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Abstract

Systematic evaluation of cortical differences between humans and macaques calls for inter-

species registration of the cortex that matches homologous regions across species. For

establishing homology across brains, structural landmarks and biological features have

been used without paying sufficient attention to functional homology. The present study

aimed to determine functional homology between the human and macaque cortices, defined

in terms of functional network properties, by proposing an iterative functional network-based

registration scheme using surface-based spherical demons. The functional connectivity

matrix of resting-state functional magnetic resonance imaging (rs-fMRI) among cortical par-

cellations was iteratively calculated for humans and macaques. From the functional connec-

tivity matrix, the functional network properties such as principal network components were

derived to estimate a deformation field between the human and macaque cortices. The iter-

ative registration procedure updates the parcellation map of macaques, corresponding to

the human connectome project’s multimodal parcellation atlas, which was used to derive

the macaque’s functional connectivity matrix. To test the plausibility of the functional net-

work-based registration, we compared cortical registration using structural versus functional

features in terms of cortical regional areal change. We also evaluated the interhemispheric

asymmetry of regional area and its inter-subject variability in humans and macaques as an

indirect validation of the proposed method. Higher inter-subject variability and interhemi-

spheric asymmetry were found in functional homology than in structural homology, and the

assessed asymmetry and variations were higher in humans than in macaques. The results

emphasize the significance of functional network-based cortical registration across individu-

als within a species and across species.
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Introduction

Inter-species cortical registration between humans and macaques is an essential step in sys-

tematically evaluating cross-species commonalities and differences and applying preclinical

results to human applications. Compared with the matching of the subcortical structures,

matching the cortex across species is challenging because the cortical regions are not explicitly

distinguished and because inter-species differences may be more significant in the cortex than

in any other brain subsystems. As registration is a procedure that maps homology across

brains, the features used to match in the registration algorithm define what the homology

implies between brains. If we utilize structural features, such as cortical thickness and curva-

ture, homology is defined in the structural or anatomical perspective. As cortical features (e.g.,

cortical thickness) are better represented over the cortical surface than by volume [1–3], sur-

face-based registration has widely been used to register the cortical features across humans [4–

7]. Based on this structural homology, diverse cortical properties such as myelination [7, 8],

metabolic activity [9, 10], and tau and amyloid positron emission tomography scans [11] have

been evaluated across subjects or groups. In inter-species registration, although not much

researched, only structural properties (either macroscopic or microscopic) have mostly been

used in previous studies [12–15].

Despite the prevalence of matching structural homology, recent studies have implicated

gaps between structural and functional homologies across humans [16, 17], which is an impor-

tant issue in brain science [18]. Accordingly, the interest in determining functional homology

has been increasing in recent brain science studies. In brain network science, which views the

brain as a complex network system, functional homology can be defined in terms of functional

connectivity or functional networks. For example, Conroy, Singer [19] reported better inter-

subject registration of task data using functional connectivity. Inter-subject registration has

also been conducted with respect to the brain’s functional properties, particularly functional

connectivity of rs-fMRI [20–23]. Robinson, Jbabdi [24] combined functional connectivity

properties with other multimodal features such as myelin map or discrete areal delineation to

determine inter-subject homology using human cortices’ registration.

Functional homology may well be emphasized in the inter-species registration between

humans and macaques. Most studies on inter-species registration have used macroscopic

structural features (thickness or sulcus/gyrus landmarks) to define inter-species homology [12,

15]. However, not many attempts have been made to match functional correspondence

between humans and macaques, particularly functional connectivity. We hypothesized that

structural homology does not sufficiently reflect functional diversity across species; therefore,

functional homology, defined explicitly in terms of functional connectivity at each cortical

region, would be advantageous for linking different species.

In this study, we defined inter-species homology in terms of resting-state functional net-

work properties. Instead of using a simple functional connectivity metric, we employed graph-

theoretic features such as functional node degrees and principal graph components to deter-

mine functional homologies across human and macaque cortices. To derive graph-theoretic

features that are compatible across species, a parcellation map shared by both species is needed

for network construction, which is not available for public use. Therefore, we proposed a

framework for inter-species functional registration by iteratively estimating a registration

function between human and macaque cortices and constructing a cortical parcellation map

of macaques using the spherical demons registration algorithm. The parcellation map for the

macaque cortex was initially constructed based on the previous deformation field of structural

features. It was again used to determine the deformation field between the two species based

on functional network features during registration.
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Upon establishing a functional registration framework, we compared registrations using

structural features versus functional features in inter-subject variabilities. We also evaluated

interhemispheric asymmetry between the left and right hemispheres, inter-subject variabilities,

and group differences between macaques and humans. Interhemispheric asymmetry has been

known in humans functionally and structurally [25–29]. As interhemispheric asymmetry has

been widely researched in the human brain, we used this property in humans and between

humans and macaques to validate the proposed method.

We hypothesized functional homology would be more heterogeneous than structurally

defined homology. We also hypothesized that humans would show higher inter-subject vari-

ability and high interhemispheric asymmetry than macaques. All these evaluations are

expected to emphasize the significance of functional network-based cortical registration across

individuals within a species and across species.

Methods

Background: Diffeomorphic spherical demons

We adopted the spherical demons registration algorithm proposed by Yeo, Sabuncu [30] to

register two spherical representations of a hemisphere. The spherical registration goal in this

study is to find the optimal transformation T between two spherical representations for brain

surfaces SM and SF such that SM�T is aligned to SF with respect to functional network features.

The initial diffeomorphic demons algorithm proposed by Vercauteren [31] has been used

to find nonlinear diffeomorphic transformation function (or deformation field) T between a

moving image IM and a fixed image IF so that kIM�T−IFk is minimized. In this diffeomorphic

demons algorithm, the hidden transformation Y is introduced to decouple the minimization

problem as below:

Step1: Find T to minimize kIM � T � IFk
2
þ 1

b2 kT � Yk2

Step2: Find Y to minimize 1

b2 kT � Yk2
þ 1

d2 Reg Yð Þ.

Parameters β and δ balance between the similarity and the regularization costs. The regular-

ization function Reg is chosen to regularize the smoothness of Y. The demons algorithm is

computationally efficient since step 1, a nonlinear least-squares problem, can be minimized

using Gauss-Newton optimization.

In the spherical demons [30], transformation functions T, Y:S2!S2 are defined on a sphere

S2, and therefore the distance between two transformation functions kT−Yk2 is represented as

the distance between sets of tangent vectors of the transformations T and Y. The regularization

function is chosen as RegðYÞ≜kŶkV , where Ŷ is a restricted deformation on a Hilbert space

V�H of vector fields. Thus, the smaller kŶkV means to a smoother vector field, consequently

the smoother Y.

Inter-species cortical registration

Let SM ¼ fxk 2 S
2

: 1 � k � NMg and SF ¼ fxk 2 S
2

: 1 � k � NFg be two spherical repre-

sentations of hemispheres of moving (source) sphere and fixed (target) sphere, respectively.

For � = M, F, curvature C� : S2
! RN� , sulcus depth D� : S2

! RN� , myelin My� : S2
! RN� of

the white matter surface (structural network features) and rs-fMRI time series sampled at the

gray matter region corresponding to every node on each sphere are given. rs-fMRI time series

were used to compose functional network features using dual-regression group principal com-

ponent analysis (PCA). We employ functional network features in each node of the cortical
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surface to define functional homology across individuals within the same species or between

species on the cortical surface.

Functional network features from dual-regression group PCA. Suppose a cortical par-

cellation with R regions (or regions of interest, ROI) is given on a spherical hemisphere com-

posed of N nodes. The element of functional connectivity matrix with size N×R indicates the

correlation between an rs-fMRI time series at a node and a mean rs-fMRI time series of all the

nodes at each region in the parcellation map (Fig 1). PCA was applied on a N×R functional

connectivity matrix to reduce the connectivity matrix’s rank.

Since principal connectivity (graph) components (PC) derived from PCA (of each individ-

ual) differ between species and across individuals, it is not trivial to match the same types of

PCs across individuals in the registration. Thus, we used dual-regression group PCA to find

individual PCs corresponding to each other. The dual-regression approach has been intro-

duced in the group level independent component analysis [32, 33]. The procedure was

explained in Fig 2. Let Ns be the number of subjects in each group. For each subject in each

group, PCA was applied to the connectivity matrix and generated N1 individual PCs (step 1 in

Fig 2). We used N1 = 20 individual PCs, which explains over 90% of the variance. All individual

PCs were concatenated to a group PC set (2Ns×N1 PCs) for the subsequent group level PCA

(step 2 in Fig 2). N2 = 10 group PCs were generated by the group level PCA of the group PC set

of all individual PCs. Among N2 = 10 PCs for the group level PCA, we chose six group PCs (N2

= 6), which has correlation coefficients of 0.5 or higher between human and macaque’s group-

average PCs. All group PCs (N2 = 6) were projected to all individual subjects (step 3 in Fig 2).

