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ABSTRACT
Gastric cancer is one of the most common malignancies worldwide and has been
identified as the third leading cause of cancer-related mortality. Flotillin-1 is a lipid
raft-associated scaffolding protein and plays an important role in the progression and
development of several malignant carcinomas. Flotillin-1 is involved in epithelial-
mesenchymal transition (EMT) process of several solid tumors to promote metastasis.
However, the detailed characteristics and mechanisms of Flotillin-1 in gastric cancer
have rarely been investigated. In this study, we found Flotillin-1 upregulated in gastric
cancer, and the high expression of Flotillin-1 correlated with a worse prognosis. The
migration and invasion ability of gastric cancer cells was upregulated by overexpressing
Flotillin-1. Knockdown of Flotillin-1 inhibits gastric cancer cells metastasis. Flotillin-
1 is a key regulator of EMT process and promotes gastric cancer cells metastasis
through inducing EMT. Flotillin-1 may interact with a deubiquitinase to inhibit the
ubiquitination of Snail in gastric cancer cells to promote EMT process. Our study
provides a rationale and potential target for the treatment of gastric cancer.

Subjects Biochemistry, Cell Biology, Molecular Biology
Keywords Flotillin-1, Metastasis, EMT, Gastric cancer, Snail

INTRODUCTION
Gastric cancer is one of the most common malignancies worldwide and has been identified
as the third leading cause of cancer-related mortality, with 1,089,103 newly diagnosed
cases and 768,793 deaths in 2020 (Sung et al., 2021). Early detection and curative resection
resulted in improved outcomes for patients with early gastric cancer, but the prognosis for
the advanced patients remains poor, the five-year survival rate is less than 40% (Allemani
et al., 2018). The main cause of death in advanced gastric cancer patients is metastasis. In
the past two decades, the proportion of patients with metastatic gastric cancer has risen to
more than 40% (Bernards et al., 2013; Thomassen et al., 2014; Riihimaki et al., 2016). Thus,
it is necessary to study the molecular mechanism of gastric cancer metastasis to elucidate
its pathogenesis.

Epithelial-mesenchymal transition (EMT) is an evolutionarily conserved developmental
program that is associated with cancer development and confers metastasis properties
to cancer cells by enhancing their mobility and invasiveness (Mittal, 2018). Cancer cells
in primary tumors lose intercellular adhesion mediated by E-cadherin inhibition, break
through the basement membrane with increased invasive properties, enter the bloodstream
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through intravasation, and exit the bloodstream to form micro-metastases (Lindsey &
Langhans, 2014; Lambert, Pattabiraman &Weinberg, 2017). EMT is a cellular process
in which epithelial cells lose their epithelial phenotypes and acquire mesenchymal-like
characteristics. The initiation of metastasis requires invasion, which is achieved through
EMT (Singh et al., 2018). Several signaling pathways have been implicated to be involved in
EMT, including TGF-β, Wnt/beta-catenin and Notch, mediating the loss of the epithelial
marker E-cadherin and the gain of the expression of the mesenchymal marker N-cadherin
and Vimentin (Gonzalez & Medici, 2014; Zhang, Tian & Xing, 2016; Brabletz et al., 2018).

Flotillin-1 is a lipid raft-associated scaffolding protein and it is implicated in a variety
of cellular processes including axonal regeneration, cellular adhesion, endocytosis,
phagocytosis and signal transduction (Langhorst, Reuter & Stuermer, 2005). In addition,
Flotillin-1 plays an important role in the progression and development of several malignant
carcinomas (Gauthier-Rouviere et al., 2020). Upregulation of Flotillin-1 predicts poor
prognosis and promotes malignant progression, proliferation and metastasis of multiple
tumors, including non-small cell lung, breast cancer, renal cell carcinoma, neuroblastoma,
bladder cancer, prostate cancer and hepatocellular carcinoma (Li et al., 2014a; Lin et al.,
2011; Zhang et al., 2014; Tomiyama et al., 2014; Guan et al., 2014; Jang et al., 2019; Zhang
et al., 2013). In particular, studies shown that Flotillin-1 is involved in EMT process of
several solid tumors to promote metastasis. In cervical cancer, Flotillin-1 facilitates cell
metastasis throughWnt/beta-catenin and NF- κB pathway-regulated EMT (Li et al., 2016).
Flotillin-1 promotes cell invasion and migration by inducing EMT and modulating the cell
cycle in lung adenocarcinoma (Zhao et al., 2018). However, the detailed characteristics and
mechanisms of Flotillin-1 in gastric cancer have rarely been investigated.

