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for assembly of a functional transcription complex
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ABSTRACT

The binding of transcription factor (TF) IIIA to the
internal control region of the 5S RNA gene is the
first step in the assembly of a DNA–TFIIIA–TFIIIC–
TFIIIB transcription complex, which promotes accu-
rate transcription by RNA polymerase III. With the
use of mutations that are predicted to disrupt the
folding of a zinc finger, we have examined the roles
of zinc fingers 1 through 7 of yeast TFIIIA in the
establishment of a functional transcription complex
both in vitro and in vivo. Our data indicate that, in
addition to their role in DNA binding, the first and
seventh zinc fingers contribute other essential roles
in the assembly of an active transcription complex.
Alanine-scanning mutagenesis identified residues
within zinc finger 1 that are not required for DNA
binding but are required for incorporation of TFIIIC
into the TFIIIA–DNA complex. Although disruption of
zinc finger 2 or 3 had a deleterious effect on the
activity of TFIIIA both in vitro and in vivo, we found
that increasing the level of their in vivo expression
allowed these mutant proteins to support cell
viability. Disruption of zinc fingers 4, 5 or 6 had
minimal effect on the DNA binding and TF activities
of TFIIIA.

INTRODUCTION

Promoter recognition by RNA polymerase III, which
transcribes small non-coding genes such as tRNA genes
and 5 S RNA genes, is mediated by the transcription
factors (TFs) TFIIIA, TFIIIB and TFIIIC (1,2). These
factors assemble in a stepwise manner, beginning with
recruitment of the multi-subunit TFIIIC to the promoter
of a tRNA gene and the single-subunit TFIIIA to the

promoter of the 5 S RNA gene. The intragenic promoters
of these genes, which are referred to as internal control
regions (ICRs), are often multipartite, with the sub-
elements contributing to the appropriate architecture of
the final transcription complex (1,2). The protein–DNA
and protein–protein interactions that promote assembly of
a transcription complex on a tRNA gene have been
extensively studied with TFs from Saccharomyces cerevi-
siae (3–5). Binding of the six-subunit yeast TFIIIC to the
bipartite ICR of a tRNA gene protects the entire gene
against cleavage by DNase I. TFIIIC then mediates stable
binding of TFIIIB, which consists of three polypeptides
including the TATA-binding protein, upstream of the
start site of transcription. TFIIIB is responsible for
recruitment of RNA polymerase III and is able by itself
to direct multiple rounds of accurate transcription. In
contrast to the tRNA gene, the 5 S RNA gene does not
bind TFIIIC directly; rather, the TFIIIA–5 S DNA
complex provides the platform for TFIIIC recruitment.
Formation of the TFIIIC–TFIIIA–5 S DNA complex is
a prerequisite for the subsequent recruitment of TFIIIB
and RNA polymerase III. In this way, TFIIIA acts as
an adaptor protein to assemble an initiation complex
at the promoter of the 5 S RNA gene in which the
placement of TFIIIC and TFIIIB is similar to that on
a tRNA gene (6–8).
In most organisms, TFIIIA contains nine sequential

Cys2His2 zinc fingers that are separated by short linker
sequences. However, TFIIIAs with longer spacer regions
and additional zinc fingers have been identified in some
species (9,10). The interaction of TFIIIA from Xenopus
with the tripartite ICR of the amphibian 5 S RNA gene
has been studied in detail. The ICR consists of an
A box (nt +50 to +64), an intermediate element
(nt+67 to +72) and a C box (nt +80 to +97).
The results of DNase I protection and chemical protec-
tion/interference studies with full-length and truncated
polypeptides bound to DNA suggest that the three
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amino-terminal and the three carboxyl-terminal fingers of
Xenopus TFIIIA wind around the major groove, making
contacts with the C and A boxes, respectively. Fingers 4, 5
and 6 are proposed to bridge these two domains, with
fingers 4 and 6 crossing the minor groove and finger 5
making contacts in the major groove of the intermediate
element (11–18). Structures of polypeptides containing the
amino-terminal 3 or 6 fingers bound to DNA have been
determined by X-ray and NMR analyses and support the
models derived from biochemical and genetic studies
(13,16,17).
Because a polypeptide consisting of the three amino-

terminal zinc fingers of Xenopus TFIIIA was found to
bind to the 5 S RNA gene with an affinity similar to the
full-length protein, this amino-terminal module was
initially considered to be the main contributor to the
affinity of the protein for DNA (19–21). However,
additional studies with truncated proteins and full-length
proteins that contained point mutations, ‘broken’ fingers
and ‘swapped’ fingers, as well as insights derived from
structural analyses, led to the conclusion that the
carboxyl-terminal fingers also make a large contribution
to the affinity of the protein–DNA complex (22–25).
Accommodating the binding of the full-length Xenopus
TFIIIA to DNA has been shown to involve both
neighboring finger–finger interactions as well as longer
range interactions that contribute both favorably and
unfavorably to the overall affinity of TFIIIA for the
promoter (22,23).
Once bound to DNA, TFIIIA directs assembly of the

TFIIIB–TFIIIC–TFIIIA–DNA complex. The observation
that the association of TFIIIA with DNA is much more
stable in a fully assembled complex and in a TFIIIC–
TFIIIA–DNA complex than in a TFIIIA–DNA complex
has led to the suggestion that the rate of assembly of the
complete transcription complex is largely independent of
the equilibrium binding constant of TFIIIA for DNA as
measured in the formation of a binary complex (24,26).
For example, a version of Xenopus TFIIIA that contains a
disruption of zinc finger 3 supports wild-type levels of 5 S
RNA synthesis in vitro despite having a 27-fold reduction
in its DNA-binding affinity (24).
The carboxyl-terminal portion of Xenopus TFIIIA,

beginning at zinc finger 7, appears to have a role in the
formation of the initiation complex that is distinct from
its role in contacting the A box of the promoter (27).
A mutation that prevents proper folding of any one of the
first six zinc fingers of TFIIIA does not affect either
the in vitro or in vivo TF activity of the protein (24,28).
A mutation that disrupts the structure of zinc finger 7, 8 or
9 or deletion of a 14-residue sequence in the C-terminal
extension of the protein leads to transcriptional defects
that cannot be accounted for solely by effects on DNA
binding (23–25,28–31). For example, disruption of zinc
finger 7 or zinc finger 8 leads to a similar reduction in
DNA-binding affinity of TFIIIA. However, disruption of
zinc finger 7 leads to only a modest reduction in the
activity of TFIIIA whereas disruption of zinc finger 8
abolishes the ability of the protein to support transcription
of the 5 S RNA gene in vitro and greatly reduces its
activity in vivo (23,24,28).