Group-average PCs for macaque and humans were created by averaging projected PCs in

each group. All individual PCs in each species were spherically registered to the group-average

PCs for the species (steps 4 and 5 in Fig 2). The group-average macaque PCs were registered to

those of humans as main functional features (step 6 in Fig 2). Fig 3 shows examples of six

group-average PCs for humans and macaques displayed on inflated pial surfaces of human

and macaque atlases. The resulting PCs and functional node degree (sum of connectivity with

all the other nodes from a node) are used as functional network features in spherical registra-

tion. The spherical registration procedures across individuals within each group and

Fig 1. Procedure to extract surface-based resting-state functional connectivity properties. A N nodes x R regions connectivity matrix was constructed by

calculating Pearson’s correlation coefficient from all the nodes in the sphere and all the regions in the parcellation map. From the connectivity matrix,

functional connectivity features were extracted.

https://doi.org/10.1371/journal.pone.0258992.g001

PLOS ONE Inter-species functional registration between macaques and humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0258992 October 21, 2021 4 / 22

https://doi.org/10.1371/journal.pone.0258992.g001
https://doi.org/10.1371/journal.pone.0258992


registration between species are used in steps 4–6 of Fig 2. The following sections explain

details about this spherical registration.

Spherical registration with structural features and functional network features; surface

vector alignment. For the initial spherical registration, we used curvature, sulcus depth and

myelin as structural features to align between target and source spheres (step 1). Humans and

macaque have significantly different sulcus patterns, especially in the sensory-motor areas.

Thus, sulcus landmarks alone do not provide homology information between humans and

macaque, but myelination distribution offers. Therefore, we included myelin distribution in

the structural feature. Then, we iteratively registered the source sphere to the target sphere

Fig 2. Group PCA procedure of extracting individual principal components (PCs) corresponding to each other and across species as functional

connectivity modes. PCA of individual subjects’ PCs was conducted to find group-common PCs in humans and macaques. Those group-common PCs were

projected to each individual. These PCs are driven from N x R functional connectivity matrices, not from conventional fMRI time series. From the individual

PCs, group-average PCs for humans and macaques were generated. To these group-average PCs, spherical registration of each individual was conducted.

https://doi.org/10.1371/journal.pone.0258992.g002
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with recursive updates of the macaque’s parcellation map. Suppose that a parcellation map PF
with R regions on the target sphere is given. By using a parcellation map PM corresponding to

the parcellation map PF on the source sphere, we computed functional connectivity matrices

with size NF×R and NM×R for fixed and moving spheres, respectively. Since a common parcel-

lation map for both species is not available, a parcellation map PM is iteratively estimated by

transforming the target parcellation map PF with the inverse deformation field from the source

to the target spheres during the registration process. This will be explained again.

As explained in Fig 2, individual connectivity PCs that match each other across individuals

and species were derived by using dual-regression group PCA of functional connectivity

matrices. All individual PCs were normalized to be one and weighted with the proportion of

corresponding eigenvalues. As a functional connectivity feature, we also included a functional

node degree map (the numbers of all brain parcellation regions connected with each node in

the whole cortical surface). In the node degree calculation, a threshold to binarize the adja-

cency matrix was calculated by retaining the top 25% of the connection. The final set of fea-

tures was composed as below.

F ¼ fC; SD;MY; FD; l1PC1; l2PC2; l3PC3; l4PC4; l5PC5; l6PC6g

C, SD, and MY indicate curvature, sulcal depth, and myelination, FD indicates functional

node degree, λiPCi indicates i-th weighted PC with coefficient λi. Throughout this paper, λi’s
was computed based on the ratio of eigenvalues of PCi’s. In this study, 10×NF feature matrix

F F for the fixed sphere and 10×NM feature matrix FM for the moving sphere were used to

define the similarity cost function between the two cortices in the spherical demons algorithm.

Details of the proposed registration process is illustrated in Fig 4 and is summarized as follows.

Fig 3. Six group average principal components (modes) of functional connectivity matrix for the human and macaque.

https://doi.org/10.1371/journal.pone.0258992.g003
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Step 1—Structural Matching

Find optimal transformation function T using the multi-scale spherical demons registration

such that kFM � T � F Fk is minimized. Here, the feature matrices FM and F F are formulated

only with structural features: curvature and sulcus depth of the moving and fixed sphere,

respectively. The transformation function derived from this structural matching was applied

to the parcellation PF in the SF to generate an initial parcellation PM in the moving sphere SM
for functional connectivity matching.

Step 2—Iterative functional connectivity matching with construction of

macaque parcellation map

Set i = 1, and T1 = T.

2.1. Parcellation map construction: Consider that FMi ¼ FM � Ti and F F are aligned in

the previous step, apply the parcellation PF in the SF to construct a parcellation PMi
in the mov-

ing sphere SMi.

2.2. Feature extraction: Extract fMRI time series at each node and mean fMRI time series

at each region in the parcellation map PMi
on the moving sphere to compute functional

Fig 4. The proposed spherical registration algorithm between macaque and human hemisphere. For each iteration of the proposed algorithm, curvature,

sulcus depth, myelination, node degree, and six group principal components based on functional connectivity matrix were generated and used in the demons

registration.

https://doi.org/10.1371/journal.pone.0258992.g004
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connectivity (cross-correlation between fMRI time series of each node and each region) and to

extract functional node degree and weighted PCs at each node in the moving brain. The weight

for structural feature is decreasing as the iteration increases, which is denoted wi in the below

equation. We chose wi ¼
i

iþ1
throughout this paper.

F ¼ fð1 � wiÞ � fC; SD;MYg;wi � fFD; l1PC1; l2PC2; � � � ; l6PC6gg

2.3. Registration process: Find optimal transformation Ti+1 such that kFMi
� Tiþ1 � F Fk is

minimized. The similarity measure in this step includes structural information such as curva-

ture and sulcus depth and functional network information such as node degree, principal com-

ponents based on parcellation PMi
. Set i = i+1. Repeat step 2 until needed.

Finally, a deformation field over the sphere and a parcellation map in the target are derived.

The final parcellation map in the moving sphere is derived by applying the deformation field

to the fixed sphere’s parcellation map.

In this procedure, we used a cortical parcellation map of the human cortex, subdivided into

180 labels [34]. This cortical parcellation map of the human was morphed into the macaque

cortex by utilizing sulcus depth and curvature information in the first step. After calculating

cortical parcellation map for each species, resting-state functional connectivity matrix from all

the nodes in the cortical surface to all cortical regions in the parcellation map was calculated.

We extracted functional network features from the functional connectivity matrix again,

which were used spherical registration across species. Utilizing the deformation field from this

functional registration, we again morphed the human cortical parcellation map to the macaque

cortex space, which was used to evaluate the macaque’s functional connectivity matrix again.

We repeated this step several times. We tested whether this procedure updates the cortical par-

cellation to maximize the functional homology defined by functional network features across

species.

Simulation and experiment with real data

We conducted three analyses. The first analysis was a simulation experiment designed to show

the feasibility of the proposed spherical demons algorithm in finding homology between two

cortices based on the functional network topological metric. The second analysis was intra-

subject interhemispheric registration in humans and macaques. The last analysis was inter-

species registration: from macaque to human.

Cortical surface representation of structural features and resting-state fMRI network.

For the analyses, we used a set of cortical surface representations (spherical surface mesh, curva-

ture, sulcus depth) and rs-fMRI data of 13 subjects from the Human Connectome Project (HCP)

database [35]. HCP data includes 7 males/6 females, with average age 30.8 and standard devia-

tion of 4.3. Each cortical surface representation was extracted from T1 weighted MRI by applying

freesurfer (https://surfer.nmr.mgh.harvard.edu) [1, 2]. All rs-fMRI data was sampled at 0.72 Hz,

with 1200 time points per session during four sessions. The rs-fMRI data were preprocessed

according to the HCP minimal preprocessing pipeline [36]. For the analysis of functional net-

work properties (e.g., node degree) at each iteration i, we extracted the rs-fMRI time series for

vertices corresponding to the HCP’s 180 multi-modal cortical parcellations for each hemisphere

[34]. Thirteen cortical surface representations and their correlation matrices were averaged to

construct a human brain atlas. These cortical surfaces are aligned to the first cortical surface

representation using spherical demons transformation. We used HCP human cortical surfaces of

individuals that were pre-registered to the group template in the HCP preprocessing pipeline.

We used rs-fMRI time series from 13 macaques (7 male/6 female, age 5–13 years) acquired

at awake resting state from an open resource database [37]. The current study data include ten
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T1 and rs-fMRI data sets acquired at the vertical Bruker MRI scanner (4.7 Tesla) at Newcastle

University Medical School, Institute of Neuroscience for 250 sample scans with TR 2.6 sec

(http://fcon_1000.projects.nitrc.org/indi/PRIME/newcastle.html). Of the 13 macaque data sets

provided by Newcastle University Medical School, only 9 data sets that have rs-fMRI were

included. Four data sets were Siemens Sonata 1.5T and Prisma 3T at Lyon Neuroscience

Research Center for 400 sample scans with TR 2.0 sec (http://fcon_1000.projects.nitrc.org/

indi/PRIME/crnl.html). The rs-fMRI preprocessing was performed using MNET (an inhouse

software for multispecies network analysis toolbox), including realignment, slice-timing, and

spatial registration to the template space using DARTEL [38] toolbox, and spatial smoothing

of 4x4x4 mm3 FWHM.