In this study, we determined the role of Flotillin-1 in the metastasis process of gastric
cancer and molecular mechanisms of Flotillin-1 in the regulation of EMT.

MATERIALS AND METHODS
Cell culture
The human gastric cancer cell line SGC-7901 was obtained from GeneChem (Shanghai,
China), AGS was acquired from the Shanghai Institute for Biological Science. Both of the
cell lines were cultured in RPMI/1640medium (Gibco,Waltham,MA, USA) supplemented
with 10% fetal bovine serum (FBS; Gibco, Waltham, MA, USA) and incubated at 37 ◦C
with 5% CO2. HEK293T cell were purchased from American Type Culture Collection
(ATCC) and grown in DMEM medium (Gibco, Waltham, MA, USA) plus with 10% FBS.

Plasmids and antibodies
Flotillin-1 and Snail were inserted into the pLVX vector. The Flotillin-1 shRNA sequences
were cloned into the pSIH vector. The sequences of shRNAs are shown in Table S1.

Antibodies used in this study: anti-Flotillin-1 (#18634; Cell Signaling Technology,
Danvers, MA, USA), anti-Snail (#3879; Cell Signaling Technology, Danvers, MA, USA),
anti-E-cadherin (#3195; Cell Signaling Technology, Danvers, MA, USA), anti-N-cadherin
(#13116; Cell Signaling Technology, Danvers, MA, USA), anti-Vimentin (#5741; Cell
Signaling Technology, Danvers, MA, USA), anti-β-actin (A5441; Sigma-Aldrich, USA),
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anti-Flag (#14793; Cell Signaling Technology, Danvers, MA, USA), anti-HA (sc-53516;
Santa Cruz Biotechnology, Dallas, TX, USA), Goat anti-Rabbit IgG (AS014; ABclonal,
Hubei, China), Goat anti-mouse IgG (AS003; ABclonal, Hubei, China).

Generation of stable transfected cells
The stable transfected cells including Flotillin-1-overexpressing and -knockdown were
generated by lentivirus. The lentivirus was generated using packaging vectors PSPAX2,
pMD2G and Flotillin-1-overexpressing plasmid or Flotillin-1-shRNA plasmid. SGC-7901
and AGS cells were infected with indicated lentivirus and performed the stable transfected
cell screening using puromycin. The third generation of stable transfected cells were used
for subsequent experiments.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted from cells using TRIzol reagent and cDNA was prepared from
total RNA using the Quantscript RT Kit following manufacturer’s instruction. qRT-PCR
assay was performed using SYBR Green Mix following the manufacturer’s instruction. The
primers used in qRT-PCR were shown in Table S2.

Immunoblotting assay
Cells were lysed by RIPA lysis buffer plus a cocktail of protease inhibitor. The protein
concentration was detected using Bicinchoninic acid (BCA) assay. Total proteins (10
µg for each well) were separated by SDS-PAGE gel and transferred to Polyvinylidene
difluoride (PVDF) membranes. The membrane was blocked with 5% fat-free milk for 1 h
and incubated with primary antibodies overnight. Next day, the membrane was incubated
with conjugated secondary antibody. The protein signal was visualized using ECL detection
reagents.

Migration and invasion assay
Cell migration and invasion assay were performed using 24-well Transwell plate with or
without coated Matrigel. Cells (5 × 104 for each well) were plated into Boyden chambers
with serum-free media. Media containing 10% FBS were added into the bottom chambers,
and the cells were cultured for 24 h at 37 ◦C with 5% CO2. Finally, the cells were fixed by
methanol and stained with crystal violet.

