𝑓(𝑧0)

becomes globally stable.  
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Appendix D

Fig. D.1 illustrates the dynamics on the -plane for different values of . (𝑧,𝑦) 𝜆

The type-1 equilibrium is locally stable because  holds. As  increases, the 𝑧0 > 𝑧2 𝜆

stable equilibrium including some infected hosts (type 1) becomes merges with an 

unstable equilibrium without infection (type 2). When  increases further, the type-1 𝜆

equilibrium disappears, and a stable type-2 equilibrium without infection remains. This 

transition is called a "transcritical bifurcation" or an alternation of stability 

(Guckenheimer and Holmes, 1983; Strogatz 1994). 
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Figure captions

Fig. 1 COVID-19 cases daily report of the number of infected patients in Japan from 

January 16, 2020 to December 31, 2021. The average over 7 days is shown. The 

cumulative number of infected by the end of this period was 1.37 % of the total 

population. This figure was made based on the data from 

https://www3.nhk.or.jp/news/special/coronavirus/data/

downloaded on June 30, 2022. 

Fig. 2 Disappearance of perpetual oscillations as parameter  changes. Trajectories 𝜆

of the dynamics given in Eq. (2) are illustrated on -plane. Solid and open circles (𝑧,𝑦)

are locally stable and unstable equilibria, respectively. Isoclines are shown in broken 

curves. (a) The dynamics have a stable limit cycle surrounding the equilibrium, 

indicating perpetual oscillation in the number of infected hosts . The dynamics also 𝑦

have a locally stable equilibrium without infected exist ( ）. 𝑦 = 0 𝑧0 = 0.47, and

. (b) A trajectory started from the unstable equilibrium without infection leads  𝜎 = 1.76

to a single bout of explosive increase in infection and then returned to the same 

equilibrium. This is called a " homoclinic orbit." . (c) A stable 𝑧0 = 0.46, and 𝜎 = 1.72

equilibrium without infected hosts exits. . Other parameters 𝑧0 = 0.44, and 𝜎 = 1.67

are: , and .𝛾 = 150 𝜆 = 0.2

Fig. 3 Homoclinic bifurcation. (a) Top and bottom parts illustrate the amplitudes of 

the oscillations of  and  in the limit cycle, respectively. The two curves represent 𝑦 𝑧

the maximum (red) and minimum (black) values of the variables. The horizontal axis 

represents . (b) Time course of  for different . The horizontal axis represents time 𝜆 𝑦 𝜆
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. The top, middle, and bottom parts indicate the results for , , 𝑡 𝜆 = 5 × 10 ―5 𝜆 = 0.1

and , respectively. The period of oscillation increases as  approaches to 𝜆 = 0.1275 𝜆

the critical value , where the period becomes infinitely long. For 𝜆 = 0.1276

, there is no limit cycle. Other parameters are: 𝜆 > 0.1276 𝑧0 = 0.3, 𝛾 = 200, and 

. 𝜎 = 20

Fig. 4 Hopf bifurcation. Top and bottom portions indicate values of  and , 𝑦 𝑧

respectively. The two curves indicate the maximum (black) and minimum (red) values 

on the stable limit cycle. (a) The horizontal axis is . A Hopf bifurcation occurs at 𝛾

approximately . For , the equilibrium is stable. For , the 𝛾 ≈ 27.2 𝛾 < 27.2 𝛾 > 27.2

system oscillates with the amplitude increasing with . The parameters are: 𝛾 𝑧0

, and . (b) The horizontal axis indicates a parameter . (b) = 0.3,  𝜆 = 0.1275 𝜎 = 20 𝑧0

The horizontal axis is . For  and , the equilibrium  is 𝑧0 𝑧0 < 0.08 𝑧0 > 0.49 𝑧 = 𝑧0

stable. For , the equilibrium is unstable and there is a stable limit 0.08 < 𝑧0 < 0.49

cycle. Parameters are: , , . 𝛾 = 200 𝜆 = 5 × 10 ―5  𝜎 = 20

Fig. 5    Shape of oscillation when  is very large or very small. Top and bottom 𝜎

graphs are  and  in the limit cycle, respectively. The horizontal axis indicates 𝑦(𝑡) 𝑧(𝑡)

time . (a) The relative speed of the changes in  is much faster than that of the 𝑡 𝑧

changes in . The oscillation is a typical relaxation-oscillation. . (b) The speed 𝑦 𝜎 = 20

of  is slower than that of . The amplitude of the limit cycle is larger and the period 𝑧 𝑦

of oscillation is longer than in (a). . Other parameters are: 𝜎 = 2 𝛾 = 200,  𝑧0 = 0.3, 

. and  𝜆 = 0.1
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Fig. 6 Phase diagram. The horizontal axis represents recovery rate , and the c

vertical axes represents . (a) In the area labeled  the infection will be 𝜆( = 𝐴0 𝐵𝛾) E,

eradicated eventually. In the area labeled G, the number of infected continues 

increasing. In the area labeled S, there is a stable equilibrium with some infected hosts. 

In the area labeled U, the equilibrium with some infected hosts exists but is unstable. In 

the last case, there can be either a stable limit cycle (perpetual oscillation), or the 

trajectory may oscillate a finite number of times and then converge to an equilibrium 

without infection (transient oscillation). . (b) The region labeled as U 𝛾 = 200

disappears. The trajectories converge to the equilibrium with some infected hosts. 

. Other parameters are: , and .𝛾 = 10 𝑏1𝑥0 = 20 𝑏0𝑥0 = 10

Fig. C.1 Value of  at equilibria for different parameter . Curves indicate . 𝑧 𝜆 𝜆 = 𝑓(𝑧)

The solid line and solid portions of the curve represent the stable equilibrium. The 

dotted line and dotted portions of the curve indicate the unstable equilibrium. (a) 𝑧0

. The equilibrium  for  is stable. (b) > 0.490 𝑧 = 𝑧0 0 < 𝜆 < 𝑓(𝑧0) 0.077 < 𝑧0

. The equilibrium  for  is an unstable focus. (c) < 0.490 𝑧 = 𝑧0 0 < 𝜆 < 𝑓(𝑧0) 𝑧0

. The equilibrium  for  is stable.  and  are the < 0.077 𝑧 = 𝑧0 0 < 𝜆 < 𝑓(𝑧0) 𝑧1 𝑧2

local minimum and the local maximum of . , , and 𝑓(𝑧) 𝜆1 = 𝑓(𝑧1) 𝜆2 = 𝑓(𝑧2) 𝜆0 = 𝑓

. Other parameter is　 . (𝑧0) 𝛾 = 200

Fig. D.1 Transcritical bifurcation. The trajectories of the dynamics of Eq. (2) are 

shown on -plane. Solid and open circles are locally stable and unstable equilibria, (𝑧,𝑦)

respectively. Isoclines are shown in broken curves. (a) The dynamics are bistable: a 

stable equilibrium with some infected and stable equilibrium without infected exist. 𝑧0
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. (b) A stable equilibrium and an unstable equilibrium exist, both without infected = 0.6

hosts. . Other parameters are: , , and .𝑧0 = 0.8 𝛾 = 150 𝜆 = 0.2 𝜎 = 1.5

Highlights:

The infected of COVID-19 showed multiple distinct peaks in 2020 and 2021 in Japan. 

We study a simple model for the coupling of social and epidemiological dynamics. 

People switch between active and restrained states differing in the infection rate. 

Transition rate to active state increases with the number currently active people. 

Backward transition rate increases with the abundance of infected people. 

The model showed a transient or sustained oscillation and various bifurcations. 
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