Since individual cortical surfaces are not available in the macaque, we used structural volu-

metric registration of individual T1-weighted images to the Yerkes19 T1-weighted macaque

image as a macaque template(https://balsa.wustl.edu/reference/show/976nz). We also used the

Yerkes19 cortical surfaces as a macaque template surface. All the preprocessed rs-fMRI data

were mapped on to the macaque template surface.

Simulation for functional connectivity-based spherical registration. To test the perfor-

mance using simulation, we generated a ground-truth deformation field TG, used to warp a

sphere S. TG was composed of two consecutive deformations: 1) a combined feature-based T{C,

SD,MY} by registering two different spheres using structural and functional features and 2) a

functional feature-based TfFD;PCig which was manually adjusted to induce additional nonlinear

deformation at a certain region (Fig 5). The combined feature-based deformation field was

Fig 5. Spherical demons registration results of nonlinear warping simulation. Spheres on the top row show the target features (warped from the source

sphere using a ground-truth deformation field). The spheres on the second row show the source features. The last two rows show the registration results only

with structural features and with both structural and functional features, respectively. Warping with structural and functional properties makes the source

sphere highly aligned with the target sphere.

https://doi.org/10.1371/journal.pone.0258992.g005
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applied to warp two different cortical spheres using both structure and functional features of

the initial sphere. In the current study, to contrast with structural registration with only the

structure features, we denoted registration with the combined features as functional registra-

tion. In contrast, the functional feature-based deformation field was further used to warp corti-

cal spheres only using functional features. The final deformation field was a sum of both

functional and structure-based deformation fields as below.

TG ¼ TfC;SD;MYg � TfFD;PCig

This simulation using a consecutive structural and functional deformation as a ground-

truth deformation was conducted to test whether the functional-features are essential to esti-

mate the final deformation field in matching functional homology rather than structural

homology. In the first column of Fig 5, dotted circles show where structural and functional-

features have deviated from each other.

The resulting warped sphere SF = S�TG was considered as a fixed(target) sphere to be

inverted to its original sphere using the spherical demons algorithm. We resampled curvature,

sulcus depth (structural information), time series, and the parcellation map, according to the

deformation field TG. This resampled data plays as a target sphere as a ground truth.

The original S was considered as a moving (source) sphere. This simulation was also con-

ducted to validate the proposed algorithm’s convergence after iterations despite misaligned

parcellation in the initial guess. Geodesic distance error and the number of invalid parcellated

vertices were computed on the sphere for every iteration.

Evaluations: Structure versus functional areal changes and their inter-subject variabili-

ties. We compared the structural and functional registration using the areal change index.

We define surface area F(S), the element of which is the sum of the area of all triangles con-

nected to each node in the spherical mesh S. The areal change before and after functional regis-

tration is defined with areal changing index (ACI), ACI S; Sreg
� �

¼
FðSregÞ� FðSÞ
FðSregÞþFðSÞ

. ACI shows how

face area (mesh triangles) in the surface expanded (positive) or shrunk (negative) at each node

after registration compared to before registration.

Evaluations: Asymmetry and its inter-subject variability. Spherical registration from

the right hemisphere to each individual’s left hemisphere in both human and macaque groups

was conducted using only structural features and using both structural and functional features

separately. After the interhemispheric registration, the interhemispheric brain asymmetry was

evaluated by calculating the interhemispheric areal asymmetric index (AAI). The areal change

of the right hemisphere before and after functional registration to the left hemisphere is

defined with AAI Sleft; Sright
� �

¼
FðSleftÞ� FðSrightÞ
FðSleftÞþFðSrightÞ

. In this case, Sright is the right hemisphere surface

while Sleft is the right hemisphere surface registered to the left hemisphere. Positive AAI is the

area where the left hemisphere is larger than the right.

Inter-species registration and group comparison between macaque and human. For

the group study between human and macaque, the cortical surface of individual macaque was

registered to the group macaque sphere, followed by transforming it into the HCP cortical sur-

face space using the surface registration function from the macaque to the HCP atlas. Because

the human cortical surface has a highly folded morphology compared to that of macaque, max-

imum of 5 iterations were performed in step 2 to avoid overfitting during surface registration

from the macaque cortical surface to the human cortical surface. A two-sample t-test of ACI

was conducted to compare group-level differences between macaque and human. To evaluate

the asymmetry between groups, we applied a two-sample t-test of absolute AAI, disregarding

the hemispheric dominance.
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Results

Simulation results for functional connectivity-based spherical registration

Fig 5 shows the results of nonlinear warping simulation with an artificially generated deformation

field. From top to bottom, each row shows the fixed (target) spheres (which were warped with a

ground-truth deformation field), moving (source) spheres, spheres registered with structural fea-

tures, and spheres registered with both structural and functional network features. From left to

right, each row indicates the curvature, sulcus depth, node degree, and first four principal compo-

nents of the ROI-based connectivity matrix. As the target sphere was nonlinearly registered, the

target sphere’s initial parcellation map was highly misaligned. Fig 5 shows dotted circles where the

additional warping using a functional deformation field was applied to the initial deformation

field using structural features. Spherical demons registration using only structural features aligned

two spheres roughly, particularly in the region around the dotted circle. Meanwhile, the registra-

tion with functional features enabled a more sophisticated alignment. For quantitative evaluation,

error plots were used and are shown in Fig 6. Plot (a) in Fig 6 shows the sum of geodesic differ-

ences between the nodes of the target sphere and those of the moving sphere, and plot (b) displays

the number of nodes for which parcellation is incorrect. Iteration 0 corresponds to the second

row, iteration 1 to the third row, and iteration 4 to the last row of Fig 5. The error plots in Fig 6

show that this algorithm converges well within a few additional iterations after structural registra-

tion, although misaligned parcellation was used in the first iteration.

Functional homology versus structural homology and its inter-subject

variability

Fig 7 shows a comparison of ACI of structural and functional homology in each hemisphere of

the human and macaque. Figs 7A, 7B, and 7D show ACI results of each species when

Fig 6. (a) Registration errors defined by the nodes’ geodesic distance are displayed at different iterations. (b) Registration errors defined by the number of

wrong-labeled nodes are displayed. The first iteration error was calculated after demons registration only with structural data. In contrast, the registration at the

second to the fourth iterations was conducted with both structural and functional properties, weighting functional properties along with the increased iteration.

https://doi.org/10.1371/journal.pone.0258992.g006
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registered to its template. Comparing A, B, and C, human ACI by functional registration

shows the most considerable individual variabilities. The interindividual variation of structural

areal changes is lower than that of functional registration. This is partly because the structural

surfaces of the human HCP database were spatially normalized across individuals. The

macaque shows more downward inter-subject variations compared to humans.

Interhemispheric asymmetry and its inter-subject variability

Fig 8 shows the AAI after registrations of the right to the left hemisphere of the 13 humans and

13 macaques. Fig 8A shows the AAI’s mean over 13 individuals computed on each surface

node after structural registration (left column) and functional registration (right column). The

area with the positive value (hot colors) was where the left hemisphere was larger than the

right hemisphere. Functional registration in humans showed a higher interhemispheric asym-

metry than did structural registration. Fig 8B shows standard deviations of the AAI after struc-

tural and functional registrations. As shown in Fig 8B, humans’ functional registration showed

higher individual variability than structural registration. The low structural variability in the

human AAI may be attributable to the fact that HCP cortical surfaces were registered to the

template before the current evaluation. Despite the pre-registration across individuals based

on structural features, functional homology deviates from the structural homology and shows

high inter-individual variations. As we had no individual cortical surfaces for the macaque

group, we did not evaluate the inter-subject variability for this group’s structural registration.

As presented in the right column of Fig 8B and 8D, humans showed a more heterogeneous

interhemispheric asymmetry than macaques. Fig 8E represents two-sample t-tests for the abso-

lute AAI between humans and macaques after functional registration. In Fig 8E, the positive-

valued regions (hot colors) indicate the area where humans had a higher AAI than macaques,

regardless of hemispheric dominance. Tables 1 and 2 summarize statistical analysis results.

Fig 7. Cortical surface area changes in macaques and humans after structural registration and functional (combined structural and functional features)

registration. The left/right hemisphere of human and macaque subjects were registered to the left/right hemisphere of the human template and the macaque

template, respectively. The first two top rows are the average of ACI over 13 individuals. The bottom two rows are the standard deviation of ACI. The blue

color in the average figure indicates where the area after registration to the group template was less than that of the group template.

https://doi.org/10.1371/journal.pone.0258992.g007
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Table 1 is the result of significant AAI for each species. Table 2 summarizes group comparison

results of AAI between humans and macaques.

Fig 9 shows macaque parcellation results after structural and functional registration of the

macaque template to the human template. Fig 9A presents the parcellation map of the human

HCP template. Fig 9B and 9C show parcellation maps of the macaque template after the regis-

tration of structural and functional features, respectively.

Discussion

Registration is a procedure to determine homology across brains, the meaning of which is

reflected in the selection of features for matching. For establishing homology across brains

using inter-species registration, structural landmarks such as cortical curvature, sulcus depth,

and areal boundaries based on structural MRI have been mainly used [12, 15]. To determine

homology across species, structural landmarks alone [13] or in combination with biological

properties, such as myelination [39], have been used.