Like its Xenopus counterpart, yeast TFIIIA contains
nine Cys2His2 zinc fingers. Yeast TFIIIA also contains
a unique 81-amino-acid sequence between zinc fingers 8
and 9 that is essential for its TF activity (32). The ICR of
the yeast 5 S RNA gene consists of only a C-box element,
located between nucleotides +81 and +94 (33). DNase I
footprinting and methylation protection studies indicate
that the three amino-terminal zinc fingers span the ICR,
contacting residues from +79 to +98 (34). Zinc finger 5
contacts residues 73 and 74 of the 5 S RNA gene, but this
interaction does not appear to contribute to the affinity
of the protein for the 5 S RNA gene (34). Although zinc
fingers 6 through 9 are not in close contact with DNA
in the TFIIIA–DNA complex (34), these fingers are in
close proximity to DNA in the fully assembled initiation
complex (6,8,35). A truncated version of yeast TFIIIA
containing the three amino-terminal zinc fingers interacts
with the ICR with high affinity. Although this TFIIIA–
DNA complex is able to recruit TFIIIC, the resulting
complex is non-functional (34,36). The recruitment of
TFIIIC appears to require zinc finger 1, as a polypeptide
that begins with finger 2 is able to bind to the 5 S RNA
gene, albeit with reduced affinity, but does not recruit
TFIIIC (36). A short leucine-rich segment within the
81-amino-acid region present between zinc fingers 8 and 9
of yeast TFIIIA is also required for the assembly of a
functional transcription complex (36,37). This region
might serve as a second docking site for TFIIIC and in
combination with zinc fingers 8 and 9, which contribute in
a redundant manner to the TF activity of TFIIIA, enforce
a topography on the TFIIIC-TFIIIA-5 S DNA complex
that promotes proper positioning of TFIIIB (1,36,37).

We have examined the roles of zinc fingers 1 through
7 of yeast TFIIIA in the establishment of a functional
transcription complex on the 5 S RNA gene. We
constructed versions of TFIIIA in which the folding of
an individual zinc finger was disrupted by substitution of a
zinc-coordinating histidine residue by an asparagine
residue. In this study, we compare the ability of these
mutant TFIIIAs to bind DNA and to support in vitro and
in vivo transcription of the 5 S RNA gene.

MATERIALS AND METHODS

Site-directed mutagenesis

The construction of pXS-TFC2, which contains the
coding region for TFIIIA downstream of a T7 RNA
polymerase promoter, has been described elsewhere (37).
This plasmid served as the parental plasmid for the
introduction of mutations into the coding sequence of
TFIIIA. Site-directed mutagenesis was achieved by
recombinant PCR using the overlap extension procedure
as described previously (37) with pXS-TFC2 as the
template except as otherwise noted. All PCR ampli-
fications were performed by using the high fidelity Vent
DNA polymerase as instructed by the manufacturer
(New England Biolabs), and the sequence of all amplified
DNA was verified by DNA sequencing.

A series of pXS-TFC2-derived plasmids was con-
structed to code for broken-finger versions of TFIIIA
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containing a histidine-to-asparagine substitution in each
of zinc fingers 1 through 7. The upstream and downstream
primers used for the construction of pXS-TFC2(H69N),
pXS-TFC2(H98N), pXS-TFC2(H126N) and pXS-
TFC2(H154N), which encode versions of TFIIIA contain-
ing disruptions of zinc fingers 1 to 4, respectively, annealed
to the DNA sequence just upstream of the TFIIIA-coding
region and to the DNA sequence at the end of the
coding region for zinc finger 4. The final PCR product in
each case was digested with NcoI and HindIII, and the
resulting �510-bp restriction fragments were gel-purified
and used to replace the corresponding fragment of
pXS-TFC2. The primers used for the construction of
pXS-TFC2(H181N), which contains a disruption of zinc
finger 5, annealed to the DNA sequence at the beginning
of the coding region for zinc finger 4 and to the DNA
sequence at the end of the coding region for zinc finger 8.
The final PCR product was digested with HindIII and
XbaI, and the resulting �280-bp restriction fragment
was gel-purified and used to replace the corresponding
fragment of pXS-TFC2. The primers used for the
construction of pXS-TFC2(H214N) and pXS-
TFC2(H240N), which encode versions of TFIIIA con-
taining disruptions of zinc fingers 6 and 7, annealed to the
DNA sequence just upstream of the TFIIIA-coding region
and to the DNA sequence at the end of the coding region
for zinc finger 8. The final PCR product in both cases was
digested with NcoI and XbaI, and the resulting �850-bp
restriction fragments were gel-purified and used to replace
the corresponding fragment of pXS-TFC2.

Another series of plasmids encoding versions of
TFIIIA with disruption of two zinc fingers was made by
combining the appropriate restriction fragments from
parental plasmids described above. The �510-bp NcoI–
HindIII fragment from pXS-TFC2(H126N) (third finger
disruption) or pXS-TFC2(H154N) (fourth finger disrup-
tion) was used to replace the corresponding fragment
in plasmids pXS-TFC2(H181N) (fifth finger disruption),
pXS-TFC2(H214N) (sixth finger disruption), pXS-
TFC2(H240N) (seventh finger disruption) and pXS-
TFC2(C367Y) [ninth finger disruption; (37)] to generate
plasmids encoding versions of TFIIIA containing a
disrupting mutation in both fingers 3 and 5, 3 and 6,
3 and 9, 4 and 5, 4 and 6, 4 and 7 and 4 and 9. The plasmid
encoding the version of TFIIIA containing disruptions
of zinc fingers 5 and 6 was constructed by replacing
the �560-bp NcoI–Bsu36I fragment from pXS-
TFC2(H214N) (sixth finger disruption) with the corre-
sponding fragment from pXS-TFC2(H181N) (fifth finger
disruption).

Another series of constructs, which was also made by
overlap extension PCR with pXS-TFC2 as the template,
directed the synthesis of versions of TFIIIA containing the
following alanine-scanning mutations of the first finger of
TFIIIA: Y49A, F50A, F50E, D52A, Y53A, Y53E, D54A,
G55A, D57A, K58A, A59V, F60A, L71A, V73A and the
double mutation Y53A/D54A. pXS-TFC2(F50A) was
used as the template in the PCR construction of a version
of TFIIIA containing the double mutation F50A/Y53A.
pXS-TFC2(D54A) was used as the template in the
construction of a version of TFIIIA containing the

double mutation F50A/D54A, and pXS-TFC2(K58A)
was used as the template in the construction of the
versions of TFIIIA containing the double mutations
F50A/K58A, Y53A/K58A and K58A/L71A. The final
PCR product in all cases was digested with NcoI and
HindIII, and the resulting �510-bp fragment was used
to replace the corresponding fragment of pXS-TFC2.

Plasmids for bacterial expression of wild-type and mutant
forms of yeast TFIIIA

The construction of a plasmid for bacterial expression of
wild-type TFIIIA was described previously (34). Plasmids
for the expression of mutant versions of TFIIIA described
above were generated by inserting the 2.3-kb NcoI–
BamHI fragment of the appropriate pXS-TFC2 plasmid
between the corresponding sites of pET-11d (38). This
places the coding region of TFIIIA under the control
of a bacteriophage T7 RNA polymerase promoter.