Wound healing assay
Cells (2 × 105 for each well) were plated into 6-well plates and scratched using a sterile
pipette tip. The cells were washed with phosphate-buffered saline (PBS) and incubated in
media containing 2% FBS. Images were obtained at 0, 24, 48, 72 h.

Immunoprecipitation assay
Cells were treated with 20 µg/ml MG132 for 6 h and lysed with RIPA lysis buffer plus a
cocktail of protease inhibitor. For Flag-tagged proteins, cell lysates were incubated with
anti-Flag M2 magnetic beads overnight. Finally, the immunoprecipitates were subjected to
immunoblotting.
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Ubiquitination assay
For ubiquitination assay, the cells were treated with MG132 for 6 h and lysed using RIPA
lysis buffer plus a cocktail of protease inhibitor. The cell lysates were incubated with
anti-Flag M2 magnetic beads overnight. The ubiquitin level of Flag-Snail was detected with
anti-HA antibody.

Protein degradation analysis
For Snail protein degradation analysis, cells were treated with cycloheximide (CHX, 50
µg/ml) for 1, 2 h. The protein level of Snail was detected using immunoblotting assay.

Statistical analysis
Survival analysis was analyzed using a two-sided log-rank test, others were analyzed using
unpaired t -test. Except for special instructions, all results were shown as mean ± SEM
of three independent experiments. All statistical analyses were performed with Graphpad
Prism. A p< 0.05 was considered significant.

RESULTS
Increased Flotillin-1 predicts a poor prognosis of gastric cancer
patients
To identify the effect of Flotillin-1 expression level on the clinical prognosis of gastric cancer,
we analyzed the data from The Cancer Genome Atlas (TCGA). A Flotillin-1 amplification
occurs in several solid tumors including gastric cancer (Fig. 1A). Compared to normal
tissues, the expression level of Flotillin-1 was significantly higher in gastric cancer samples
(Fig. 1B). Gastric cancer patients with high Flotillin-1 expression level correlated with a
worse survival overall survival, advanced TNM stage and distant metastasis (Figs. 1C–1E).
Together, those results shown that Flotillin-1 can participate in the development of gastric
cancer.

Overexpression of Flotillin-1 promotes gastric cancer metastasis
To identify the function of Flotillin-1 in gastric cancer, we overexpressed Flotillin-1 in two
gastric cancer cell lines SGC-7901 and AGS. The overexpression efficiency was confirmed
by qRT-PCR and immunoblotting (Figs. 2A–2D). To examine the role of Flotillin-1 in
gastric cancer metastasis, we performed Transwell and wound healing assays to detect the
abilities of migration and invasion. Overexpression of Flotillin-1 not only promoted the
migration and invasion of SGC-7901 cells, but also increased the wound healing ability of
gastric cancer cells (Figs. 2E–2F). In addition, we obtained the same results in AGS cells
(Figs. 2G–2H). Taken together, the results show that overexpression of Flotillin-1 promotes
gastric cancer cell migration and invasion and suggested that Flotillin-1 might have a role
in cancer metastasis.

Knockdown of Flotillin-1 inhibits gastric cancer metastasis
To further study the role of Flotillin-1 in gastric cancer metastasis, we knocked down
Flotillin-1 in SGC-7901 and AGS cells using shRNA. The knockdown efficiency was
confirmed by qRT-PCR and immunoblotting (Figs. 3A–3D). We performed Transwell
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Figure 1 Increased Flotillin-1 predicts a poor prognosis of gastric cancer patients. (A) A histogram
shows the amplification frequency of Flotillin in 23 tumor types. The data were taken from TCGA Pan-
Cancer Altas studies. (B) The expression of Flotillin-1 in gastric cancer tissues and normal samples. T rep-
resents tumor tissues (n= 408), N represents normal tissues (n= 36). (C) Kaplan-Meier plot showing the
overall survival of 875 gastric cancer patients stratified by Flotillin-1 expression level. (D–E) Comparison
between the proportion of gastric cancer patients with different Flotillin-1 expression level in T stage (D)
and distant metastasis (E). *p< 0.05, **p< 0.01, p value was calculated with t test, except survival analysis
was analyzed using a two-sided log-rank test.