Fig 8. Group interhemispheric asymmetry results: Humans and macaques (13 each). A and B show mean and standard deviation of AAI evaluated after

registration of the right hemisphere to the left hemisphere in humans using structural features (left column) and using combined (structural and functional)

features (right column) were computed on each parcellation. C and D show the results of the macaque’s interhemispheric registration using structural and

functional features. E displays two-sample t-test result of the absolute value of human AAI and macaque AAI with intensity = −log10p�sign(t).

https://doi.org/10.1371/journal.pone.0258992.g008
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Recent studies have implicated the importance of functional homology across species.

Although not many studies are available for inter-species registration, inter-subject registra-

tion studies within a group involve the need for functional registration using functional con-

nectivity properties [19–23, 40–42]. In functional registration, the local functional connectivity

pattern [21] and within-subject functional connectivity [19, 20] were used. Jiang, Du [21]

Table 1. Interhemispheric areal asymmetry.

Macaque Human

mean std t p mean std t p

MST -0.116 0.086 -4.878 0.000 V1 -0.014 0.014 -3.557 0.004

V8 -0.057 0.059 -3.467 0.005 V2 -0.035 0.031 -4.043 0.002

POS2 0.038 0.042 3.305 0.006 L_4 -0.040 0.023 -6.128 0.000

PIT -0.076 0.083 -3.272 0.007 3b -0.019 0.020 -3.434 0.005

MT -0.074 0.072 -3.735 0.003 POS1 -0.038 0.039 -3.481 0.005

PSL 0.040 0.047 3.080 0.010 d23ab -0.156 0.055 -10.303 0.000

v23ab -0.081 0.068 -4.299 0.001 31pv -0.084 0.069 -4.415 0.001

d23ab -0.107 0.035 -11.146 0.000 5L -0.044 0.043 -3.665 0.003

31pv -0.071 0.077 -3.302 0.006 LIPv -0.120 0.132 -3.281 0.007

MIP -0.106 0.117 -3.271 0.007 VIP -0.136 0.142 -3.454 0.005

1 -0.080 0.038 -7.555 0.000 MIP -0.161 0.114 -5.061 0.000

2 -0.049 0.027 -6.539 0.000 1.000 -0.041 0.042 -3.531 0.004

6d -0.037 0.043 -3.095 0.009 6d -0.074 0.049 -5.509 0.000

6mp -0.075 0.039 -6.925 0.000 6mp -0.125 0.064 -6.997 0.000

33pr -0.137 0.061 -8.133 0.000 d32 -0.148 0.089 -5.997 0.000

a24 -0.123 0.040 -11.133 0.000 47m -0.193 0.070 -9.993 0.000

d32 -0.064 0.062 -3.675 0.003 8C -0.156 0.061 -9.238 0.000

8BM 0.040 0.043 3.366 0.006 47l -0.101 0.073 -4.981 0.000

47m -0.227 0.077 -10.597 0.000 p9-46v -0.102 0.078 -4.686 0.001

8C -0.111 0.087 -4.591 0.001 OP2-3 -0.129 0.050 -9.343 0.000

47l -0.070 0.076 -3.326 0.006 52.000 -0.044 0.041 -3.866 0.002

a47r -0.055 0.024 -8.220 0.000 PoI2 -0.041 0.034 -4.304 0.001

47s -0.070 0.081 -3.120 0.009 Pir -0.020 0.021 -3.437 0.005

OP2-3 -0.116 0.117 -3.590 0.004 AAIC -0.025 0.018 -4.903 0.000

FOP3 0.099 0.099 3.583 0.004 EC -0.035 0.030 -4.255 0.001

STSda -0.059 0.056 -3.821 0.002 H -0.026 0.028 -3.303 0.006

TE1a -0.118 0.076 -5.650 0.000 PeEc -0.050 0.035 -5.042 0.000

TE2a -0.064 0.049 -4.710 0.001 PHA3 -0.063 0.037 -6.226 0.000

IP0 0.032 0.035 3.272 0.007 TE1a -0.167 0.046 -13.154 0.000

PF -0.045 0.036 -4.479 0.001 TF -0.040 0.043 -3.370 0.006

FST -0.102 0.082 -4.505 0.001 PHT -0.062 0.067 -3.377 0.006

s32 -0.062 0.068 -3.329 0.006 TPOJ2 -0.087 0.085 -3.670 0.003

pOFC -0.078 0.051 -5.544 0.000 PGi -0.137 0.096 -5.146 0.000

p24 -0.057 0.059 -3.470 0.005 PHA2 -0.027 0.032 -3.080 0.010

PoI1 -0.038 0.032 -4.289 0.001

LBelt 0.038 0.033 4.200 0.001

TE1m -0.056 0.057 -3.537 0.004

PI -0.036 0.025 -5.215 0.000

AAI: areal asymmetric index, t: t-value, p: p-value, std: standard deviation. All label names follow Glasser, Coalson [34].

https://doi.org/10.1371/journal.pone.0258992.t001
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showed that functional registration improves the resting-state default mode network’s overlap.

Nenning, Liu [23] showed that functional registration with resting-state networks improves

the statistical power of the group analysis of task fMRI findings. Robinson, Jbabdi [24] used

independent component maps of rs-fMRI combined with other multimodal features such as

Table 2. Group differences in the interhemispheric areal asymmetry between humans and macaques.

Comparison of AAI (H,M)

mean(human) std(human) mean(monkey) std(monkey) t p

POS2 -0.035 0.067 0.038 0.042 -3.336 0.003

33pr -0.001 0.049 -0.137 0.061 6.244 0.000

a24 0.048 0.070 -0.123 0.040 7.657 0.000

p9-46v -0.102 0.078 0.012 0.066 -3.999 0.001

47s 0.018 0.043 -0.070 0.081 3.445 0.002

PGi -0.137 0.096 -0.028 0.065 -3.379 0.003

25 0.022 0.033 -0.035 0.044 3.723 0.001

s32 0.035 0.065 -0.062 0.068 3.752 0.001

pOFC 0.001 0.026 -0.078 0.051 5.011 0.000

a32pr -0.036 0.054 0.037 0.054 -3.448 0.002

Comparison of absolute AAI (|H|,|M|)

mean(human) std(human) mean(monkey) std(monkey) t p

33pr -0.001 0.049 -0.137 0.061 -5.272 0.000

d32 -0.148 0.089 -0.064 0.062 3.983 0.001

8Ad -0.008 0.082 0.021 0.039 3.445 0.002

p9-46v -0.102 0.078 0.012 0.066 3.411 0.002

FOP2 -0.002 0.053 0.067 0.111 -3.404 0.002

TPOJ3 -0.106 0.183 -0.025 0.080 3.537 0.002

PGi -0.137 0.096 -0.028 0.065 3.907 0.001

pOFC 0.001 0.026 -0.078 0.051 -5.303 0.000

Ig -0.002 0.029 0.051 0.113 -3.598 0.001

AAI: areal asymmetric index, t: t-value for two-sample t-tests, p: p-value, std: standard deviation. All label names follow Glasser, Coalson [34].

https://doi.org/10.1371/journal.pone.0258992.t002

Fig 9. Parcellation maps of the human atlas and macaque atlas. (a) Parcellation map with 180 ROI labels of the human atlas. (b) Parcellation maps on the

macaque atlas after registration using only structural features and (c) structural and functional network features.

https://doi.org/10.1371/journal.pone.0258992.g009
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curvature, myelin map, or discrete areal delineation to determine inter-subject homology in

cortical registration.

This study proposed an inter-species registration scheme to determine functional homol-

ogy across humans and macaques using properties of resting-state functional brain networks.

We derived the functional connectivity matrix from all nodes in the cortical surface and all

regions in the parcellation map to match functional network properties across species. Con-

nectivity between nodes and parcellated regions may be more robust to noise in BOLD signals

than connectivity among all nodes. Although we used only a functional node degree metric to

describe the functional network property, it can easily be extended to other geometric metrics

such as clustering coefficient or local efficiency of a network within each parcellation. It is also

possible to use the entire connectivity matrix to determine functional homology across species

without deriving abstract metrics. However, to capture principal information in the functional

network and minimize noise effects, we applied group PCA to the connectivity matrices. This

approach differs from the independent (or principal) component analyses of rs-fMRI time

series for generating independent/principal component maps used in the functional registra-

tion conducted by Robinson, Jbabdi [24]. The current PCA approach to connectivity matrices

is similar to a graph-independent component analysis, which dissolves graphs into multiple

independent subgraphs by applying independent component analyses directly to the connec-

tivity matrices [43]. Using PCA to the connectivity matrices, we were able to reduce the com-

plexity in high dimensional feature space during optimization. PCA generates heterogeneous

PCs across individuals. To resolve PCs’ correspondence across individuals and species, we

used dual-regression PCA, i.e., individual-level PCA of the connectivity matrix, followed by

the group-level PCA of the PC components derived from the individual PCA, similarly done

in the group-level independent component analysis [32, 33]. By projecting the group PC into

the individual level, we could achieve correspondence in graph property patterns across indi-

viduals and across species.