Plasmids for in vivo analysis of mutant versions of TFIIIA

Two series of plasmids were used for in vivo expression of
wild-type and mutant forms of TFIIIA. The yeast shuttle
vector �pG-3, a pUC18-derived plasmid that contains a
2 m origin of replication and the selectable marker TRP1,
has been described previously (37). KpnI–BamHI frag-
ments containing the open-reading frames of the wild-type
and mutant versions of TFIIIA were purified from pXS-
TFC2 plasmids and inserted between the KpnI and SalI
sites of �pG-3 after the BamHI- and SalI-generated ends
had been filled in by the Klenow form of DNA polymerase
I in the presence of dNTPs. This placed the coding region
of TFIIIA between the constitutive promoter of the
glyceraldehyde-3-phosphate dehydrogenase (GPD) gene
and the transcription terminator of the phosphoglycerate
kinase (PGK) gene.
pRS314+-TFC2, a low-copy plasmid containing the

wild-type coding sequence for TFIIIA under the control
of its own promoter, was constructed as follows. The
promoter sequence of the TFIIIA gene was amplified by
PCR using pJA230 (39) as a template. The upstream
primer annealed 230-bp upstream of the translation start
site and introduced a KpnI site, whereas the downstream
primer annealed at the translation start site and intro-
duced an NcoI site. The 230-bp PCR product was digested
with KpnI and inserted between the KpnI and EcoRI sites
of the plasmid pRS314 after the EcoRI site had been
blunted with Klenow in the presence of dNTPs. This
generated plasmid pRS314+. This CEN/ARS-containing
plasmid carries the TRP1 selectable marker and a yeast
autonomously replicating sequence (ARS). NcoI–BamHI
fragments containing the open reading frames of wild-type
and mutant versions of TFIIIA were purified from pXS-
TFC2 plasmids and inserted between the corresponding
sites of pRS314+.

In vitro synthesis of TFIIIA

Wild-type and mutant versions of TFIIIA were synthe-
sized in vitro using the TnT (Promega) coupled tran-
scription–translation system essentially as described
previously (34). pXS-TFC2 and its variants were used as
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template unless otherwise indicated. Five microlitrers of
each 20 ml reaction was loaded on an SDS–15% poly-
acrylamide gel, transferred to nitrocellulose for western
blotting and probed with anti-TFIIIA as described below
to confirm that each protein was synthesized and stable.
The remainder of the in vitro synthesized protein was
used in electrophoretic mobility shift assays (EMSAs) and
transcription assays.

Purification of full-length yeast TFIIIA from bacteria

The pET-11d-derived plasmids were transformed into
the Escherichia coli strain BL21(DE3), and TFIIIA was
purified as described (34).

Electrophoreticmobility shift and in vitro transcription assays

EMSAs were performed as described (37). A 20 ml reaction
contained a 2 ml aliquot of TFIIIA, 4 ml of partially
purified TFIIIC where indicated, and a 270-bp end-labeled
DNA fragment, which was excised from p19-5 S and
contains the yeast 5 S RNA gene (33). TFIIIA for these
experiments was either purified from bacteria or syn-
thesized in an in vitro transcription–translation reaction
programmed to produce the indicated version of TFIIIA.
The partially purified TFIIIC-containing fraction derived
from yeast was prepared as described for fraction j
in Taylor and Segall (40). In vitro transcription assays
were performed as described (40) using the yeast 5 S RNA
gene (p19-5 S) as template. A 50 ml reaction contained
a 4.5 ml-aliquot of either bacterially expressed or in vitro
synthesized TFIIIA and 12.5ml of a yeast-derived heparin-
agarose fraction (fraction h) (40) that contained TFIIIC,
TFIIIB and RNA polymerase III.

In vivo analysis of the mutant versions of TFIIIA

The haploid yeast strain YRW1 (MATa can1-100 his3-11
leu2-3,112 trp1-1 ura3-1 ade2-1 tfc2::LEU2 and harboring
pJA230), which was used for in vivo analysis of wild-type
and mutant versions of TFIIIA, has been described
previously (34). pJA230 is a CEN/ARS plasmid with a
URA3 selectable marker and a 10-kb insert of yeast DNA
containing TFC2, the gene encoding TFIIIA (32). Since
TFC2 is an essential gene, viability of YRW1 depends on
the presence of pJA230 (32).
�pG-3 and pRS314+ plasmids directing expression of

wild-type or mutant forms of TFIIIA were transformed
into YRW1. After transformants had been selected on
medium lacking uracil and tryptophan, the �pG-3- and
pRS314+-containing strains were grown on medium
lacking tryptophan and containing uracil to allow for
loss of pJA230. Cells were then streaked on plates
containing medium supplemented with 5-fluoro-orotic
acid (5-FOA) and uracil and lacking tryptophan.
Because 5-FOA kills cells containing the URA3 gene,
only those cells which have lost pJA230 and contain a
�pG-3 or pRS314+ derivative encoding a functional
version of TFIIIA will grow on the 5-FOA-containing
medium.

Western analysis of "pG-3-driven TFIIIA expression in vivo

YRW1 and strains of YRW1 containing �pG3-derived
plasmids that directed expression of mutant versions of
TFIIIA were grown overnight in minimal medium lacking
tryptophan to an absorbance at 600 nm of �4.0. The cells
from 10ml of culture were harvested, washed twice with
cold water and re-suspended in 200 ml of lysis buffer
(30mM HEPES, pH 7.9, 150mM NaCl, 1mM DTT and
0.1% NP-40). Cells were vortexed in the presence of 200 ml
glass beads for six 1-min bursts interrupted by chilling
on ice. Samples were spun at 48 for 10min at 23 500 g, and
the supernatant transferred to a fresh tube and re-spun
for an additional 10min. Protein concentration was
determined using the Bradford assay with bovine serum
albumin as the standard. Protein (3.75 mg) was loaded on
an SDS 15%–polyacrylamide gel, transferred to nitrocel-
lulose for western blotting and probed with anti-TFIIIA
antibody as described previously (37).

