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Abstract 

Cocaine use disorder (CUD) disrupts functional connectivity within key brain networks, 

specifically the default mode network (DMN), salience network (SN), and central executive 

network (CEN). While the triple network model has been proposed to explain various 

psychiatric disorders, its applicability to CUD requires further exploration. In the present 

study, we built machine learning classifiers based on different combinations of 

DMN/SN/CEN to distinguish cocaine-use disorder (CUD) subjects from healthy control (HC) 

subjects. Among them, the combination of the SN and the CEN results in a remarkably high 

accuracy of 73.4% (sensitivity/specificity: 69.6%/78.6%, AUC: 0.78), outperforming the 

model based on the full triple network. This supports the hypothesis that during the 

binge/intoxication stage of addiction, the SN and the CEN play a more critical role than the 

DMN, consistent with the Addictions Neuroclinical Assessment (ANA) framework. 

Functional connectivity analysis revealed decreased connectivity within the DMN and the SN 

and increased connectivity within the CEN in CUD patients, suggesting that alterations in 

these networks could serve as biomarkers for addiction severity. 

Keywords: cocaine use disorder; triple network model; intrinsic brain network; machine 

learning 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


1. Introduction 

Cocaine could be used for medical purposes, such as local anesthesia and decreasing 

bleeding in surgeries. But it is always illegally used as a recreational drug to make people 

addicted. Patients with cocaine addiction have a high risk of suffering heart attacks, 

liver/kidney/lung problems, severe depression, etc. The cocaine addiction is related to the 

increase of the dopamine transferred in the reward system of the brain (Di Chiara & 

Bassareo, 2007). It is important to understand the neuromechanism of cocaine addiction to 

help people get off cocaine. 

The brain is known to be affected by cocaine for years. The gray matter 

concentration/volume is decreased in the insula (Franklin et al., 2002) and the thalamus (Sim 

et al., 2007) in patients with cocaine addiction. Cocaine also impairs the white matter 

integrity of the anterior corpus callosum (Moeller et al., 2005). Recently, more studies have 

focused on resting-state functional connectivity (FC) in cocaine-use disorder (CUD) since the 

FC study can explore the interactions between the brain regions or brain networks, resulting 

in a system-level understanding of the brain (Bressler & Menon, 2010; Van Den Heuvel & 

Hulshoff Pol, 2010). The results of the early FC study that reduced FC in the primary visual 

cortex and motor cortex after cocaine administration reflected the changes in neuronal 

activity (Li et al., 2000). The following whole-brain FC analysis revealed a general decrease 

in FC between most regions within the mesocorticolimbic (MCL) circuit (including the 

amygdala, the hippocampus, the ventral anterior cingulate cortex, etc.) and interconnected 

brain areas, which further provided support for the importance of salience network (SN) in 

cocaine dependence (Gu et al., 2010). The reduced FC between the inferior frontal sulcus and 
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the lateral prefrontal cortex and parietal areas in cocaine addiction shows that the central 

executive network (CEN) is involved in cocaine dependence (Kelly et al., 2011). The 

decreases in the FC between the default-mode network (DMN) and the hippocampus exhibit 

the importance of the DMN in cocaine (Ding & Lee, 2013). 

The DMN, the SN, and the CEN have been proven to be related to many psychiatry and 

neurological disorders (Banich et al., 2009; Öngür et al., 2010; Stein et al., 2007), which was 

summarized as a unifying triple network in psychopathology (Menon, 2011). In 2012, 

Matthew et al. imported the concept of the triple network to the addiction domain, with 

nicotine abstinence as an example (Sutherland et al., 2012). The later study of the same group 

developed an index integrating the SN-CEN and SN-DMN correlations and proposed the 

possibility of this index as a biomarker for smoking cessation (Lerman et al., 2014). Liang et 

al. revealed the disruption of network-level interactions involving the DMN/SN/CEN in 

cocaine addiction (Liang et al., 2015). McHugh et al. proved the interhemispheric 

connectivity between the ECN and SN related to cocaine addiction (McHugh et al., 2017). 

Geng et al. identified the alternation of functional circuits in the SN and the DMN of 

addiction to cocaine, emphasizing the importance of these networks in the treatment of 

cocaine dependence (Geng et al., 2017). 

Instead of the triple network framework, the Addictions Neuroclinical Assessment 

(ANA), a neuroscience-based framework, was proposed for addictive disorders (Kwako et 

al., 2016). The ANA framework focuses more on three domains—executive function, 

incentive salience, and negative emotionality—which are crucial in understanding the 

different stages of addiction (Koob & Volkow, 2016). The ANA framework also identifies 
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three stages of addiction: binge/intoxication, withdrawal/negative effect, and 

preoccupation/anticipation/craving. Together, these domains and stages form the core 

functional elements of addictive disorders, providing a comprehensive approach to their 

research and treatment.  