Full-size DOI: 10.7717/peerj.13901/fig-1

and wound healing assays to detect the cell migration and invasion abilities of Flotillin-
1-knockdown and control gastric cancer cells. As expected, knockdown of Flotillin-1
inhibited the migration, invasion and wound healing abilities of SGC-7901 and AGS cells
(Figs. 3E–3H). Thus, the results show that knockdown of Flotillin-1 inhibits gastric cancer
cell migration and invasion and suggested that Flotillin-1 might have a role in cancer
metastasis.

Flotillin-1 promotes gastric cancer metastasis through inducing EMT
The initiation of metastasis requires invasion, which is achieved through EMT. To identify
whether Flotillin-1 promotes gastric cancer metastasis through EMT process. We detected
the expression of several EMT markers including epithelial marker E-cadherin and
mesenchymal markers N-cadherin, Vimentin and Snail. Overexpression of Flotillin-1
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Figure 2 Overexpression of Flotillin-1 promotes gastric cancer metastasis. (A–B) The mRNA (A) and
protein (B) levels of Flotillin-1 in SGC-7901 cells overexpressing Flotillin-1. (C–D) The mRNA (C) and
protein (D) levels of Flotillin-1 in AGS cells overexpressing Flotillin-1. (E) The migration and invasion
abilities of SGC-7901 cells overexpressing Flotillin-1 were detected by Transwell assay. Scale bars, 500 µm.
(F) The migration ability of SGC-7901 cells overexpressing Flotillin-1 was examined by wound healing as-
say. Scale bars, 500 µm. (G) The migration and invasion abilities of AGS cells overexpressing Flotillin-1
were detected by Transwell assay. Scale bars, 500 µm. (H) The migration ability of SGC-7901 cells overex-
pressing Flotillin-1 was examined by wound healing assay. Scale bars, 500 µm. **p< 0.01, ***p< 0.001,
****p< 0.0001, p value was calculated with t test, compared to control group. All results were shown as
mean± SEM of three independent experiments.

Full-size DOI: 10.7717/peerj.13901/fig-2
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Figure 3 Knockdown of Flotillin-1 inhibits gastric cancer metastasis. (A–B) The mRNA (A) and
protein (B) levels of Flotillin-1 in Flotillin-1-knockdown (using shRNA targeting Flotillin-1 including
shFlotillin-1-1 and shFlotillin-1-2) SGC-7901 cells. (C–D) The mRNA (left) and protein (right) levels
of Flotillin-1 in Flotillin-1-knockdown AGS cells. (E) The migration and invasion abilities of Flotillin-
1-knockdown SGC-7901 cells were detected by Transwell assay. Scale bars, 500 µm. (F) The migration
ability of Flotillin-1-knockdown SGC-7901 cells was examined by wound healing assay. Scale bars, 500
µm. (G) The migration and invasion abilities of Flotillin-1-knockdown AGS cells were detected by
Transwell assay. Scale bars, 500 µm. (H) The migration ability of Flotillin-1-knockdown AGS cells was
examined by wound healing assay. Scale bars, 500 µm. **p< 0.01, ***p< 0.001, ****p< 0.0001, p value
was calculated with t test, compared to control group. All results were shown as mean± SEM of three
independent experiments.