RESULTS

DNA binding and TF activity of in vitro synthesized versions
of yeast TFIIIA containing individual disruptions of zinc
fingers 1 through 7

In this study, we have assessed the requirements for zinc
fingers 1 through 7 of yeast TFIIIA in the establishment
of a productive transcription complex on the 5 S RNA
gene. A previous assessment of the activities of truncated
versions of yeast TFIIIA suggested that the first zinc finger
contributes to DNA binding and to recruitment of TFIIIC
(36). Analysis of the effect of substitutions in zinc fingers 8
and 9 that are predicted to disrupt the folding of the finger
indicated that these two zinc fingers contribute in a
redundant manner to the TF activity of yeast TFIIIA (37).
To extend this analysis, we generated a series of plasmids
for in vitro and in vivo expression of proteins in which
the second zinc-coordinating histidine residue of each of
zinc fingers 1 through 7 was replaced by an asparagine
residue (Figure 1A). We refer to this substitution, which
is predicted to prevent stable folding of the finger, as a
disrupting mutation and to each disrupted finger as zf#d,
with # identifying the disrupted zinc finger. The sub-
stituted residue for disruption of zinc finger 1 through 7
was H69, H98, H126, H154, H181, H214 and H240,
respectively (Figure 1B). As a first test of the effect of these
mutations on the activity of TFIIIA, we compared the
ability of approximately equal amounts of in vitro
synthesized protein (data not shown) to bind to the 5 S
RNA gene as assessed by an EMSA (Figure 1C). Because
we have used this assay to give a qualitative assessment of
protein–DNA interactions and have not determined Kd

values, we use the term relative affinity in describing our
interpretation of the EMSAs. TFIIIA(zf6d) was the only
mutant protein that retained the ability to bind to the 5 S
RNA gene with a relative affinity similar to the wild-type
protein (Figure 1C, compare lanes 2 and 8). TFIIIA with
a disruption of zinc finger 1, 4, 5 or 7 appeared severely
compromised for DNA-binding activity, with disruption
of zinc finger 7 being less deleterious than disruption of
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zinc finger 1, 4 or 5 (Figure 1C, lanes 3–7 and 9).
TFIIIA(zf2d) and TFIIIA(zf3d) had no detectable DNA-
binding activity (Figure 1C, lanes 4 and 5). Despite the
qualitative nature of this assay, the data suggest that
within the context of the entire protein, only zinc finger
6 of the first 7 fingers can be disrupted without
compromising DNA-binding activity. This analysis also
revealed the presence of a minor amount of protein–DNA
complexes of higher mobility than typically observed for
the TFIIIA–DNA complex, particularly for reactions
containing TFIIIA(zf4d) and TFIIIA(zf5 d). It is possible
that these complexes contained a truncated protein
generated by proteolytic cleavage within the disrupted
finger.
We next tested the TF activity of the in vitro synthesized

proteins. TF activity, which refers to the ability of TFIIIA
to assemble a functional transcription complex, was
monitored in reactions that contained partially purified
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Figure 1. Zinc finger 1 and zinc finger 7 are essential for the TF activity
of TFIIIA. (A) The consensus amino acid sequence of the Cys2His2 zinc
finger is given in single-letter code and the zinc-coordinating cysteines
and histidines are in bold. The histidine substituted with asparagine to
disrupt the structure of individual fingers is underlined. (B) Schematic
representation of yeast TFIIIA. The boxes denoted zf1 to zf9 represent
the nine zinc fingers; the boxed 81aa denotes the 81-amino-acid
domain; and the diagonally stripped boxes represent the 48-amino-acid
amino-terminal and the 35-amino-acid carboxyl-terminal regions. The
histidine-to-asparagine substitution for each disruption is denoted
above the zinc finger. zf=zinc finger. (C) Ability of mutant versions
of TFIIIA to bind to the 5 S RNA gene as assessed by EMSA.

A radioactively labeled DNA fragment containing the yeast 5 S RNA
gene was incubated with in vitro synthesized versions of TFIIIA prior
to electrophoresis on a non-denaturing polyacrylamide gel. Lane 1, RL
(reticulocyte lysate; in vitro transcription–translation reaction that was
not programmed to synthesize TFIIIA); lane 2, WT (wild-type)
TFIIIA; lanes 3 through 9, versions of TFIIIA containing a histidine-
to-asparagine mutation in the indicated zinc finger. Lane numbers are
as given in panel D. The positions of the free DNA (minus sign) and
the TFIIIA–DNA complex (closed arrowhead) are indicated on the
right. (D) Abilities of mutant versions of TFIIIA to support in vitro
transcription of the 5 S RNA gene. In vitro transcription reaction
mixtures contained the yeast 5 S RNA gene as template, partially
purified yeast TFIIIC, TFIIIB and RNA polymerase III and the
version of in vitro synthesized TFIIIA indicated in the corresponding
lanes of panel C. The RNAs synthesized in vitro were analyzed on a
7M urea–10% polyacrylamide gel. The autoradiogram shows the
portion of the gel containing 5 S RNA. (E) Abilities of mutant versions
of TFIIIA purified from bacteria to bind to the 5 S RNA gene and to
recruit TFIIIC to the TFIIIA–DNA complex as assessed by EMSA. A
radioactively labeled DNA fragment containing the yeast 5 S RNA
gene was incubated with protein extract containing the indicated
version of bacterially produced TFIIIA in the absence (odd numbered
lanes) or presence (even numbered lanes) of partially purified yeast
TFIIIC prior to electrophoresis on a non-denaturing polyacrylamide
gel. Lanes are labeled as in panel C with lanes 1 and 2 containing no
added bacterial protein. The positions of the free DNA (minus sign),
TFIIIA–DNA complexes (solid arrowhead) and TFIIIC–TFIIIA–DNA
complexes (arrowhead) are indicated at the right. (F) Abilities of
mutant versions of TFIIIA purified from bacteria to support in vitro
transcription of the 5 S RNA gene. For details, see legend for
Figure 1D. (G) Abilities of mutant versions of TFIIIA to support
cell viability. Top panel: a plasmid shuffle assay to test the abilities
of mutant versions of TFIIIA to replace wild-type TFIIIA in vivo. Cells
of YRW1 that had been transformed with plasmids containing
copies of the TFC2 gene were tested for their abilities to grow on
medium containing 5-FOA (see Results Section). Each patch contains
cells from a different transformant. Two series of plasmids were tested:
in the pRS314+ series (labeled ‘low copy’), TFC2 is expressed under
the control of its own promoter from a low-copy (CEN ARS) plasmid;
in the �pG3 series (labeled ‘high copy’), TFC2 is expressed under the
control of the strong GPD promoter from a high-copy (2m) plasmid.
Cells containing the parental vectors not encoding a version of
TFIIIA are indicated by the minus sign. Bottom panel: assessment by
western blot of in vivo protein levels of mutant versions of TFIIIA.
Aliquots of crude lysates prepared from representative YRW1 yeast
cells containing the indicated �pG3-derived plasmids were separated
on a 15% SDS polyacrylamide gel, transferred to a nitrocellulose filter,
and probed with anti-TFIIIA antibody. Note that TFIIIA expressed
from the pRS314+ series of plasmids is below the level of detection
in this blot.
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TFIIIC, TFIIIB, RNA polymerase III and 5 S DNA
(see Materials and Methods section). Comparison of
TF activity of the mutant TFIIIAs, as measured by the
amount of 5 S RNA synthesized in in vitro transcription
reactions (Figure 1D), with the EMSA results (Figure 1C)
showed that there was little correlation between the
relative ability of a mutant TFIIIA to bind to the 5 S
RNA gene and to support transcription of the gene. For
example, TFIIIA(zf4d) and TFIIIA(zf5d), which appeared
severely compromised in their ability to interact with
the 5 S RNA gene, were nonetheless able to support near
wild-type levels of in vitro transcription (Figure 1C and D,
lanes 6 and 7); similarly, TFIIIA(zf3d), which had no
detectable DNA-binding activity, was able to support a
low level of transcription (Figure 1C and D, lane 5). This
suggested that in the presence of yeast TFIIIC, TFIIIB
and RNA polymerase III, versions of TFIIIA with low
affinity for the ICR could nonetheless be captured on
DNA to form transcriptionally active complexes. Indeed,
previous studies indicated that TFIIIC influences the
stability of the TFIIIA–DNA complex (41–44). Detailed
studies with Xenopus TFIIIA led to the conclusion that the
activity of TFIIIA in an in vitro transcription reaction
is independent of its apparent affinity for 5 S DNA as
determined in a binary reaction and that TFIIIA
molecules can be sequestered in higher order, essentially
irreversible transcription complexes (24). It is also possible
that the activity of TFIIIA(zf4d) and TFIIIA(zf5d)
increased because potentially proteolytic sensitive sites in
these proteins became protected. In contrast, TFIIIA(zf7d)
did not support transcription of the 5 S RNA gene despite
having a readily detectable DNA-binding activity
(Figure 1C and D, compare lanes 9). TFIIIA(zf1d) and
TFIIIA(zf2d), which had minimal or no DNA-binding
activity, respectively, also appeared unable to support
in vitro transcription of the 5 S RNA gene (Figure 1C
and D, lanes 3 and 4). Finally, TFIIIA(zf6d), which had
near wild-type DNA-binding activity, supported a high
level of in vitro transcription (Figure1C and D, lane 8). In
summary, in vitro synthesized TFIIIAs with a disruption
of zinc finger 4, 5 or 6 retained a high level of in vitro
TF activity whereas TFIIIAs with a disruption of zinc
finger 1, 2, 3 or 7 appeared to have defects in TF activity.