In this study, we will investigate which framework (the triple network or the ANA 

framework) is more consistent with the neuromechanism of cocaine addiction to help people 

get off cocaine. We hypothesize that the ANA framework is a better explanation than the 

triple network during the binge/intoxication stage of cocaine dependence, which means the 

SN and the CEN play more important roles than the DMN in the binge/intoxication stage of 

cocaine dependence. To test it, we built machine learning (ML) frameworks based on the 

triple network to classify the patients with cocaine use disorder (CUD) from the normal 

controls based on the triple networks  

 

 

2. Materials and methods 

2.1. Participants  

The public-accessible dataset, the SUDMEX_CONN dataset (Angeles-Valdez et al., 

2022), was used in this study. This dataset included 74 cocaine-use disorder (CUD) patients 

(age: 31.0±7.20, Male (M)/Female (F): 65/9) and 64 health control (HC) subjects (age: 30.6 ± 

8.26, M/F: 53/11). The magnetic resonance imaging (MRI) data of this dataset includes T1-

weighted imaging data, diffusion-weighted (DWI) data, and resting-state functional MRI (rs-
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fMRI) data. The details can be found in the paper describing this dataset (Angeles-Valdez et 

al., 2022). 

Among them, 35 HC subjects (age: 30.14 ± 7.73, M/F: 27/8) and 48 CUD subjects (age: 

32.35 ± 7.38, M/F: 45/3)  were chosen in the study by the following criteria: (1) with both rs-

fMRI data and T1-weighted imaging data, (2) do not have other substance use dependence, 

(3) passing image quality control, (4) with small head motion during the rs-fMRI scan, (5) 

making the two groups age-sex-matched. The CUD patients and HC subjects are matched in 

terms of age (two-sample T-test, p=0.190) and sex (chi-square test, p=0.061). 

2.2.Data preprocessing 

The DPARSF (Data Processing Assistant for Resting-State fMRI, 

http://www.rfmri.org/DPARSF) toolbox (Yan, 2010) was applied to preprocess the resting-

state fMRI data. Considering the magnetization equilibration, the first 10 time points of each 

time series were removed. The remaining fMRI volumes were corrected by slices, and head 

realignment was conducted. In order to reduce the effect of head motion, the fMRI data with 

big head motion were excluded, i.e., translational or rotational motion parameters were over 3 

mm or 3°. The nuisance covariate effects of the white matter and cerebrospinal fluid, as well 

as the Friston 24 head-motion parameters, were removed. Subsequently, temporal band-pass 

filtering (0.01<f<0.1 Hz) was performed, and the fMRI data were normalized to the Montreal 

Neurological Institute (MNI) space via the segmented results of T1-weighted images. The 

normalized fMRI data were then resampled to 3 mm × 3 mm × 3 mm voxels. The Gaussian 

kernel with a full width at half-maximum (FWHM) of 4 mm was used to smooth the data. 
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2.3. Identification of the DMN/SN/CEN  

The group information-guided independent component analysis (GIG-ICA) was applied 

to compute the specific independent component (IC) of each subject with correspondence 

across all subjects (Du and Fan 2013). Firstly, the tool Melodic (default setting) in FSL was 

used to compute the group template with 25 ICs based on the preprocessed resting-state fMRI 

data. Then, the group template was used as a reference to calculate subject-specific ICs (also 

referred to as intrinsic brain networks, IBNs) and corresponding time series with a multi-

objective optimization solver. Then, Yeo’s Atlas (Thomas Yeo et al., 2011) was applied to 

identify the belong of the DMN, the SN, and the CEN for each IBN. 

2.4. Machine learning models to classify CUD patients from HC subjects based on the 

DMN/SN/CEN 

The IBNs of these three resting-state networks were used as bases for a linear subspace 

and were analyzed on the Grassmann manifold (Harris, 1992) to calculate Riemannian 

distance. Then, the Riemannian distance was used in conjunction with a support vector 

machine (SVM) to build the classifier (Fan et al., 2010, 2011). A 10-fold cross-validation 

(CV) was used to evaluate the performance of each of the classifiers. Specifically, all subjects 

were randomly divided into 10 subsets with almost equal size. These 10 subsets were used in 

10 training-testing runs. In each run, one of the 10 subsets was used as the testing set, and the 

other nine subsets were used as the training set. The training-testing runs were repeated until 

all 10 subsets had been used as the testing set. Then, the accuracy of the classification, the 

sensitivity, and the specificity were calculated based on the 10 training-testing runs. A 

receiver operating characteristic (ROC) curve and the area under the curve (AUC) were also 
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computed based on the classification scores of all subjects. In order to avoid statistical bias, 

the 10-fold CV was repeated 10 times. 

Seven classifiers were trained to differentiate cocaine use disorder (CUD) patients from 

healthy control (HC) subjects using IBN features. These classifiers were based on: 

1. IBN features from a single network: the DMN, the SN, or the CEN. 

2. IBN features from combinations of two networks: DMN-SN, DMN-CEN, and SN-CEN. 

3. IBN features from all three networks combined: DMN, SN, and CEN. 

2.5.Statistical analysis 

The voxel-wise functional connectivity (FC) map of each IBN in the DMN/SN/CEN was 

obtained by computing the Pearson correlation coefficient between the time course of the 

IBN and that of each voxel in the gray matter and the following z-score transformation. The 

two-sample t-test was conducted to compare the functional connectivity (FC) of each IBN 

between the HC subjects and the CUD patients (voxel p<0.01, cluster p<0.05, two-tailed 