Full-size DOI: 10.7717/peerj.13901/fig-3
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Figure 4 Flotillin-1 promotes gastric cancer metastasis through inducing EMT. (A–B) The protein ex-
pression levels of E-cadherin, N-cadherin, Vimentin and Snail in Flotillin-1 overexpressing SGC-7901 (A)
and AGS (B) cells. (C–D) The mRNA levels of E-cadherin, N-cadherin, Vimentin and Snail in Flotillin-
1 overexpressing SGC-7901 (C) and AGS (D) cells. (E–F) The protein expression levels of E-cadherin,
N-cadherin, Vimentin and Snail in Flotillin-1-knockdown SGC-7901 (E) and AGS (F) cells. (G–H) The
mRNA levels of E-cadherin, N-cadherin, Vimentin and Snail in Flotillin-1-knockdown SGC-7901 (G)
and AGS (H) cells. *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001, p value was calculated with t test,
compared to control group. All results were shown as mean± SEM of three independent experiments.

Full-size DOI: 10.7717/peerj.13901/fig-4

downregulated the protein and mRNA levels of E-cadherin, and upregulated the N-
cadherin, Vimentin and Snail levels (Figs. 4A–4D). In contrast, knockdown of Flotillin-1
increased the expression of E-cadherin and inhibited the expression of N-cadherin,
Vimentin and Snail (Figs. 4E–4H). Moreover, we found that Flotillin-1 regulated the
protein level of Snail, but has no effect on the mRNA level. Taken together, those results
determined that Flotillin-1 promotes the EMT process in gastric cancer cells.
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Figure 5 Flotillin-1 promotes EMT of gastric cancer via stabilizing Snail. (A) Snail and Flag-Flotillin-
1 were co-transfected into HEK293T cells. The cells were treated with MG132 for six hours and subjected
into immunoprecipitation assay with anti-Flag antibody to pulldown Flag-Flotillin-1 immunoprecipitates.
(B) HA-ubiquitin, Flag-Snail and Flotillin-1 were co-transfected into HEK293T cells. After MG132 treat-
ment, the cells were subjected into ubiquitination assay with anti-Flag antibody. The ubiquitination level
of Snail was detected using anti-HA antibody. (C) Flotillin-1-knockdown and control SGC-7901 cells were
treated with CHX as indicated. The degradation of Snail was detected by immunoblotting. (D) Flotillin-1-
knockdown and control AGS cells were treated with CHX as indicated. The degradation of Snail was de-
tected by immunoblotting. *p< 0.05, p value was calculated with t test, compared to control group at 2 h
point.

Full-size DOI: 10.7717/peerj.13901/fig-5

Flotillin-1 promotes EMT of gastric cancer via stabilizing Snail
Snail, as an EMT-transcription factor, has been confirmed to play an integral role
throughout EMT of all types. In addition, Snail is a labile protein and degraded by
ubiquitin-proteasome system, and Flotillin-1 regulates the protein expression of Snail but
no effect on mRNA level. Thus, we speculated that Flotillin-1 promoted the EMT process
through increasing the protein stability of Snail. To identify the hypothesis, we performed
immunoprecipitation and ubiquitination assays. As expected, Flotillin-1 interacted with
Snail (Fig. 5A) and decreased the ubiquitination level of Snail (Fig. 5B). In addition,
Flotillin-1 inhibited the degradation of Snail in gastric cancer cells (Figs. 5C–5D). Taken
together, the results shown that Flotillin-1 decreased the ubiquitination level of Snail and
inhibited its degradation.
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DISCUSSION
Flotillin-1, a lipid raft protein, is involved in cell migration and invasion, cell signaling,
proliferation, differentiation and endocytosis (Langhorst, Reuter & Stuermer, 2005;
Affentranger et al., 2011; Guillaume et al., 2013; Otto & Nichols, 2011). More studies have
shown that Flotillin-1 plays an important role in the development of malignant tumors
and may act as a prognosis factor in solid carcinomas (Li et al., 2014b; Liu et al., 2018).
The upregulated expression of Flotillin-1 was associated with tumor cell progression and
poor prognosis in hepatocellular carcinoma (Zhang et al., 2013). Knockdown of Flotillin-1
impairs cell proliferation and tumorigenicity in breast cancer through upregulation
of FOXO3a (Lin et al., 2011). MiR-214-3p inhibited cell proliferation and metastasis
in hepatocellular carcinoma by downregulating Flotillin-1 (Liu et al., 2019). In tongue
squamous cell cancer, the expression of Flotillin-1 was correlated with pathological stage,
depth of invasiveness, lymph node metastasis, recurrence and shorter survival (Li et al.,
2014b). In this study, we found Flotillin-1 upregulated in gastric cancer, and the high
expression of Flotillin-1 correlated with a worse prognosis. In addition, the migration
and invasion ability of gastric cancer cells was upregulated by overexpressing Flotillin-1.
Knockdown of Flotillin-1 inhibited the cell metastasis in gastric cancer. Therefore, our
results demonstrate Flotillin-1 participates in the development of gastric cancer, especially
in promoting metastasis.