DNA binding and TF activity of bacterially expressed
versions of yeast TFIIIA containing a disruption of
zinc finger 1, 2 or 3

We also expressed wild-type TFIIIA and TFIIIA with
a disruption of zinc finger 1, 2 or 3 in bacteria so that we
could test the in vitro activities of these proteins at higher
concentrations than was possible with in vitro synthesized
protein. We found that we could readily detect TFIIIA–
5 S DNA complexes by EMSA with these three mutant
TFIIIAs purified from bacteria. Relative to wild-type
TFIIIA, however, all three mutant TFIIIAs showed
reduced affinity for the 5 S RNA gene. The interaction
of TFIIIA(zf2d) and TFIIIA(zf3d) with DNA appeared
to be compromised to a greater extent than the interaction
of TFIIIA(zf1d) (Figure 1E, lanes 3, 5, 7 and 9). We
emphasize that we have not carried out quantitative

measurements to determine Kd values and it is possible
that these reactions contained close to saturating amounts
of TFIIIA. Of note, however, is that TFIIIA(zf1d) was
clearly able to bind to the 5 S RNA gene. We also
monitored the effect of the addition of partially purified
TFIIIC to the EMSA reactions. As observed previously
(33), recruitment of TFIIIC to a wild-type TFIIIA–DNA
complex generated a complex that had greatly reduced
mobility (Figure 1E, lane 4). None of the mutant
TFIIIA–DNA complexes appeared, however, to be able
to efficiently recruit TFIIIC (Figure 1F, lanes 6, 8 and 9).

We next tested the ability of these bacterially expressed
versions of TFIIIA to support in vitro transcription.
TFIIIA(zf1d) was unable to support transcription
(Figure 1F, lane 3) whereas TFIIIA-zf2d and TFIIIA-
zf3d were able to support in vitro transcription of the 5 S
RNA gene (Figure 1F, lanes 4 and 5). These results
support the idea that zinc finger 1 plays an essential role in
the assembly of an active initiation complex (36).

In vivo activity of mutant versions of yeast TFIIIA

We used a plasmid-shuffling protocol to test the mutant
versions of TFIIIA for their ability to support cell
viability. For this study we used two sets of plasmids:
a high-copy �pG3-derived series of plasmids in which
expression of TFC2 was directed by the strong, constitu-
tive GPD promoter (37) and a low-copy CEN-ARS series
of plasmids in which expression of TFC2 was under the
control of its own promoter (see Materials and Methods
section). Plasmids encoding the mutant proteins were
introduced into a �tfc2 ura3 strain that harbored pJA230.
This is a low-copy plasmid that contains TFC2, which
encodes TFIIIA and is an essential gene, and URA3 as
a selectable marker (37). The transformed cells were then
tested for their ability to grow on 5-FOA-containing
medium; growth on this medium requires that the URA3-
marked pJA230 plasmid has been lost from cells and
is therefore diagnostic of the newly introduced mutant
version of TFC2 being able to support expression of the
5 S RNA gene. The only essential role of TFIIIA is in
directing expression of the 5 S RNA gene (45).

We found that TFIIIA containing a disruption of zinc
finger 4, 5 or 6 supported cell growth when expressed
at either a low or a high level. TFIIIA containing a
disruption of zinc finger 2 or 3 was able to support cell
viability, but only when expressed from the high-copy
vector. TFIIIA containing a disruption of zinc finger 1 or
7 failed to support cell viability irrespective of expression
level (Figure 1G, top panel). Our anti-TFIIIA antibody
is insufficiently sensitive to detect endogenous TFIIIA or
TFIIIA expressed from a low-copy vector in our standard
western blot analysis (37) (Figure 1G, lane 1). However,
TFIIIA expressed from the high-copy vector can be
readily detected (37) (Figure 1G, lane 2). We therefore
used western blot analysis to test for cellular accumulation
of mutant TFIIIAs expressed from the high-copy plasmid
in cells prior to growth on 5-FOA-containing medium.
These cells were also expressing wild-type TFIIIA from
the low-copy plasmid pJA230. We found that all mutant
proteins were sufficiently stable to be readily detected
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(Figure 1G, bottom panel) and were thus present in cells
at a higher level than chromosomally expressed TFIIIA.

In summary, this analysis indicated that zinc
fingers 1 and 7 are essential for the in vivo assembly of a
functional transcription complex on the 5 S RNA gene.
The observation that the deleterious effect of disruption of
zinc finger 2 or zinc finger 3 could be compensated for by a
higher level of in vivo expression of the mutant protein was
consistent with the observations made in comparing the
activities of in vitro synthesized and bacterially expressed
proteins (Figure 1C–F). Disruption of zinc finger 4, 5 or
6 did not appear to compromise the in vivo activity
of TFIIIA.