Gaussian Random Field (GRF) corrected), with age, sex, education level, head motion values 

and tobacco usage values as covariates. The group comparison of the FC between each pair 

of IBNs in the Triple Network was also conducted by a two-sample t-test (p < 0.05). In 

addition, the relationship between classification scores and the clinical measures was 

measured by Pearson’s correlation analysis within the subjects with CUD. The altered FC 

within the IBNS or between the IBNs was also correlated with clinical measures in the CUD 

subjects group. The significant threshold was set at 0.05. 
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3. Results 

3.1. DMN/SN/CEN Identification 

With the GIG-ICA method, the brain was divided into 25 IBNs (Figure 1). The DMN, the 

SN, and the CEN were identified based on Yeo’s atlas (Thomas Yeo et al., 2011). Among 25 

IBNs, IBN 1, IBN 8, and IBN 12 belonged to the DMN. The salience network included IBN 

14, IBN 18, and IBN 21. IBN 17 and IBN 23 both belonged to the CEN. 

3.2. Performance of ML models 

The SVM classification models were built on IBNs from the single network, the two-network 

combination, and the triple-network combination to classify CUD subjects and HC subjects. 

For the classifiers trained with IBNs from single networks, the one trained with the SN has 

the best performance compared with the ones trained with the other two networks, with an 

accuracy of 69.3%±3.4%, sensitivity of 68.3%±4.6%, specificity of 70.6%±3.3%, and AUC 

of 0.733±0.018. The classifier trained solely on the DMN performed the worst among all 

classifiers. The classifier trained with IBNs from the combination of SN and CEN got the 

most distinguished performance among all the combinations of the Triple Network, even 

outperforming the combination of all three networks, obtaining an accuracy of 73.4%±2.6%, 

the sensitivity of 69.6%±2.2%, and the specificity of 78.6%±4.3%. The area under the 

receiver operating characteristic (ROC) curve (AUC) was 0.78±0.02 (Table 1 and Figure 2). 

The performance of the classifier trained on the SN-CEN is even better than that of the 

classifier trained on the triple networks. These results are consistent with the assumption that 
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during the binge/intoxication stage of addiction, DMN may not be as important as the other 

two networks, which is consistent with the ANA circuit. 

 

 

Figure 1 Twenty-five spatial maps of intrinsic brain networks obtained by GIG-ICA. Spatial maps were 

shown by a one-sample t-test of independent components (z-score maps) of all subjects. IBN: intrinsic 

brain networks, CEN: central executive network, DMN: default mode network, SN: salience network. 
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Table 1 The performance of classifiers trained with different combinations of the triple network. 

 Accuracy Sensitivity Specificity AUC 

DMN 0.610±0.033 0.598±0.030 0.626±0.053 0.673±0.016 

CEN 0.628±0.031 0.621±0.031 0.637±0.041 0.666±0.026 

SN 0.693±0.034 0.683±0.046 0.706±0.033 0.733±0.018 

DMN & CEN 0.660±0.036 0.638±0.043 0.689±0.051 0.731±0.024 

DMN & SN 0.686±0.022 0.633±0.036 0.757±0.028 0.738±0.019 

CEN & SN 0.734±0.026 0.696±0.022 0.786±0.043 0.779±0.017 

Triple network 0.723±0.028 0.694±0.030 0.763±0.033 0.768±0.022 

 

Figure 2  (a) Receiver Operating Characteristic (ROC) Curves of machine learning models based on 

different combinations of the Triple Network. The ROC curves are averaged over the 10-times 10-fold 

cross-validation separately (b) Bar plot showing machine learning performance of different classifiers 

trained on each combination of DMN, SN, and CEN 

3.3.Abnormal FC between CUD and HC subjects 

The whole brain voxel-wise FC measures of the DMN/SN/CEN were compared between 

CUD patients and HC subjects, and the results are shown in Figure 3  and Table S1. After 

Gaussian Random Field correction, increased FC (red region in Figure 3 ) was found within 

the CEN in the right superior frontal gyrus. while decreased FC (blue regions in Figure 3 ) 

was found within the DMN and the SN in the CUD subjects, including the right middle 
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temporal gyrus, the left calcarine fissure, the left middle temporal gyrus, the right superior 

medial frontal gyrus, the left superior temporal pole, the right precuneus, the right 

supramarginal gyrus, the right superior temporal pole, the left inferior parietal lobule, and the 

left insular cortex. The FC measures among the DMN/SN/CEN were also compared between 

the two groups. (Figure 3 ). 

The FC of each IBN of the triple networks is also compared between CUD patients and 

HC people. Decreases in FC were found between IBN 1 and IBN 8 as well as between IBN 8 

and IBN 12; all these three IBNs belong to the DMN. An increase in FC was found between 

IBN 17 and IBN 23, both of which belong to the CEN. Two other increases in FC were found 

between IBN 12 and IBN 14 and between IBN 12 and IBN 21. These increases both 

happened between the DMN and the SN. 