For matching functional network properties using the functional connectivity matrix

between humans and macaques, a cortical parcellation map in macaques is required, which

corresponds to humans. In other words, a common set of network nodes that corresponds

one-to-one across species should be determined before matching functional topology. How-

ever, to the best of our knowledge, no common representation for network nodes across

humans and macaques has been made available to date. Thus, we introduced a method to

define a set of network nodes (i.e., a cortical parcellation map) in an iterative manner during

functional registration. The scheme alternates between deriving network features based on

previous cortical parcellations and redefining cortical parcellations using the deformation field

estimated using the network features. Finally, we could derive a cortical parcellation map for

the macaque cortex corresponding to that of the human cortex. We confirmed the iterative

process utilizing the recursive estimation of functional connectivity metrics and cortical par-

cellation converges in the simulation (Fig 5), where structural features were insufficient to

determine the homologous region. The macaques’ parcellation map will be available for public

use in terms of surface mesh and volumetric format.

To test the plausibility for connectivity-based functional registration, we compared the

inter-subject variability in the functional homology compared to the structural homology in

terms of area changes after registration to the template with functional features compared to

structural features. This is based on the common speculation that function homology will

show higher inter-individual variations than structural homology. The structural spherical reg-

istration served as a baseline for functional registration since the structural spherical registra-

tion was conducted on the structurally realigned cortical surfaces in the HCP database. The

high inter-subject variability exists in the functional registration, even after structural
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registration (Fig 7). According to the conventional speculation, the inter-subject variability of

functional homology was high only in the human, not in the macaque.

We also evaluated interhemispheric asymmetry and its inter-subject variability in func-

tional homology in terms of regional extent (area) (Fig 8). We found higher asymmetry in

functional homology than in structural homology. The inter-subject variability in the inter-

hemispheric cortical asymmetry after functional registration was also higher than that after

structural registration. We note that the interhemispheric asymmetry of the regional surface

area after registration using structural features in this study may not fully represent the

human’s structural asymmetry since we used cortical surfaces of the HCP data spatially nor-

malized to the template. Nevertheless, we confirmed that a higher interhemispheric functional

asymmetry remains even after adjusting structural factors using spatial registration to the tem-

plate space.

The macaque also shows interhemispheric asymmetry in the regional cortical area (Fig 8C).

Gannon, Kheck [44] showed that macaques have a higher asymmetry in the cytoarchitectonic

region, not in the gross anatomy. Considering that functional connectivity is closer to neuro-

nal distribution (cytoarchitectonic) than gyrus patterns (gross anatomy), the study findings by

Gannon, Kheck [44] indirectly support the current result of the higher asymmetry of the func-

tional area than of the structural area.

The inter-subject variability in functional asymmetry was higher in humans than in

macaques. This is expected that a higher-order brain system has higher inter-subject variability

than a lower-level system in the cognitive hierarchy, exampled in Jang, Knight [45]. Similarly,

the human brain has a more complex architecture than that of the macaques, which may

explain the higher inter-subject variability in functional interhemispheric asymmetry among

human brains than macaques.

Asymmetry in the brain, particularly in the gray and white matter, has been researched

[25–29]. Interhemispheric asymmetry in morphology or connectivity may be associated with

functional lateralization, such as language or other cognitive domains [46–49]. Xia, Wang [50]

studied brain structural asymmetries in developing macaque monkeys from birth to 20

months of age and the leftward increased area at the posterior insula and posterior superior

temporal gyrus and ventral occipital cortex, which slightly differs from the current structural

asymmetry of the adult macaque in the left-right direction. The current structural asymmetry

of the adult macaque was evaluated by the Yerkes19 macaque template (https://balsa.wustl.

edu/reference/show/976nz). Although the present study differs from Xia, Wang [50] in the

direction, we found a left-lateralized area increase in the lateral, inferior and medial frontal

lobes and angular gyrus, similarly to the human (Fig 8A), which are known to be involved in

the higher-level information processing. Considering the left-dominancy of the language cen-

ters in the human, the left-dominant area in this language region (Broca’s and Wernicke’s

areas) may support the current result’s validity.

The asymmetry was highly variable across humans, particularly in the angular gyrus, supe-

rior and lateral frontal lobes, compared to the sensory-motor areas (Fig 8B). Meanwhile, the

inter-subject variability was relatively low in macaques compared to the human. Van Essen,

Donahue [51] reported that humans have the most hemispheric variability and interhemi-

spheric asymmetry among mice, marmosets, macaques, and humans based on structural regis-

tration. In their analysis, nearly one-third of all areas (57/180) in the human showed

interhemispheric asymmetry (AAI>0.2) by multimodal parcellation. In our analysis of func-

tional connectivity-based registration, 39 regions out of 180 cortical areas had significantly

high interhemispheric asymmetry in the human, evaluated after structural registration.

Functional homology defined in the current scheme using rs-fMRI remains validated fur-

ther using homology defined with task performance. Resting-state functional connectivity
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may not necessarily correspond to task performance connectivity [52], although there are high

overlaps [53–60]. Nevertheless, functional brain connectivity and networks have widely been

used to characterize individual characteristics such as maturity [61], character [62], finger-

printing [63], and task performance [64] and to detect individual differences about connectiv-

ity [65], cognitive function [66], cognition [67], and clinical symptoms [68]. In line with this

research trend, the present study utilized resting-state functional connectivity in determining

homology across humans and macaques. We expect the proposed framework of matching

functional network properties across species to be highly useful in evaluating cross-species

convergence and divergence in the brain functions, which may expand our understanding of

humans’ uniqueness.

Author Contributions

Conceptualization: Haewon Nam, Hae-Jeong Park.

Data curation: Jinseok Eo, Maeng-Keun Oh.

Formal analysis: Haewon Nam, Maeng-Keun Oh.

Funding acquisition: Hae-Jeong Park.

Investigation: Haewon Nam.

Methodology: Haewon Nam, Chongwon Pae, Hae-Jeong Park.

Project administration: Hae-Jeong Park.

Software: Haewon Nam.

Supervision: Hae-Jeong Park.

Validation: Haewon Nam, Jinseok Eo.

Visualization: Haewon Nam, Jinseok Eo.

Writing – original draft: Haewon Nam, Hae-Jeong Park.

Writing – review & editing: Haewon Nam, Hae-Jeong Park.

References
1. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface recon-

struction. Neuroimage. 1999; 9(2):179–94. https://doi.org/10.1006/nimg.1998.0395 PMID: 9931268.

2. Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-

based coordinate system. Neuroimage. 1999; 9(2):195–207. https://doi.org/10.1006/nimg.1998.0396

PMID: 9931269.

3. Van Essen DC, Drury HA. Structural and functional analyses of human cerebral cortex using a surface-

based atlas. J Neurosci. 1997; 17(18):7079–102. https://doi.org/10.1523/JNEUROSCI.17-18-07079.

1997 PMID: 9278543.

4. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Chen Q, et al. Widespread reductions of

cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Archives of gen-

eral psychiatry. 2009; 66(5):467–77. https://doi.org/10.1001/archgenpsychiatry.2009.24 PMID:

19414706

5. Rimol LM, Nesvåg R, Hagler DJ, BergmannØ, Fennema-Notestine C, Hartberg CB, et al. Cortical vol-

ume, surface area, and thickness in schizophrenia and bipolar disorder. Biological psychiatry. 2012; 71

(6):552–60. https://doi.org/10.1016/j.biopsych.2011.11.026 PMID: 22281121

6. Park HJ, Lee JD, Kim EY, Park B, Oh MK, Lee S, et al. Morphological alterations in the congenital blind

based on the analysis of cortical thickness and surface area. NeuroImage. 2009; 47:98–106. Epub

2009/04/14. S1053-8119(09)00335-8 [pii] https://doi.org/10.1016/j.neuroimage.2009.03.076 PMID:

19361567.

PLOS ONE Inter-species functional registration between macaques and humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0258992 October 21, 2021 18 / 22

https://doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
https://doi.org/10.1006/nimg.1998.0396
http://www.ncbi.nlm.nih.gov/pubmed/9931269
https://doi.org/10.1523/JNEUROSCI.17-18-07079.1997
https://doi.org/10.1523/JNEUROSCI.17-18-07079.1997
http://www.ncbi.nlm.nih.gov/pubmed/9278543
https://doi.org/10.1001/archgenpsychiatry.2009.24
http://www.ncbi.nlm.nih.gov/pubmed/19414706
https://doi.org/10.1016/j.biopsych.2011.11.026
http://www.ncbi.nlm.nih.gov/pubmed/22281121
https://doi.org/10.1016/j.neuroimage.2009.03.076
http://www.ncbi.nlm.nih.gov/pubmed/19361567
https://doi.org/10.1371/journal.pone.0258992


7. Van Essen DC, Smith J, Glasser MF, Elam J, Donahue CJ, Dierker DL, et al. The brain analysis library

of spatial maps and atlases (BALSA) database. Neuroimage. 2017; 144:270–4. https://doi.org/10.1016/

j.neuroimage.2016.04.002 PMID: 27074495

8. Glasser MF, Van Essen DC. Mapping human cortical areas in vivo based on myelin content as revealed

by T1-and T2-weighted MRI. Journal of Neuroscience. 2011; 31(32):11597–616. https://doi.org/10.