Analysis of versions of TFIIIAwith two disrupted zinc fingers

Because cells expressing TFIIIA with a disruption in any
one of zinc fingers 4, 5 or 6 from a low-copy plasmid were
viable, we investigated the possibility that the tertiary
structure of this central trimeric unit of fingers might be
dispensable. For example, this region of the molecule
might serve as a flexible linker to allow appropriate
positioning of the amino-terminal and carboxyl-terminal
regions of the molecule. We therefore tested the effect of
simultaneous disruptions of zinc fingers 4 and 5, 4 and 6,
and 5 and 6 on the activity of TFIIIA. For comparison,
we also monitored the activity of TFIIIA with simulta-
neous disruption of zinc fingers 3 and 5, 3 and 6, 3 and 9
and 4 and 9. When these double mutant versions of
TFIIIA were synthesized in vitro and tested for their TF
activity, all were found to be defective in the ability to
promote 5 S RNA synthesis (Figure 2A). However,
versions of TFIIIA that combined a disruption of zinc
finger 4 with a disruption of zinc finger 5, 6 or 9 supported
cell viability when expressed from the high-copy plasmid
in vivo, although they failed to do so when expressed from
the low-copy plasmid (Figure 2B, lanes 6–8). TFIIIAs that
combined a disruption of zinc finger 3, which by itself
reduced the activity of TFIIIA such that it could only
support cell viability when expressed from a high-copy
plasmid (Figure 1G), with a disruption of zinc finger 5, 6
or 9 were stable, but inactive in vivo (Figure 2B, lanes 3–5).
TFIIIA(zf5d, zf6d) was also unable to support cell viability
even when expressed at a high level (Figure 2B, lane 9).
In summary, we found that the activity of TFIIIA(zf3d)
was sufficiently compromised such that it lost all activity
on disruption of a second zinc finger. In contrast, the
structure of zinc finger 4 appears to be less important
for the overall function of TFIIIA, and zinc fingers 5 and 6
may contribute in a redundant manner to an essential
function of yeast TFIIIA.

Alanine-scanning mutagenesis of zinc finger 1 of TFIIIA

Our previous (36) and current data suggest that the first
zinc finger of yeast TFIIIA contributes not only to DNA
binding, but also serves a role in recruitment of TFIIIC to
the TFIIIA–DNA complex. To identify residues in the
first zinc finger that might contribute to an interaction
with TFIIIC, we mutated amino acids that would be
expected to be surface exposed and not directly involved in
DNA binding. The solved structures of several zinc finger

modules bound to DNA show that such surface-exposed
residues are present in the short antiparallel b-sheets
and in the b-turn connecting the b-strands (17,46–49).
We therefore carried out alanine-scanning mutagenesis of
the corresponding region of the first zinc finger of yeast
TFIIIA. Residues from Y49 to F60 were mutated with the
exception of the two zinc-liganding cysteines, C51 and
C56 (Figure 3A). A59 was mutated to valine; all other
substitutions were to alanine. For comparison, we also
mutated residues L71 and V73, which are situated between
the two zinc-coordinating histidine residues that follow
the DNA-binding a-helix.
We first tested approximately equivalent amounts of

each mutant TFIIIA that had been synthesized in vitro
(data not shown) for its ability to bind to the 5 S RNA
gene and to recruit TFIIIC. All mutant proteins bound
to DNA with a relative affinity similar to wild-type
TFIIIA with the exception of TFIIIA(Y49A) and
TFIIIA(F60A), which appeared to have a modest reduc-
tion in affinity for DNA (Figure 3B, odd numbered lanes,
open arrowhead). TFIIIA(K58A) was slightly com-
promised in its ability to recruit TFIIIC to the TFIIIA–
DNA complex (Figure 3B, lane 34) and TFIIIA(Y49A),
TFIIIA(F50A), TFIIIA(Y53A) and TFIIIA(F60A) were
severely compromised in their ability to recruit TFIIIC
(Figure 3B, lanes 6, 8, 14 and 38). As both Y49 and F60
are conserved residues of the zinc-finger motif and
contribute to overall folding, the first zinc-finger of
TFIIIA(Y49A) and TFIIIA(F60A) may be unable to
adopt a stable tertiary structure and this may lead to the
apparent defect in recruitment of TFIIIC. In the TFIIIA
homologs of Xenopus laevis, Rana catesbeiana, Homo
sapiens and other vertebrates, the two positions equivalent
to F50 and Y53 are represented by isoleucine and
phenylalanine, respectively (9,50). This conservation of
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Figure 2. Abilities of versions of TFIIIA containing disruptions of two
zinc fingers to support TF activity. (A) Abilities of mutant versions of
TFIIIA to support in vitro transcription of the 5 S RNA gene. For
simplicity, versions of TFIIIA containing histidine-to-asparagine sub-
stitutions in multiple fingers are named by the numbers of the disrupted
fingers; for example, 3/5 represents TFIIIA with disruptions in zinc
fingers 3 and 5 [TFIIIA(H126N/H181N)]. See Figure 1D for details.
(B) Abilities of versions of TFIIIA containing disruptions of two zinc
fingers to support cell viability. See Figure 1G for details.
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Figure 3. TF activity of alanine-scanning mutants of the first zinc finger of TFIIIA. (A) A linear representation of the first zinc finger of TFIIIA
from S. cerevisiae is on the left. Amino acids are represented by circles, with the position of conserved residues of the zinc finger motif shown in bold.
The zinc ion, which is tetrahedrally coordinated by two cysteine and two histidine residues, is boxed in the center of the diagram. Residues that form
the short anti-parallel b-sheet of the zinc finger domain are indicated by the zigzag lines, while residues that make up the DNA-binding a-helix are
shown by the long curved line. Zinc-coordinating residues and residues that were mutated are identified by their single-letter codes. A ribbon
representation of a 3D homology model of the first zinc finger of yeast TFIIIA (residues Y49 to A79) is in the middle. This modeled structure was
obtained with the use of the SWISS-MODEL server (63,64) and with the coordinates of the first zinc finger of TFIIIA from X. laevis as the template
(17; ExPDB entry 1tf3A; shown on the right). The side chains of F50 and Y53 of the yeast protein and the side chains of the corresponding residues,
I14 and F17, of the amphibian protein are shown. The zinc ion, shown by the small circle, is positioned in the yeast structure according to its
coordinates in the amphibian protein. (B) Abilities of versions of TFIIIA with alanine-scanning mutations to bind to the 5 S RNA gene and to recruit
TFIIIC to the TFIIIA–DNA complex as assessed by EMSA. See Figure 2E for details. The version of TFIIIA used in each reaction is indicated
below the gels; RL, reticulocyte transcription–translation reactions not programmed to synthesize TFIIIA; WT, wild-type TFIIIA. The presence (+)
or absence (–) of TFIIIC is indicated above the gel. The positions of free DNA (minus sign), TFIIIA–DNA complexes (arrowhead) and TFIIIC–
TFIIIA–DNA complexes (solid arrowhead) are shown on the left. (C) Abilities of mutant versions of TFIIIA to support in vitro transcription of the
5 S RNA gene. See Figure 1D for details. (D) Abilities of mutant versions of TFIIIA to support cell viability. See Figure 1G for details.
(E) Assessment by western blot analysis of in vivo expression of selected mutant versions of TFIIIA from the �pG3 series of plasmids. See Figure 1G
for details.
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hydrophobic residues in a region of the molecule that is
predicted to be surface exposed is consistent with the
notion that this region, and particularly F50 and Y53 of
yeast TFIIIA, participates in a protein–protein interac-
tion. In a homology model of the first zinc finger of yeast
TFIIIA, these residues are indeed surface exposed
(Figure 3A). Additionally, we found that reducing the
charge in this region, by mutation of D52 or D54 to
alanine, did not affect the ability of the TFIIIA–DNA
complex to recruit TFIIIC (Figure 3B, lanes 12 and 24).