                                                                                                                                                                       

Figure 3 Alterations of functional connectivity (FC) within IBNs of the Triple Network in the CUD patients 

compared with HC subjects (voxel p<0.01, cluster p<0.05, two-tailed Gaussian Random Field (GRF) 

corrected). (a) FC alterations within IBNs of the DMN, blue areas represent the decrease in CUD patients; 

(b) FC alterations within IBNs of the SN, blue areas represent the decrease in CUD patients; (c) FC 

alterations within IBNs of the CEN, red areas represent the increase in CUD patients 
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Figure 4 Alterations of functional connectivity (FC) between IBNs of the DMN/SN/CEN in the CUD 

patients. The red links represent the increased FC (p<0.05), while the blue links represent decreased FC 

(p<0.05) in CUD subjects. Orange arcs represent DMN, green arcs represent the SN, and light blue arcs 

represent the CEN. 

 

3.4.Relationship with clinical measures in subjects with CUD 

In order to explore the clinical significance of the classifier, we correlated the 

classification score of the classifiers with several clinical measures of CUD in the patient 

group, including years of CUD, days to the last usage, CUD onset age, and dose per week. 

Significantly positive correlations were found between the years of CUD and classifier scores 

trained by the DMN-CEN, the SN-DMN, and the triple networks (Table S2). Significant 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


negative correlations were found between the CUD onset age and classifier scores trained by 

the DMN, the SN, and the SN-DMN. (Table S2). Also, significant negative correlations were 

found between the CUD onset age and classifier scores trained by the DMN, the CEN, the 

DMN-CEN, the DMN-SN, and the triple networks (Table S2). There is no significant 

correlation between the dose per week and the classifier scores. 

Then, the correlation coefficients between the average z-transformed value of each cluster 

and clinical measures are also calculated in CUD patients. And significant correlation was 

found with the left inferior parietal lobule in the SN, positive to years of CUD and negative to 

CUD onset age. 

We correlated the altered FC within and between IBNs in CUD patients and their clinical 

measures. The analysis revealed that there was only one significant negative correlation 

between the altered FC between two CEN components and the number of days to the last 

usage of cocaine of the CUD subjects (r = -0.427, p = 0.048). No significant correlations 

were found for FC within the IBNs of the triple networks. 
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Figure 5 The correlation between the prediction score of the classifier based on the DMN/SN/CEN and the 

addiction severity index in subjects with cocaine. Each blue dot represents the coordinate corresponding 

to the average score of 10 predictions for a subject in the classifier and the clinical measure. The red line is 

the regression curve. (a) A significant positive correlation was found between the years of CUD and the 

average prediction scores. (b) A significant negative correlation was found between the onset age of CUD 

and the average prediction scores. 

 

 

4. Discussion 

This study applied a data-driven method to build seven classifiers with high classification 

performance based on the DMN, the SN, and the CEN, as well as the combinations of each 

two of them and all of the triple networks. Then, functional connectivity is calculated within 

the triple networks to compare between health control subjects and cocaine-use disorder 

patients. 
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Among all the classifiers trained with different combinations of the triple networks, the 

classifier based on the SN and CEN achieved the highest accuracy of 73.4%±2.6% and an 

outstanding AUC of 0.779±0.017. The performance of the SN-CEN-based classifier is even 

better than that of the classifier trained with all the triple networks. The promising 

performance of distinguishing subjects with CUD from HC subjects at an individual subject 

level showed that the SN and the CEN play more important roles in the CUD than the triple 

network model, which is consistent with the Addictions Neuroclinical Assessment (ANA) 

circuit at the binge/intoxication stage. Also, the classifier trained only with the DMN has the 

worst performance among all the classifiers, which is also consistent with the study that the 

DMN has a withdrawal during the binge/intoxication stage. 

When compared with HC subjects, the functional connectivity within the triple networks 

is reduced in the CUD patients in the DMN and the SN but increased in the CUD patients in 

the CEN. The FC strength was weakened within the DMN for CUD patients, while it was 

strengthened between the DMN and the SN and within the CEN. These results also supported 

the hypothesis of the Addictions Neuroclinical Assessment (ANA) circuit that at the 

binge/intoxication stage, the SN triggers the CEN to be more activated while the DMN is 

deactivated. 

 Addiction is strongly correlated with the age of abuse onset, with earlier onset during 

adolescence increasing the likelihood of stronger addictive tendencies in adulthood (Chen et 

al., 2009; Grant et al., 2006; Palmer et al., 2009). Additionally, the DMN is considered a 

valuable biomarker for predicting addiction risk (Zhang & Volkow, 2019), while the CEN is 

believed to play a crucial role in the treatment of cocaine addiction (McHugh et al., 2017). 
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The scores of all of our machine learning classifiers trained with IBNs from the DMN or the 

CEN have a significant negative correlation with the CUD onset age and a significant 

positive correlation with years of CUD. Acute drug or alcohol use has been shown to rapidly 

disrupt the DMN and the SN (Gorka et al., 2018; Zhang & Volkow, 2019). This aligns with 

our findings, where the scores from machine learning classifiers trained using IBNs from the 

DMN, the SN, and their combined DMN-SN network show a significant negative correlation 

with the number of days since the last usage. All these findings suggest that our models have 

promising potential for both predicting and aiding in the treatment of cocaine addiction. 

The SN was thought to have a core role in the triple network model (Menon, 2011). 