1523/JNEUROSCI.2180-11.2011 PMID: 21832190

9. Park HJ, Lee JD, Chun JW, Seok JH, Yun M, Oh MK, et al. Cortical surface-based analysis of 18F-FDG

PET: measured metabolic abnormalities in schizophrenia are affected by cortical structural abnormali-

ties. NeuroImage. 2006; 31(4):1434–44. https://doi.org/10.1016/j.neuroimage.2006.02.001 PMID:

16540349.

10. Greve DN, Svarer C, Fisher PM, Feng L, Hansen AE, Baare W, et al. Cortical surface-based analysis

reduces bias and variance in kinetic modeling of brain PET data. Neuroimage. 2014; 92:225–36. https://

doi.org/10.1016/j.neuroimage.2013.12.021 PMID: 24361666; PubMed Central PMCID: PMC4008670.

11. Cho H, Choi JY, Hwang MS, Kim YJ, Lee HM, Lee HS, et al. In vivo cortical spreading pattern of tau and

amyloid in the Alzheimer disease spectrum. Ann Neurol. 2016; 80(2):247–58. https://doi.org/10.1002/

ana.24711 PMID: 27323247.

12. Denys K, Vanduffel W, Fize D, Nelissen K, Sawamura H, Georgieva S, et al. Visual activation in prefron-

tal cortex is stronger in monkeys than in humans. J Cogn Neurosci. 2004; 16(9):1505–16. Epub 2004/

12/17. https://doi.org/10.1162/0898929042568505 PMID: 15601515.

13. Van Essen DC, Glasser MF, Dierker DL, Harwell J. Cortical parcellations of the macaque monkey ana-

lyzed on surface-based atlases. Cereb Cortex. 2012; 22(10):2227–40. Epub 2011/11/05. https://doi.

org/10.1093/cercor/bhr290 PMID: 22052704; PubMed Central PMCID: PMC3500860.

14. Xu T, Nenning KH, Schwartz E, Hong SJ, Vogelstein JT, Goulas A, et al. Cross-species functional align-

ment reveals evolutionary hierarchy within the connectome. Neuroimage. 2020; 223:117346. Epub

2020/09/12. https://doi.org/10.1016/j.neuroimage.2020.117346 PMID: 32916286.

15. Van Essen DC. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral

cortex. Neuroimage. 2005; 28(3):635–62. Epub 2005/09/21. https://doi.org/10.1016/j.neuroimage.

2005.06.058 PMID: 16172003.

16. Honey CJ, Kotter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional

connectivity on multiple time scales. Proc Natl Acad Sci U S A. 2007; 104(24):10240–5. Epub 2007/06/

06. https://doi.org/10.1073/pnas.0701519104 PMID: 17548818; PubMed Central PMCID:

PMC1891224.

17. van den Heuvel MP, Sporns O. An anatomical substrate for integration among functional networks in

human cortex. J Neurosci. 2013; 33(36):14489–500. Epub 2013/09/06. https://doi.org/10.1523/

JNEUROSCI.2128-13.2013 PMID: 24005300; PubMed Central PMCID: PMC6618386.

18. Park HJ, Friston K. Structural and functional brain networks: from connections to cognition. Science.

2013; 342(6158):1238411. https://doi.org/10.1126/science.1238411 PMID: 24179229.

19. Conroy BR, Singer BD, Guntupalli JS, Ramadge PJ, Haxby JV. Inter-subject alignment of human corti-

cal anatomy using functional connectivity. Neuroimage. 2013; 81:400–11. Epub 2013/05/21. https://doi.

org/10.1016/j.neuroimage.2013.05.009 PMID: 23685161; PubMed Central PMCID: PMC3729877.

20. Conroy BR, Singer BD, Haxby JV, Ramadge PJ. fMRI-Based Inter-Subject Cortical Alignment Using

Functional Connectivity. Adv Neural Inf Process Syst. 2009; 22:378–86. Epub 2009/01/01. PMID:

26388679; PubMed Central PMCID: PMC4572745.

21. Jiang D, Du Y, Cheng H, Jiang T, Fan Y. Groupwise spatial normalization of fMRI data based on multi-

range functional connectivity patterns. Neuroimage. 2013; 82:355–72. Epub 2013/06/04. https://doi.

org/10.1016/j.neuroimage.2013.05.093 PMID: 23727315.

22. Langs G, Golland P, Tie Y, Rigolo L, Golby AJ. Functional Geometry Alignment and Localization of

Brain Areas. Adv Neural Inf Process Syst. 2010; 1:1225–33. Epub 2010/01/01. PMID: 24808719;

PubMed Central PMCID: PMC4010233.

23. Nenning KH, Liu H, Ghosh SS, Sabuncu MR, Schwartz E, Langs G. Diffeomorphic functional brain sur-

face alignment: Functional demons. Neuroimage. 2017; 156:456–65. Epub 2017/04/19. https://doi.org/

10.1016/j.neuroimage.2017.04.028 PMID: 28416451; PubMed Central PMCID: PMC5548603.

24. Robinson EC, Jbabdi S, Glasser MF, Andersson J, Burgess GC, Harms MP, et al. MSM: a new flexible

framework for Multimodal Surface Matching. Neuroimage. 2014; 100:414–26. Epub 2014/06/19.

https://doi.org/10.1016/j.neuroimage.2014.05.069 PMID: 24939340; PubMed Central PMCID:

PMC4190319.

25. Galaburda AM, LeMay M, Kemper TL, Geschwind N. Right-left asymmetrics in the brain. Science.

1978; 199(4331):852–6. Epub 1978/02/24. https://doi.org/10.1126/science.341314 PMID: 341314.

PLOS ONE Inter-species functional registration between macaques and humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0258992 October 21, 2021 19 / 22

https://doi.org/10.1016/j.neuroimage.2016.04.002
https://doi.org/10.1016/j.neuroimage.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27074495
https://doi.org/10.1523/JNEUROSCI.2180-11.2011
https://doi.org/10.1523/JNEUROSCI.2180-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/21832190
https://doi.org/10.1016/j.neuroimage.2006.02.001
http://www.ncbi.nlm.nih.gov/pubmed/16540349
https://doi.org/10.1016/j.neuroimage.2013.12.021
https://doi.org/10.1016/j.neuroimage.2013.12.021
http://www.ncbi.nlm.nih.gov/pubmed/24361666
https://doi.org/10.1002/ana.24711
https://doi.org/10.1002/ana.24711
http://www.ncbi.nlm.nih.gov/pubmed/27323247
https://doi.org/10.1162/0898929042568505
http://www.ncbi.nlm.nih.gov/pubmed/15601515
https://doi.org/10.1093/cercor/bhr290
https://doi.org/10.1093/cercor/bhr290
http://www.ncbi.nlm.nih.gov/pubmed/22052704
https://doi.org/10.1016/j.neuroimage.2020.117346
http://www.ncbi.nlm.nih.gov/pubmed/32916286
https://doi.org/10.1016/j.neuroimage.2005.06.058
https://doi.org/10.1016/j.neuroimage.2005.06.058
http://www.ncbi.nlm.nih.gov/pubmed/16172003
https://doi.org/10.1073/pnas.0701519104
http://www.ncbi.nlm.nih.gov/pubmed/17548818
https://doi.org/10.1523/JNEUROSCI.2128-13.2013
https://doi.org/10.1523/JNEUROSCI.2128-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/24005300
https://doi.org/10.1126/science.1238411
http://www.ncbi.nlm.nih.gov/pubmed/24179229
https://doi.org/10.1016/j.neuroimage.2013.05.009
https://doi.org/10.1016/j.neuroimage.2013.05.009
http://www.ncbi.nlm.nih.gov/pubmed/23685161
http://www.ncbi.nlm.nih.gov/pubmed/26388679
https://doi.org/10.1016/j.neuroimage.2013.05.093
https://doi.org/10.1016/j.neuroimage.2013.05.093
http://www.ncbi.nlm.nih.gov/pubmed/23727315
http://www.ncbi.nlm.nih.gov/pubmed/24808719
https://doi.org/10.1016/j.neuroimage.2017.04.028
https://doi.org/10.1016/j.neuroimage.2017.04.028
http://www.ncbi.nlm.nih.gov/pubmed/28416451
https://doi.org/10.1016/j.neuroimage.2014.05.069
http://www.ncbi.nlm.nih.gov/pubmed/24939340
https://doi.org/10.1126/science.341314
http://www.ncbi.nlm.nih.gov/pubmed/341314
https://doi.org/10.1371/journal.pone.0258992


26. Kong XZ, Mathias SR, Guadalupe T, Group ELW, Glahn DC, Franke B, et al. Mapping cortical brain

asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc Natl Acad Sci U

S A. 2018; 115(22):E5154–E63. Epub 2018/05/17. https://doi.org/10.1073/pnas.1718418115 PMID:

29764998; PubMed Central PMCID: PMC5984496.

27. Sowell ER, Thompson PM, Rex D, Kornsand D, Tessner KD, Jernigan TL, et al. Mapping sulcal pattern

asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices.