We next tested the in vitro synthesized proteins for their
ability to support transcription of the 5 S RNA gene in the
presence of a yeast fraction containing TFIIIC, TFIIIB
and RNA polymerase III. All versions of TFIIIA were
active in this assay (Figure 3C, lanes 1–4, 6, 7 and 10–17).
Because both TFIIIA(F50A) and TFIIIA(Y53A) were
defective in recruitment of TFIIIC as assessed by EMSA
(Figure 3B, lanes 8 and 14), we next tested the activity of
versions of TFIIIA in which these residues were mutated
to glutamate, anticipating that the introduction of a
charged residue might be more disruptive to the function
of the putative hydrophobic interaction interface and thus
have a more pronounced effect on the activity of TFIIIA
than the alanine substitutions. We also examined the
activity of TFIIIA in which the F50A and Y53A
substitutions were combined. All three mutants retained
the ability to bind to the 5 S RNA gene as assessed by
EMSA (Figure 3B, lanes 9, 19 and 21). TFIIIA(F50E)
retained the ability to support in vitro transcription of the
5 S RNA gene, but TFIIIA(Y53E) was severely com-
promised and TFIIIA(F50A/Y53A) did not (Figure 3C,
lanes 5, 8 and 9).

With the use of the plasmid-shuffling protocol, we
found that TFIIIA containing the double mutation F50A/
Y53A was the only mutant from the collection of first
finger mutants that was unable to support cell viability
when expressed at either high or low levels in vivo
(Figure 3D, lane 9). As assessed by western blot analysis,
this mutant protein accumulated to approximately
the same level as did wild-type TFIIIA expressed from
the high-copy plasmid (Figure 3E, lanes 2 and 7).
TFIIIA(Y53E), which was the only form of TFIIIA
other than TFIIIA(F50A/Y53A) that was severely com-
promised for its ability to support in vitro transcription
(Figure 4C, lane 8), was able to support cell viability when
expressed from the low-copy plasmid, but not from the
high-copy plasmid (Figure 3D, lane 8). This toxic effect of
high-level expression of TFIIIA(Y53E) occurred only
when cells were challenged to grow on 5-FOA-containing
medium. This unusual observation is difficult to explain.
It is possible that TFIIIA(Y53E) is modestly unstable and
when present at high levels is inactivated by aggregation in
a process that does not affect wild-type TFIIIA present
in the same cells.

The ability of TFIIIA(Y53E) and TFIIIA(F50A/Y53A)
to bind to the 5 S RNA gene, their inability to support
in vitro transcription and the failure of TFIIIA(F50A/
Y53A) to support cell viability suggested that residues F50
and Y53 were involved in the assembly of the transcrip-
tion complex on the TFIIIA–DNA complex. For compar-
ison, we also tested the effect of combining two other

mutations, D54A and K58A, with F50A and Y53A; we
also combined K58A with the more distant mutation
L71A. These five double mutant versions of TFIIIA
(F50A/K58A; Y53A/K58A; Y53A/D54A; F50A/D54A;
K58A/L71A) retained the ability to bind to the 5 S RNA
gene (Figure 4A, odd numbered lanes; TFIIIA shift
indicated with open arrowhead). Although all proteins,
with the exception of TFIIIA(K58A/L71A), were defec-
tive in recruitment of TFIIIC (Figure 4A, even numbered
lanes; TFIIIC shift indicated by closed arrowhead and
shown at higher exposure above the main figure), all of the
double-mutant proteins were nonetheless able to direct
in vitro transcription of the 5 S RNA gene in the presence
of a yeast fraction containing TFIIIC, TFIIIB and RNA
polymerase III (Figure 4B) and were able to support cell
viability when expressed in vivo at either a high or low
level (Figure 4C). The observation that the TFIIIA
molecules containing these additional combinations of
mutations retained in vivo activity further supported the
conclusion that residues F50 and Y53 play a direct role
in the recruitment of TFIIIC to the promoter.
We also carried out alanine-scanning mutagenesis of

zinc finger 7 (data not shown). In this case, this approach
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Figure 4. Effects of alanine-scanning mutations within the first finger
on the activity of TFIIIA. (A) Abilities of versions of TFIIIA with
alanine-scanning mutations to bind to the 5 S RNA gene and to recruit
TFIIIC to the TFIIIA–DNA complex as assessed by EMSA. See
Figure 1E for details. The portion of the gel containing the TFIIIC–
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of plasmids. See Figure 1G for details.
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did not identify any individual amino acid or combination
of amino acids as being required for the essential
TF activity of this finger.

DISCUSSION

Although it is well established that TFIIIA binds to the
ICR of the 5 S RNA gene and recruits TFIIIC to the
TFIIIA–DNA complex, the roles of individual zinc fingers
in this process are less clear. Whereas specific contacts
between zinc fingers and the ICR are a prerequisite
for high-affinity, site-specific binding of TFIIIA to DNA,
lower-affinity interactions could be important contri-
butors to the overall architecture of the fully assembled
transcription complex. Similarly, protein–protein interac-
tions, in addition to being required for the recruitment of
TFIIIC to the TFIIIA–DNA complex, could also promote
conformational changes in the interacting proteins that
are essential for the activity of the transcription complex.
In this study, we have presented our initial analysis of
the roles of individual zinc fingers of yeast TFIIIA in
the assembly of an active transcription complex. We have
used broken-finger versions of TFIIIA in which the third
zinc ligand (i.e. the first of the two zinc-coordinating
histidine residues) of a finger motif is mutated to
asparagine in the context of the full-length protein (23).
This mutation is predicted to disrupt the folding of
the finger by interfering with its ability to coordinate zinc
(51–53) and this would abolish its ability to bind to DNA
(54). Examination of the products of partial proteolysis of
broken-finger versions of Xenopus TFIIIA indicates that a
finger containing such as histidine-to-asparagine mutation
is indeed unstructured (23). In some cases, however, the
fourth zinc-coordinating residue has been shown to be
dispensable for folding. The ninth zinc finger of the
recently characterized TFIIIA from Schizosaccharomyces
pombe, which contains an unprecedented 10 potential zinc
fingers, lacks the carboxyl-terminal Zn2+-coordinating
histidine residue. This module is nonetheless able to fold
and function in DNA binding and TF activity (10,55).
Based on studies with synthetic, truncated zinc -finger
polypeptides that showed that these peptides are able to
fold in the absence of a carboxyl-terminal histidine residue
(56), Schulman and Setzer (2003) speculate that a water
molecule or a dithiothreitol-provided thiolate acts as the
fourth zinc ligand in finger 9 of the S. pombe homolog of
TFIIIA.
The effects of disrupting a zinc finger could in part

reflect an influence of the mutation on the properties of
neighboring zinc fingers. Studies with Xenopus TFIIIA
suggest that disruption of any one zinc finger does not
perturb the folding or function of adjacent fingers
(22–24,28,57). However, NMR-derived structures of a
polypeptide containing the first three zinc fingers of
Xenopus TFIIIA bound to its cognate DNA site
indicate that substantial packing interactions do occur
between these zinc fingers when bound to DNA (13,17).
Thus, without more rigorous analysis of the properties
of the broken-finger versions of S. cerevisiae TFIIIA
used in this study, we cannot be certain that the

histidine-to-asparagine mutations are effectively and
uniquely disrupting the structure and function of the
mutated finger.