Signals in the SN triggered the other networks to generate behavioral responses to salient 

stimuli (Hamilton et al., 2011; Uddin et al., 2011). Our results showed that the classifier 

trained only with the SN performed better than the other two trained only with the DMN or 

the CEN, supporting the core role of the SN within the triple networks. Reduced functional 

connectivity in the SN is believed to lead to the desire for addictive substances, such as 

nicotine (Sutherland et al., 2012). This was also consistent with our findings of FC decrease 

within the SN.  

Neural changes in the CEN are connected to reward-related decision-making (Yoo et al., 

2020). When the reward pathway is activated by immediate rewards, the CEN requires more 

cognitive resources for less impulsive decisions (McClure et al., 2004). Therefore, chronic 

substance use disorder can lead to functional connectivity abnormalities in the CEN 

(Krmpotich et al., 2013; Tapert et al., 2007). Our findings of increased FC within and 

between IBNs of the CEN were consistent with these reports. 
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It has been reported that the blood flow was reduced under the psilocybin administration 

(Carhart-Harris et al., 2012), and drug addictions such as lysergic acid diethylamide (Carhart-

Harris et al., 2016) and heroin (Ma et al., 2011) desynchronize brain activity within the 

DMN. It is also reported that during the intoxication stage, the prominence of the DMN 

appears to be temporarily decreased (Zhang & Volkow, 2019). Our results showing that the 

classifier trained on the DMN had the worst performance and that the FC was reduced within 

and in between the DMN IBNs in CUD subjects were consistent with these reports. 

Some limitations should be taken into consideration when interpreting the results. First of 

all, even though the sexes of the subjects in our experiments are matched, only 8 HC and 3 

CUD subjects are female, and most of the subjects are male. The sex has an effect on the 

behavioral response and the treatment response (Becker et al., 2001; Kosten et al., 1993; 

Najavits & Lester, 2008). This may be caused by the different cocaine effects on the brain in 

different sexes, which should be investigated in the future. Besides, the subject number of the 

original dataset is not large, which might introduce some bias to the results (Tommasi et al., 

2017; Torralba & Efros, 2011). The representativeness of the results could be improved, and 

bias could be reduced if larger datasets from more diverse regions are available in the future. 

Also, the original dataset has more CUD subjects than the HC subjects. While the SVM is 

very sensitive to the imbalance of classes (Spelmen & Porkodi, 2018), this might cause a 

large difference between the sensitivity and specificity of results, which makes it important to 

keep the two classes balanced. 

In conclusion, the present study supported the hypothesis that during the 

binge/intoxication stage of cocaine-use disorder, the Addictions Neuroclinical Assessment 
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circuit is more consistent for analysis than the triple network model, as the default mode 

network is not as important as the other two networks. The machine learning classifier based 

on the salience network and the central executive network, which distinguishes CUD subjects 

from HC subjects, had the best performance. The significant relationship observed between 

the classification score of the ML model and measures of CUD patients, along with the 

functional connectivity changes between CUD patients and HC subjects, suggested the 

cumulative impact of cocaine use on brain function as the biomarker of cocaine severity. 

 

 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgments 

Research reported in this publication was supported by the National Cancer Institute of 

the National Institutes of Health under Award Number P30CA036727. This study was 

supported, in part, by the National Institute on Alcohol Abuse and Alcoholism 

(P50AA030407-5126, Pilot Core grant). This study was also supported by the Nebraska 

EPSCoR FIRST Award (OIA-2044049). This work was also partially supported by the 

National Institute of General Medical Sciences under Award Numbers P20GM103427, 

P20GM130447, and 1U54GM115458-01. This study was in part financially supported by the 

National Institute of Mental Health under Award Number 5U24MH100925. This work was 

also partially supported by the University of Nebraska Collaboration Initiative Grant from the 

Nebraska Research Initiative (NRI). This work was also partially supported by the Office of 

The Director, National Institutes of Health of the National Institutes of Health under Award 

Number R03OD038391. The content is solely the responsibility of the authors and does not 

necessarily represent the official views from the funding organizations.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


References 

Angeles-Valdez, D., Rasgado-Toledo, J., Issa-Garcia, V., Balducci, T., Villicaña, V., 

Valencia, A., Gonzalez-Olvera, J. J., Reyes-Zamorano, E., & Garza-Villarreal, E. A. 

(2022). The Mexican magnetic resonance imaging dataset of patients with cocaine use 

disorder: SUDMEX CONN. Scientific Data, 9(1), 133. 

https://doi.org/10.1038/s41597-022-01251-3 

Banich, M. T., Mackiewicz, K. L., Depue, B. E., Whitmer, A. J., Miller, G. A., & Heller, W. 