Cereb Cortex. 2002; 12(1):17–26. Epub 2001/12/06. https://doi.org/10.1093/cercor/12.1.17 PMID:

11734529.

28. Toga AW, Thompson PM. Mapping brain asymmetry. Nat Rev Neurosci. 2003; 4(1):37–48. Epub 2003/

01/04. https://doi.org/10.1038/nrn1009 PMID: 12511860.

29. Park HJ, Westin CF, Kubicki M, Maier SE, Niznikiewicz M, Baer A, et al. White matter hemisphere

asymmetries in healthy subjects and in schizophrenia: a diffusion tensor MRI study. NeuroImage. 2004;

23(1):213–23. https://doi.org/10.1016/j.neuroimage.2004.04.036 PMID: 15325368.

30. Yeo BT, Sabuncu MR, Vercauteren T, Ayache N, Fischl B, Golland P. Spherical demons: fast diffeo-

morphic landmark-free surface registration. IEEE Trans Med Imaging. 2010; 29(3):650–68. Epub 2009/

08/28. https://doi.org/10.1109/TMI.2009.2030797 PMID: 19709963; PubMed Central PMCID:

PMC2862393.

31. Vercauteren T, Pennec X., Perchant A. and Ayache N. Diffeomorphic demons: Effi-cient non-paramet-

ric image registration. Neuroimage. 2009; 45(1):S61–S72.

32. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, et al. Distinct patterns of

brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A. 2009; 106

(17):7209–14. Epub 2009/04/10. https://doi.org/10.1073/pnas.0811879106 PMID: 19357304; PubMed

Central PMCID: PMC2678478.

33. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network

connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain.

2010; 133(Pt 5):1352–67. Epub 2010/04/23. https://doi.org/10.1093/brain/awq075 PMID: 20410145;

PubMed Central PMCID: PMC2912696.

34. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcella-

tion of human cerebral cortex. Nature. 2016; 536(7615):171–8. https://doi.org/10.1038/nature18933

PMID: 27437579; PubMed Central PMCID: PMC4990127.

35. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R, et al. The Human Connec-

tome Project: a data acquisition perspective. NeuroImage. 2012; 62(4):2222–31. https://doi.org/10.

1016/j.neuroimage.2012.02.018 PMID: 22366334; PubMed Central PMCID: PMC3606888.

36. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal pre-

processing pipelines for the Human Connectome Project. Neuroimage. 2013; 80:105–24. https://doi.

org/10.1016/j.neuroimage.2013.04.127 PMID: 23668970; PubMed Central PMCID: PMC3720813.

37. Milham MP, Ai L, Koo B, Xu T, Amiez C, Balezeau F, et al. An Open Resource for Non-human Primate

Imaging. Neuron. 2018; 100(1):61–74 e2. Epub 2018/10/03. https://doi.org/10.1016/j.neuron.2018.08.

039 PMID: 30269990; PubMed Central PMCID: PMC6231397.

38. Ashburner J. A Fast Diffeomorphic Image Registration Algorithm. NeuroImage. 2007; 38(1):95–113.

https://doi.org/10.1016/j.neuroimage.2007.07.007 PMID: 17761438

39. Robinson EC, Jbabdi S, Andersson J, Smith S, Glasser MF, Van Essen DC, et al. Multimodal surface

matching: fast and generalisable cortical registration using discrete optimisation. Inf Process Med Imag-

ing. 2013; 23:475–86. Epub 2013/01/01. https://doi.org/10.1007/978-3-642-38868-2_40 PMID:

24683992.

40. Sabuncu MR, Singer BD, Conroy B, Bryan RE, Ramadge PJ, Haxby JV. Function-based intersubject

alignment of human cortical anatomy. Cereb Cortex. 2010; 20(1):130–40. Epub 2009/05/08. https://doi.

org/10.1093/cercor/bhp085 PMID: 19420007; PubMed Central PMCID: PMC2792192.

41. Zhou Y, Yap PT, Zhang H, Zhang L, Feng Q, Shen D. Improving Functional MRI Registration Using

Whole-Brain Functional Correlation Tensors. Med Image Comput Comput Assist Interv. 2017;

10433:416–23. Epub 2017/12/12. https://doi.org/10.1007/978-3-319-66182-7_48 PMID: 29226283;

PubMed Central PMCID: PMC5722222.

42. Zhou Y, Zhang H, Zhang L, Cao X, Yang R, Feng Q, et al. Functional MRI registration with tissue-spe-

cific patch-based functional correlation tensors. Hum Brain Mapp. 2018; 39(6):2303–16. Epub 2018/03/

06. https://doi.org/10.1002/hbm.24021 PMID: 29504193; PubMed Central PMCID: PMC6176927.

43. Park B, Kim DS, Park HJ. Graph independent component analysis reveals repertoires of intrinsic net-

work components in the human brain. PloS one. 2014; 9(1):e82873. https://doi.org/10.1371/journal.

pone.0082873 PMID: 24409279; PubMed Central PMCID: PMC3883640.

PLOS ONE Inter-species functional registration between macaques and humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0258992 October 21, 2021 20 / 22

https://doi.org/10.1073/pnas.1718418115
http://www.ncbi.nlm.nih.gov/pubmed/29764998
https://doi.org/10.1093/cercor/12.1.17
http://www.ncbi.nlm.nih.gov/pubmed/11734529
https://doi.org/10.1038/nrn1009
http://www.ncbi.nlm.nih.gov/pubmed/12511860
https://doi.org/10.1016/j.neuroimage.2004.04.036
http://www.ncbi.nlm.nih.gov/pubmed/15325368
https://doi.org/10.1109/TMI.2009.2030797
http://www.ncbi.nlm.nih.gov/pubmed/19709963
https://doi.org/10.1073/pnas.0811879106
http://www.ncbi.nlm.nih.gov/pubmed/19357304
https://doi.org/10.1093/brain/awq075
http://www.ncbi.nlm.nih.gov/pubmed/20410145
https://doi.org/10.1038/nature18933
http://www.ncbi.nlm.nih.gov/pubmed/27437579
https://doi.org/10.1016/j.neuroimage.2012.02.018
https://doi.org/10.1016/j.neuroimage.2012.02.018
http://www.ncbi.nlm.nih.gov/pubmed/22366334
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
http://www.ncbi.nlm.nih.gov/pubmed/23668970
https://doi.org/10.1016/j.neuron.2018.08.039
https://doi.org/10.1016/j.neuron.2018.08.039
http://www.ncbi.nlm.nih.gov/pubmed/30269990
https://doi.org/10.1016/j.neuroimage.2007.07.007
http://www.ncbi.nlm.nih.gov/pubmed/17761438
https://doi.org/10.1007/978-3-642-38868-2%5F40
http://www.ncbi.nlm.nih.gov/pubmed/24683992
https://doi.org/10.1093/cercor/bhp085
https://doi.org/10.1093/cercor/bhp085
http://www.ncbi.nlm.nih.gov/pubmed/19420007
https://doi.org/10.1007/978-3-319-66182-7%5F48
http://www.ncbi.nlm.nih.gov/pubmed/29226283
https://doi.org/10.1002/hbm.24021
http://www.ncbi.nlm.nih.gov/pubmed/29504193
https://doi.org/10.1371/journal.pone.0082873
https://doi.org/10.1371/journal.pone.0082873
http://www.ncbi.nlm.nih.gov/pubmed/24409279
https://doi.org/10.1371/journal.pone.0258992


44. Gannon PJ, Kheck N, Hof PR. Leftward interhemispheric asymmetry of macaque monkey temporal

lobe language area homolog is evident at the cytoarchitectural, but not gross anatomic level. Brain Res.

2008; 1199:62–73. Epub 2008/02/12. https://doi.org/10.1016/j.brainres.2007.12.041 PMID: 18262172.

45. Jang C, Knight EQ, Pae C, Park B, Yoon SA, Park HJ. Individuality manifests in the dynamic reconfigu-

ration of large-scale brain networks during movie viewing. Sci Rep. 2017; 7:41414. Epub 2017/01/24.

https://doi.org/10.1038/srep41414 PMID: 28112247; PubMed Central PMCID: PMC5256084.

46. Beaton AA. The relation of planum temporale asymmetry and morphology of the corpus callosum to

handedness, gender, and dyslexia: a review of the evidence. Brain Lang. 1997; 60(2):255–322. Epub

1997/11/05. https://doi.org/10.1006/brln.1997.1825 PMID: 9344480.

47. Gotts SJ, Jo HJ, Wallace GL, Saad ZS, Cox RW, Martin A. Two distinct forms of functional lateralization

in the human brain. Proc Natl Acad Sci U S A. 2013; 110(36):E3435–44. Epub 2013/08/21. https://doi.

org/10.1073/pnas.1302581110 PMID: 23959883; PubMed Central PMCID: PMC3767540.

48. Moffat SD, Hampson E, Lee DH. Morphology of the planum temporale and corpus callosum in left hand-

ers with evidence of left and right hemisphere speech representation. Brain. 1998; 121 (Pt 12):2369–

79. Epub 1999/01/05. https://doi.org/10.1093/brain/121.12.2369 PMID: 9874487.

49. Amunts K, Jancke L, Mohlberg H, Steinmetz H, Zilles K. Interhemispheric asymmetry of the human

motor cortex related to handedness and gender. Neuropsychologia. 2000; 38(3):304–12. Epub 2000/

03/11. https://doi.org/10.1016/s0028-3932(99)00075-5 PMID: 10678696.