In this study, we compared the in vitro and in vivo
activities of mutant TFIIIAs of S. cerevisiae. Both these
assays showed that zinc fingers 1 and 7 play an essential
role in assembly of an active transcription complex.
Although our previous (36) and current analyses with
in vitro synthesized proteins suggest that the absence of
zinc finger 1 leads to a major reduction in affinity of the
protein for the ICR, we were able to show with the use
of bacterially expressed protein that TFIIIA(zf1d) does
indeed bind the 5 S RNA gene. This finding supported
the idea that the essential role of finger 1 is not its
contribution to DNA binding, but rather its recruitment
of TFIIIC (36). Indeed a comparison of bacterially
expressed TFIIIA(zf1d), TFIIIA(zf2d) and TFIIIA(zf3d)
suggested that TFIIIA(zf1d) bound DNA as efficiently as
TFIIIA(zf2d) and TFIIIA(zf3d). The latter two versions of
TFIIIA, however, but not TFIIIA(zf1d), were able to
support in vitro transcription of the 5 S RNA gene and cell
viability when expressed from a high-copy plasmid under
the control of a strong, constitutive promoter. The
observation that TFIIIA(zf2d) and TFIIIA(zf3d) were
unable to support cell viability when expressed from a
low-copy plasmid with the TFC2 gene under the control of
its own promoter suggests that the function of TFIIIA
that is compromised by disruption of finger 2 or finger 3
can be overcome by increasing the concentration of these
proteins in the cell.

Our EMSA analysis of the bacterial proteins sug-
gested that each of the first three zinc fingers
contributed to recruitment of TFIIIC, with the con-
tribution of the first finger being essential. Using an
alanine-scanning mutagenesis approach, we identified
residues within zinc finger 1 that are unlikely to
participate in DNA binding but were necessary for the
assembly of an active transcription complex. In partic-
ular, TFIIIA(F50A/Y53A) bound to the 5 S RNA gene,
but did not recruit TFIIIC and did not support in vitro
transcription nor cell viability, even when expressed at a
high level. We speculate that the hydrophobic residues
F50 and Y53 are surface-exposed, but become masked
by an interaction with TFIIIC. Charged residues in this
region of TFIIIA appeared less important for this
predicted protein–protein interaction as the mutations
D52A, D54A, D57A and K58A were without effect.
Based on the known topography of the multisubunit
TFIIIC on the 5 S RNA gene (7,8), the 138-kDa subunit
of TFIIIC is a likely candidate for an interaction with
the first zinc finger of TFIIIA. Other potential interact-
ing partners are the 91-kDa subunit which has also been
positioned at the 30-end of the gene in close proximity
to DNA around the transcription terminator, and the
60-kDa subunit, which has not been detected in
photocrosslinking studies on either the tRNA gene or
the 5 S RNA gene (8,58,59). Although a double
mutation within finger 1 was required to completely
eliminate the TF activity of TFIIIA, we note that
several other mutations that were combined with F50A
or Y53A were without effect.
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The transcriptional defect of TFIIIA(H240N), contain-
ing a disruption of zinc finger 7, is unlikely to be in its
binding affinity to 5 S DNA or in the initial recruitment of
TFIIIC; in vitro synthesized TFIIIA(zf7d) showed some
ability to bind to DNA and the first three zinc fingers
of TFIIIA suffice for recruitment of TFIIIC (34,36).
It is possible that a non-specific interaction of zinc finger 7
with DNA is essential for the appropriate positioning
of TFIIIA in the fully assembled transcription complex.
Site-specific DNA–protein photocrosslinking studies
show that the interaction of TFIIIA with DNA is more
extensive in the fully assembled transcription complex
than in the TFIIIA–DNA complex itself (7,8). Another
potential role for zinc finger 7 is in interactions with
other TFs. TFIIIC can be recruited to the 5 S RNA gene
by a TFIIIA that has mutations within the 81-amino-acid
region that separates fingers 8 and 9, but the resulting
TFIIIA–DNA complex is non-functional (37). We have
previously suggested that the 81-amino-acid region
provides a second docking site for TFIIIC and that this
is important in adjusting the topography of the complex.
Thus, it is possible that the essential function of zinc finger
7 from yeast TFIIIA is in proper presentation of the
81-amino-acid domain for its putative interaction with
TFIIIC. However, zinc finger 7 could also be playing
a more direct role in the TF activity of the protein.
For example, it could interact directly with TFIIIC.
Such an interaction would most likely be with the �A
domain of TFIIIC, which consists of the 131- the 95- and
the 55-kDa subunits. This domain is essential for
transcription activation and start-site selection by virtue
of its role in positioning TFIIIB upstream of the
transcribed region (60,61).

We found that both the in vitro and in vivo TF activity
of yeast TFIIIA was tolerant to disruption of zinc finger 4,
5 or 6. Thus, as suggested previously (34), the contacts
that are made between zinc finger 5 and guanines +73 and
+74 of the 5 S RNA gene are not essential. TFIIIA
containing disruptions of both zinc fingers 4 and 5, zinc
fingers 4 and 6 or zinc fingers 4 and 9 also supported cell
viability, albeit only when expressed at high copy. In
contrast, TFIIIA with a disruption of zinc fingers 5 and 6
as well as TFIIIAs that combined disruption of zinc finger
3 with disruption of finger 5, 6 or 9 were unable to support
cell viability even when expressed at a high level. Although
it is possible that some of these deficiencies reflect
redundant functions shared between fingers, we consider
it more likely that the inactivity of these proteins reflects a
cumulative crippling effect.

In summary, our analysis of the effect of mutations in
yeast TFIIIA on its activities in vitro and in vivo have
shown that F50 and Y53 of the first zinc finger play a role
in recruitment of TFIIIC and have revealed a requirement
for the seventh zinc finger in assembly of a functional
transcription complex. The fact that neither of these
zinc fingers has an essential role in the amphibian
TFIIIA (23,28) is consistent with the high rate of sequence
divergence of TFIIIA (32) and the observed species
specificity in the RNA polymerase III transcriptional
machinery (62).
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