(2009). Cognitive control mechanisms, emotion and memory: A neural perspective 

with implications for psychopathology. Neuroscience & Biobehavioral Reviews, 

33(5), 613–630. https://doi.org/10.1016/j.neubiorev.2008.09.010 

Becker, J. B., Molenda, H., & Hummer, D. L. (2001). Gender Differences in the Behavioral 

Responses to Cocaine and Amphetamine: Implications for Mechanisms Mediating 

Gender Differences in Drug Abuse. Annals of the New York Academy of Sciences, 

937(1), 172–187. https://doi.org/10.1111/j.1749-6632.2001.tb03564.x 

Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging 

methods and principles. Trends in Cognitive Sciences, 14(6), 277–290. 

https://doi.org/10.1016/j.tics.2010.04.004 

Carhart-Harris, R. L., Erritzoe, D., Williams, T., Stone, J. M., Reed, L. J., Colasanti, A., 

Tyacke, R. J., Leech, R., Malizia, A. L., Murphy, K., Hobden, P., Evans, J., Feilding, 

A., Wise, R. G., & Nutt, D. J. (2012). Neural correlates of the psychedelic state as 

determined by fMRI studies with psilocybin. Proceedings of the National Academy of 

Sciences, 109(6), 2138–2143. https://doi.org/10.1073/pnas.1119598109 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., Kaelen, M., Droog, W., 

Murphy, K., Tagliazucchi, E., Schenberg, E. E., Nest, T., Orban, C., Leech, R., 

Williams, L. T., Williams, T. M., Bolstridge, M., Sessa, B., McGonigle, J., Sereno, 

M. I., Nichols, D., Hellyer, P. J., … Nutt, D. J. (2016). Neural correlates of the LSD 

experience revealed by multimodal neuroimaging. Proceedings of the National 

Academy of Sciences, 113(17), 4853–4858. https://doi.org/10.1073/pnas.1518377113 

Chen, C.-Y., Storr, C. L., & Anthony, J. C. (2009). Early-onset drug use and risk for drug 

dependence problems. Addictive Behaviors, 34(3), 319–322. 

https://doi.org/10.1016/j.addbeh.2008.10.021 

Di Chiara, G., & Bassareo, V. (2007). Reward system and addiction: What dopamine does 

and doesn’t do. Current Opinion in Pharmacology, 7(1), 69–76. 

https://doi.org/10.1016/j.coph.2006.11.003 

Ding, X., & Lee, S.-W. (2013). Cocaine addiction related reproducible brain regions of 

abnormal default-mode network functional connectivity: A group ICA study with 

different model orders. Neuroscience Letters, 548, 110–114. 

https://doi.org/10.1016/j.neulet.2013.05.029 

Fan, Y., Liu, Y., Jiang, T., Liu, Z., Hao, Y., & Liu, H. (2010). Discriminant analysis of 

resting-state functional connectivity patterns on the Grassmann manifold (B. M. 

Dawant & D. R. Haynor, Eds.; p. 76231J). https://doi.org/10.1117/12.844495 

Fan, Y., Liu, Y., Wu, H., Hao, Y., Liu, H., Liu, Z., & Jiang, T. (2011). Discriminant analysis 

of functional connectivity patterns on Grassmann manifold. NeuroImage, 56(4), 

2058–2067. https://doi.org/10.1016/j.neuroimage.2011.03.051 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Franklin, T. R., Acton, P. D., Maldjian, J. A., Gray, J. D., Croft, J. R., Dackis, C. A., O’Brien, 

C. P., & Childress, A. R. (2002). Decreased gray matter concentration in the insular, 

orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biological 

Psychiatry, 51(2), 134–142. https://doi.org/10.1016/S0006-3223(01)01269-0 

Geng, X., Hu, Y., Gu, H., Salmeron, B. J., Adinoff, B., Stein, E. A., & Yang, Y. (2017). 

Salience and default mode network dysregulation in chronic cocaine users predict 

treatment outcome. Brain, 140(5), 1513–1524. https://doi.org/10.1093/brain/awx036 

Gorka, S. M., Phan, K. L., & Childs, E. (2018). Acute calming effects of alcohol are 

associated with disruption of the salience network. Addiction Biology, 23(3), 921–

930. https://doi.org/10.1111/adb.12537 

Grant, J. D., Scherrer, J. F., Lynskey, M. T., Lyons, M. J., Eisen, S. A., Tsuang, M. T., True, 

W. R., & Bucholz, K. K. (2006). Adolescent alcohol use is a risk factor for adult 

alcohol and drug dependence: Evidence from a twin design. Psychological Medicine, 

36(1), 109–118. https://doi.org/10.1017/S0033291705006045 

Gu, H., Salmeron, B. J., Ross, T. J., Geng, X., Zhan, W., Stein, E. A., & Yang, Y. (2010). 

Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by 

resting-state functional connectivity. NeuroImage, 53(2), 593–601. 

https://doi.org/10.1016/j.neuroimage.2010.06.066 

Hamilton, J. P., Furman, D. J., Chang, C., Thomason, M. E., Dennis, E., & Gotlib, I. H. 

(2011). Default-Mode and Task-Positive Network Activity in Major Depressive 

Disorder: Implications for Adaptive and Maladaptive Rumination. Biological 

Psychiatry, 70(4), 327–333. https://doi.org/10.1016/j.biopsych.2011.02.003 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Harris, J. (1992). Grassmannians and Related Varieties. In J. Harris, Algebraic Geometry 

(Vol. 133, pp. 63–71). Springer New York. https://doi.org/10.1007/978-1-4757-2189-

8_6 

Kelly, C., Zuo, X.-N., Gotimer, K., Cox, C. L., Lynch, L., Brock, D., Imperati, D., Garavan, 

H., Rotrosen, J., Castellanos, F. X., & Milham, M. P. (2011). Reduced 

Interhemispheric Resting State Functional Connectivity in Cocaine Addiction. 