EMT is a process by which epithelial cells lose their apical-basal polarity and intercellular
adhesion properties and transform into invasive mesenchymal cells, all of which provide
conditions for the invasion and metastasis of cancer cells (Taylor, Parvani & Schiemann,
2010; Pearlman et al., 2017; Brabletz et al., 2021; Blackley et al., 2021). There are numerous
inducers of EMT, and the determinant inducers corresponding to different sites of tumors
will be the key to the targeted therapy. In this study, we identified that overexpression
of Flotillin-1 decreased the epithelial marker E-cadherin and upregulated mesenchymal
markers such as N-cadherin, Vimentin and Snail in gastric cancer cells. E-cadherin was
upregulated, andN-cadherin, Vimentin and Snail were decreased in Flotillin-1-knockdown
gastric cancer cells. Therefore, our study demonstrates that Flotillin-1 can participate in
EMT process and promotes gastric cancer metastasis through inducing EMT.

Snail is a zinc-finger transcription factor that regulates EMT during mesoderm and
neural crest development (Wu & Zhou, 2010). In breast cancer, Snail expression has
been shown to be upregulated in recurrent tumors (Wang et al., 2013). In addition, it is
associated with reduced metastasis and recurrence-free survival. Similar to zinc finger
E-box-binding homeobox 1 (ZEB1), Snail represses cadherin 1 (CDH1) transcription by
binding to the E-box in the CDH1 promoter (Serrano-Gomez, Maziveyi & Alahari, 2016).
It also regulates CDH1 expression in concert with histone methyltransferases (HMT) and
DNA methyltransferases (DNMTs) (Skrypek et al., 2017). Snail interacts directly with the
E-cadherin promoter, recruiting histone deacetylase 1 (HDAC1), HDAC2 and co-repressor
Sin3A to the CDH1 promoter and silencing their expression through deacetylation of
histones H3 and H4 (Peinado et al., 2004). Snail comprehensively affects the expression
profile of epithelial cells, besides E-cadherin, it also downregulates claudin, occludin,mucin,
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vimentin, fibronectin and matrix metalloproteinases (Ohkubo & Ozawa, 2004). Thus, the
role of Snail is mainly to downregulate epithelial markers and upregulate mesenchymal
markers, and the increased expression of matrix metalloproteinases it regulates makes the
cells migratory. In addition, Snail is a labile protein and degraded by ubiquitin-proteasome
system. In our study, we demonstrate the interaction between Flotillin-1 and Snail. The
protein expression of Snail is upregulated by overexpressing Flotillin-1, and overexpression
of Flotillin-1 delays the degradation of Snail in gastric cancer cells. The ubiquitination
level of Snail is downregulated in gastric cancer cells overexpressing Flotillin-1. Therefore,
Flotillin-1 may interact with a deubiquitinase to inhibit the ubiquitination of Snail in
gastric cancer to promote EMT process. This is a direction of our further study.

In summary, our study demonstrate Flotillin-1 can participate in the development of
gastric cancer, and promotes gastric cancer metastasis. Increased Flotillin-1 predicts a
poor prognosis of gastric cancer patients. Flotillin-1 promotes gastric cancer metastasis
through inducing EMT, and promotes EMT of gastric cancer via stabilizing Snail. Our
study provides a rationale and potential target for the treatment of gastric cancer.
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