50. Xia J, Wang F, Wu Z, Wang L, Zhang C, Shen D, et al. Mapping hemispheric asymmetries of the

macaque cerebral cortex during early brain development. Hum Brain Mapp. 2020; 41(1):95–106. Epub

2019/09/19. https://doi.org/10.1002/hbm.24789 PMID: 31532054; PubMed Central PMCID:

PMC7267900.

51. Van Essen DC, Donahue CJ, Coalson TS, Kennedy H, Hayashi T, Glasser MF. Cerebral cortical fold-

ing, parcellation, and connectivity in humans, nonhuman primates, and mice. Proc Natl Acad Sci U S A.

2019. Epub 2019/12/25. https://doi.org/10.1073/pnas.1902299116 PMID: 31871175; PubMed Central

PMCID: PMC6936571.

52. Jung K, Friston KJ, Pae C, Choi HH, Tak S, Choi YK, et al. Effective connectivity during working mem-

ory and resting states: A DCM study. NeuroImage. 2018; 169:485–95. Epub 2017/12/29. https://doi.

org/10.1016/j.neuroimage.2017.12.067 PMID: 29284140.

53. Cole MW, Ito T, Bassett DS, Schultz DH. Activity flow over resting-state networks shapes cognitive task

activations. Nat Neurosci. 2016; 19(12):1718–26. https://doi.org/10.1038/nn.4406 PMID: 27723746;

PubMed Central PMCID: PMC5127712.

54. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting

human brain using echo-planar MRI. Magn Reson Med. 1995; 34(4):537–41. https://doi.org/10.1002/

mrm.1910340409 PMID: 8524021.

55. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. Intrinsic and task-evoked network architec-

tures of the human brain. Neuron. 2014; 83(1):238–51. https://doi.org/10.1016/j.neuron.2014.05.014

PMID: 24991964; PubMed Central PMCID: PMC4082806.

56. Tavor I, Jones OP, Mars RB, Smith SM, Behrens TE, Jbabdi S. Task-free MRI predicts individual differ-

ences in brain activity during task performance. Science. 2016; 352(6282):216–20. https://doi.org/10.

1126/science.aad8127 WOS:000373681600044. PMID: 27124457

57. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s func-

tional architecture during activation and rest. P Natl Acad Sci USA. 2009; 106(31):13040–5. https://doi.

org/10.1073/pnas.0905267106 WOS:000268667600085. PMID: 19620724

58. Krienen FM, Yeo BTT, Buckner RL. Reconfigurable task-dependent functional coupling modes cluster

around a core functional architecture. Philos T R Soc B. 2014; 369(1653). WOS:000341695200005.

https://doi.org/10.1098/rstb.2013.0526 PMID: 25180304

59. Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, et al. Functional Specialization

and Flexibility in Human Association Cortex. Cereb Cortex. 2015; 25(10):3654–72.

WOS:000366454000032. https://doi.org/10.1093/cercor/bhu217 PMID: 25249407

60. Park B, Eo J, Park HJ. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Func-

tional Connectivity. Front Hum Neurosci. 2017; 11:408. Epub 2017/08/30. https://doi.org/10.3389/

fnhum.2017.00408 PMID: 28848416; PubMed Central PMCID: PMC5554338.

61. Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, et al. Prediction of individual

brain maturity using fMRI. Science. 2010; 329(5997):1358–61. https://doi.org/10.1126/science.

1194144 PMID: 20829489; PubMed Central PMCID: PMC3135376.

62. Kyeong S, Kim E, Park HJ, Hwang DU. Functional network organizations of two contrasting tempera-

ment groups in dimensions of novelty seeking and harm avoidance. Brain Res. 2014; 1575:33–44.

https://doi.org/10.1016/j.brainres.2014.05.037 PMID: 24881884.

PLOS ONE Inter-species functional registration between macaques and humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0258992 October 21, 2021 21 / 22

https://doi.org/10.1016/j.brainres.2007.12.041
http://www.ncbi.nlm.nih.gov/pubmed/18262172
https://doi.org/10.1038/srep41414
http://www.ncbi.nlm.nih.gov/pubmed/28112247
https://doi.org/10.1006/brln.1997.1825
http://www.ncbi.nlm.nih.gov/pubmed/9344480
https://doi.org/10.1073/pnas.1302581110
https://doi.org/10.1073/pnas.1302581110
http://www.ncbi.nlm.nih.gov/pubmed/23959883
https://doi.org/10.1093/brain/121.12.2369
http://www.ncbi.nlm.nih.gov/pubmed/9874487
https://doi.org/10.1016/s0028-3932%2899%2900075-5
http://www.ncbi.nlm.nih.gov/pubmed/10678696
https://doi.org/10.1002/hbm.24789
http://www.ncbi.nlm.nih.gov/pubmed/31532054
https://doi.org/10.1073/pnas.1902299116
http://www.ncbi.nlm.nih.gov/pubmed/31871175
https://doi.org/10.1016/j.neuroimage.2017.12.067
https://doi.org/10.1016/j.neuroimage.2017.12.067
http://www.ncbi.nlm.nih.gov/pubmed/29284140
https://doi.org/10.1038/nn.4406
http://www.ncbi.nlm.nih.gov/pubmed/27723746
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1002/mrm.1910340409
http://www.ncbi.nlm.nih.gov/pubmed/8524021
https://doi.org/10.1016/j.neuron.2014.05.014
http://www.ncbi.nlm.nih.gov/pubmed/24991964
https://doi.org/10.1126/science.aad8127
https://doi.org/10.1126/science.aad8127
http://www.ncbi.nlm.nih.gov/pubmed/27124457
https://doi.org/10.1073/pnas.0905267106
https://doi.org/10.1073/pnas.0905267106
http://www.ncbi.nlm.nih.gov/pubmed/19620724
https://doi.org/10.1098/rstb.2013.0526
http://www.ncbi.nlm.nih.gov/pubmed/25180304
https://doi.org/10.1093/cercor/bhu217
http://www.ncbi.nlm.nih.gov/pubmed/25249407
https://doi.org/10.3389/fnhum.2017.00408
https://doi.org/10.3389/fnhum.2017.00408
http://www.ncbi.nlm.nih.gov/pubmed/28848416
https://doi.org/10.1126/science.1194144
https://doi.org/10.1126/science.1194144
http://www.ncbi.nlm.nih.gov/pubmed/20829489
https://doi.org/10.1016/j.brainres.2014.05.037
http://www.ncbi.nlm.nih.gov/pubmed/24881884
https://doi.org/10.1371/journal.pone.0258992


63. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional connectome fin-

gerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci. 2015; 18

(11):1664–71. https://doi.org/10.1038/nn.4135 PMID: 26457551.

64. Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S. Task-free MRI predicts individual

differences in brain activity during task performance. Science. 2016; 352(6282):216–20. https://doi.org/

10.1126/science.aad8127 PMID: 27124457.

65. Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR, et al. Individual variability in functional

connectivity architecture of the human brain. Neuron. 2013; 77(3):586–95. https://doi.org/10.1016/j.

neuron.2012.12.028 PMID: 23395382

66. Poole VN, Robinson ME, Singleton O, DeGutis J, Milberg WP, McGlinchey RE, et al. Intrinsic functional

connectivity predicts individual differences in distractibility. Neuropsychologia. 2016; 86:176–82. https://

doi.org/10.1016/j.neuropsychologia.2016.04.023 PMID: 27132070.

67. Smith SM, Nichols TE, Vidaurre D, Winkler AM, Behrens TE, Glasser MF, et al. A positive-negative

mode of population covariation links brain connectivity, demographics and behavior. Nat Neurosci.

2015; 18(11):1565–7. https://doi.org/10.1038/nn.4125 PMID: 26414616; PubMed Central PMCID:

PMC4625579.

68. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci.

2010; 4:19. https://doi.org/10.3389/fnsys.2010.00019 PMID: 20592951; PubMed Central PMCID:

PMC2893721.

PLOS ONE Inter-species functional registration between macaques and humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0258992 October 21, 2021 22 / 22

https://doi.org/10.1038/nn.4135
http://www.ncbi.nlm.nih.gov/pubmed/26457551
https://doi.org/10.1126/science.aad8127
https://doi.org/10.1126/science.aad8127
http://www.ncbi.nlm.nih.gov/pubmed/27124457
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1016/j.neuron.2012.12.028
http://www.ncbi.nlm.nih.gov/pubmed/23395382
https://doi.org/10.1016/j.neuropsychologia.2016.04.023
https://doi.org/10.1016/j.neuropsychologia.2016.04.023
http://www.ncbi.nlm.nih.gov/pubmed/27132070
https://doi.org/10.1038/nn.4125
http://www.ncbi.nlm.nih.gov/pubmed/26414616
https://doi.org/10.3389/fnsys.2010.00019
http://www.ncbi.nlm.nih.gov/pubmed/20592951
https://doi.org/10.1371/journal.pone.0258992