Biological Psychiatry, 69(7), 684–692. 

https://doi.org/10.1016/j.biopsych.2010.11.022 

Koob, G. F., & Volkow, N. D. (2016). Neurobiology of addiction: A neurocircuitry analysis. 

The Lancet Psychiatry, 3(8), 760–773. https://doi.org/10.1016/S2215-0366(16)00104-

8 

Kosten, T. A., Gawin, F. H., Kosten, T. R., & Rounsaville, B. J. (1993). Gender differences 

in cocaine use and treatment response. Journal of Substance Abuse Treatment, 10(1), 

63–66. https://doi.org/10.1016/0740-5472(93)90100-G 

Krmpotich, T. D., Tregellas, J. R., Thompson, L. L., Banich, M. T., Klenk, A. M., & Tanabe, 

J. L. (2013). Resting-state activity in the left executive control network is associated 

with behavioral approach and is increased in substance dependence. Drug and 

Alcohol Dependence, 129(1–2), 1–7. 

https://doi.org/10.1016/j.drugalcdep.2013.01.021 

Kwako, L. E., Momenan, R., Litten, R. Z., Koob, G. F., & Goldman, D. (2016). Addictions 

Neuroclinical Assessment: A Neuroscience-Based Framework for Addictive 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Disorders. Biological Psychiatry, 80(3), 179–189. 

https://doi.org/10.1016/j.biopsych.2015.10.024 

Lerman, C., Gu, H., Loughead, J., Ruparel, K., Yang, Y., & Stein, E. A. (2014). Large-Scale 

Brain Network Coupling Predicts Acute Nicotine Abstinence Effects on Craving and 

Cognitive Function. JAMA Psychiatry, 71(5), 523. 

https://doi.org/10.1001/jamapsychiatry.2013.4091 

Li, S.-J., Biswal, B., Li, Z., Risinger, R., Rainey, C., Cho, J.-K., Salmeron, B. J., & Stein, E. 

A. (2000). Cocaine administration decreases functional connectivity in human 

primary visual and motor cortex as detected by functional MRI. Magnetic Resonance 

in Medicine, 43(1), 45–51. https://doi.org/10.1002/(SICI)1522-

2594(200001)43:1<45::AID-MRM6>3.0.CO;2-0 

Liang, X., He, Y., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. (2015). Interactions 

between the Salience and Default-Mode Networks Are Disrupted in Cocaine 

Addiction. The Journal of Neuroscience, 35(21), 8081–8090. 

https://doi.org/10.1523/JNEUROSCI.3188-14.2015 

Ma, N., Liu, Y., Fu, X.-M., Li, N., Wang, C.-X., Zhang, H., Qian, R.-B., Xu, H.-S., Hu, X., & 

Zhang, D.-R. (2011). Abnormal Brain Default-Mode Network Functional 

Connectivity in Drug Addicts. PLoS ONE, 6(1), e16560. 

https://doi.org/10.1371/journal.pone.0016560 

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate Neural 

Systems Value Immediate and Delayed Monetary Rewards. Science, 306(5695), 503–

507. https://doi.org/10.1126/science.1100907 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


McHugh, M. J., Gu, H., Yang, Y., Adinoff, B., & Stein, E. A. (2017). Executive control 

network connectivity strength protects against relapse to cocaine use. Addiction 

Biology, 22(6), 1790–1801. https://doi.org/10.1111/adb.12448 

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple 

network model. Trends in Cognitive Sciences, 15(10), 483–506. 

https://doi.org/10.1016/j.tics.2011.08.003 

Moeller, F. G., Hasan, K. M., Steinberg, J. L., Kramer, L. A., Dougherty, D. M., Santos, R. 

M., Valdes, I., Swann, A. C., Barratt, E. S., & Narayana, P. A. (2005). Reduced 

Anterior Corpus Callosum White Matter Integrity is Related to Increased Impulsivity 

and Reduced Discriminability in Cocaine-Dependent Subjects: Diffusion Tensor 

Imaging. Neuropsychopharmacology, 30(3), 610–617. 

https://doi.org/10.1038/sj.npp.1300617 

Najavits, L., & Lester, K. (2008). Gender differences in cocaine dependence. Drug and 

Alcohol Dependence, 97(1–2), 190–194. 

https://doi.org/10.1016/j.drugalcdep.2008.04.012 

Öngür, D., Lundy, M., Greenhouse, I., Shinn, A. K., Menon, V., Cohen, B. M., & Renshaw, 

P. F. (2010). Default mode network abnormalities in bipolar disorder and 

schizophrenia. Psychiatry Research: Neuroimaging, 183(1), 59–68. 

https://doi.org/10.1016/j.pscychresns.2010.04.008 

Palmer, R. H. C., Young, S. E., Hopfer, C. J., Corley, R. P., Stallings, M. C., Crowley, T. J., 

& Hewitt, J. K. (2009). Developmental epidemiology of drug use and abuse in 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


adolescence and young adulthood: Evidence of generalized risk. Drug and Alcohol 

Dependence, 102(1–3), 78–87. https://doi.org/10.1016/j.drugalcdep.2009.01.012 

Sim, M. E., Lyoo, I. K., Streeter, C. C., Covell, J., Sarid-Segal, O., Ciraulo, D. A., Kim, M. 

J., Kaufman, M. J., Yurgelun-Todd, D. A., & Renshaw, P. F. (2007). Cerebellar Gray 

Matter Volume Correlates with Duration of Cocaine Use in Cocaine-Dependent 

Subjects. Neuropsychopharmacology, 32(10), 2229–2237. 

https://doi.org/10.1038/sj.npp.1301346 

Spelmen, V. S., & Porkodi, R. (2018). A Review on Handling Imbalanced Data. 2018 

International Conference on Current Trends towards Converging Technologies 

(ICCTCT), 1–11. https://doi.org/10.1109/ICCTCT.2018.8551020 

Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased Amygdala 

and Insula Activation During Emotion Processing in Anxiety-Prone Subjects. 

American Journal of Psychiatry, 164(2), 318–327. 

https://doi.org/10.1176/ajp.2007.164.2.318 

Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state 

functional connectivity in addiction: Lessons learned and a road ahead. NeuroImage, 

62(4), 2281–2295. https://doi.org/10.1016/j.neuroimage.2012.01.117 

Tapert, S. F., Schweinsburg, A. D., Drummond, S. P. A., Paulus, M. P., Brown, S. A., Yang, 

T. T., & Frank, L. R. (2007). Functional MRI of inhibitory processing in abstinent 

adolescent marijuana users. Psychopharmacology, 194(2), 173–183. 

https://doi.org/10.1007/s00213-007-0823-y 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, 

M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & 

Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by 

intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. 

https://doi.org/10.1152/jn.00338.2011 

Tommasi, T., Patricia, N., Caputo, B., & Tuytelaars, T. (2017). A Deeper Look at Dataset 

Bias. In G. Csurka (Ed.), Domain Adaptation in Computer Vision Applications (pp. 

37–55). Springer International Publishing. https://doi.org/10.1007/978-3-319-58347-

1_2 

Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. CVPR 2011, 1521–1528. 

https://doi.org/10.1109/CVPR.2011.5995347 

Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic Reconfiguration of 

Structural and Functional Connectivity Across Core Neurocognitive Brain Networks 

with Development. The Journal of Neuroscience, 31(50), 18578–18589. 

https://doi.org/10.1523/JNEUROSCI.4465-11.2011 

Van Den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review 

on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 

20(8), 519–534. https://doi.org/10.1016/j.euroneuro.2010.03.008 

Yan. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state 

fMRI. Frontiers in System Neuroscience. https://doi.org/10.3389/fnsys.2010.00013 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Yoo, H. B., Moya, B. E., & Filbey, F. M. (2020). Dynamic functional connectivity between 

nucleus accumbens and the central executive network relates to chronic cannabis use. 

Human Brain Mapping, 41(13), 3637–3654. https://doi.org/10.1002/hbm.25036 

Zhang, R., & Volkow, N. D. (2019). Brain default-mode network dysfunction in addiction. 

NeuroImage, 200, 313–331. https://doi.org/10.1016/j.neuroimage.2019.06.036 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.12.623073doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.12.623073
http://creativecommons.org/licenses/by-nc/4.0/


Figure Legends 

Figure 1 Twenty-five spatial maps of intrinsic brain networks obtained by GIG-ICA. Spatial 

maps were shown by a one-sample t-test of independent components (z-score maps) of all 

subjects. IBN: intrinsic brain networks, CEN: central executive network, DMN: default mode 

network, SN: salience network. 

Figure 2 (a) Receiver Operating Characteristic (ROC) Curves of machine learning models 

based on different combinations of the Triple Network. The ROC curves are averaged over 

the 10-times 10-fold cross-validation separately (b) Bar plot showing machine learning 

performance of different classifiers trained on each combination of DMN, SN, and CEN 

Figure 3 Alterations of functional connectivity (FC) within IBNs of the Triple Network in the 

CUD patients compared with HC subjects (voxel p<0.01, cluster p<0.05, two-tailed Gaussian 

Random Field (GRF) corrected). (a) FC alterations within IBNs of the DMN, blue areas 

represent the decrease in CUD patients; (b) FC alterations within IBNs of the SN, blue areas 

represent the decrease in CUD patients; (c) FC alterations within IBNs of the CEN, red areas 

represent the increase in CUD patients 

Figure 4 Alterations of functional connectivity (FC) between IBNs of the DMN/SN/CEN in 

the CUD patients. The red links represent the increased FC (p<0.05), while the blue links 

represent decreased FC (p<0.05) in CUD subjects. Orange arcs represent DMN, green arcs 

represent the SN, and light blue arcs represent the CEN. 

Figure 5 The correlation between the prediction score of the classifier based on the 

DMN/SN/CEN and the addiction severity index in subjects with cocaine. Each blue dot 

represents the coordinate corresponding to the average score of 10 predictions for a subject in 
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the classifier and the clinical measure. The red line is the regression curve. (a) A significant 

positive correlation was found between the years of CUD and the average prediction scores. 

(b) A significant negative correlation was found between the onset age of CUD and the 

average prediction scores. 
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