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A fundamental goal of microbial ecology is to accurately determine the species
composition in a given microbial ecosystem. In the context of the human microbiome,
this is important for establishing links between microbial species and disease states.
Here we benchmark the Microba Community Profiler (MCP) against other metagenomic
classifiers using 140 moderate to complex in silico microbial communities and a
standardized reference genome database. MCP generated accurate relative abundance
estimates and made substantially fewer false positive predictions than other classifiers
while retaining a high recall rate. We further demonstrated that the accuracy of species
classification was substantially increased using the Microba Genome Database, which
is more comprehensive than reference datasets used by other classifiers and illustrates
the importance of including genomes of uncultured taxa in reference databases.
Consequently, MCP classifies appreciably more reads than other classifiers when using
their recommended reference databases. These results establish MCP as best-in-class
with the ability to produce comprehensive and accurate species profiles of human
gastrointestinal samples.

Keywords: metagenomics, metagenomic profiling, taxonomic classification, human gut microbiome,
benchmarking

INTRODUCTION

Identifying the microbial species present in natural biological samples is essential for understanding
their role in a range of applications including developing diagnostics and therapeutics for human
health (Greenblum et al., 2012; Lloyd-Price et al., 2016; Gentile and Weir, 2018; Zmora et al., 2019),
refining agricultural practices (Kennedy and Smith, 1995; Orellana et al., 2018), and gaining insights
into biogeochemical cycles (Kuypers et al., 2018; Evans et al., 2019). Our inability to culture most
in situ populations has severely limited our understanding of microbial ecosystems (Epstein, 2013;
Lloyd et al., 2018), and it is estimated that even highly studied habitats such as the human gut
lack cultured representatives for the majority of species (Almeida et al., 2021). Metagenomics, the
sequencing of DNA extracted directly from clinical and environmental ecosystems, has emerged
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as a powerful approach to bypassing this cultivation bottleneck,
providing a holistic view of both the taxonomic and functional
diversity of microbial communities (Hugenholtz and Tyson,
2008). This approach has been driven by exponential increases in
sequencing throughput and associated decreasing costs leading to
the widespread adoption of metagenomics by environmental and
clinical researchers.

Metagenomics provides a relatively unbiased sampling of all
populations within a community, including bacteria, archaea,
eukaryotes, and viruses, and the ability to resolve strains along
with genes of interest such as those conferring antimicrobial
resistance or pathogenicity (Weinstock, 2012; Köser et al.,
2014; Jovel et al., 2016). However, accurately establishing the
composition of microbial communities from metagenomic data
remains a challenge due to their complexity, the comparatively
short read length of the most widely used sequencing
technologies (typically 150–250 bp), and incomplete genome
reference databases (Sczyrba et al., 2017; Ye et al., 2019). This
latter limitation is being addressed by recent approaches that
recover high-quality metagenome-assembled genomes (MAGs)
from metagenomic datasets resulting in the availability of tens
of thousands of draft genomes of uncultured taxa, most notably
from the human gastrointestinal tract (Almeida et al., 2019;
Nayfach et al., 2019; Pasolli et al., 2019).

Several approaches have been proposed for taxonomically
classifying metagenomic data in order to estimate the relative
abundance of species in a sample. Metagenomic reads are
classified on the basis of sequence similarity to a reference
database of previously characterized sequence data, often whole-
genome assemblies. Existing metagenomic classifiers can be
divided into four groups based on how they establish sequence
similarity; namely, (i) genome nucleotide alignment approaches
such as Centrifuge (Kim et al., 2016), (ii) protein alignment
approaches such as Kaiju (Menzel et al., 2016) and DIAMOND
(Buchfink et al., 2015), (iii) marker gene approaches such as
MetaPhlAn (Segata et al., 2012) and mOTUs (Milanese et al.,
2019), and (iv) composition or k-mer-based approaches such
as Kraken (Wood et al., 2019), Bracken (Lu et al., 2017),
MetaCache (Müller et al., 2017), and Ganon (Piro et al., 2020). In
general, k-mer-based approaches are the most computationally
efficient, although have high memory requirements. Marker-
based approaches typically have lower memory requirements
but at the cost of only classifying reads from a specific subset
of genes or genomic regions. Alignment-based approaches
favor the additional information provided from mapping reads
to reference sequences at the cost of higher computational
requirements than k-mer-based approaches and higher memory
requirements than marker-based approaches.

The Microba Community Profiler (MCP) was developed
to be a highly accurate and specific tool to estimate the
relative abundance of bacterial, archaeal, eukaryotic, and viral
community members by aligning metagenomic reads to a high-
quality and comprehensive database of microbial reference
MAGs and isolate genomes. Similar to other classifiers, MCP
provides per-read classifications along with an estimate of the
proportion of reads assigned to a species. MCP also explicitly
indicates the species predicted to be present in a community

profile, in contrast to the majority of classifiers considered in
this study which report thousands of false positive (FP) species
if profiles are not manually inspected and appropriately filtered.
The community profiles produced by the MCP are based on the
rank normalized taxa and comprehensive species clusters defined
by the Genome Taxonomy Database (GTDB; Parks et al., 2018,
2020) which provides improved taxonomic resolution compared
to the NCBI Taxonomy (Federhen, 2015; Parks et al., 2020). Here
we benchmark MCP against a range of widely used academic
metagenomic classifiers using 140 in silico mock communities
of varying complexity. We demonstrate that MCP has superior
recall and precision and maps a higher proportion of reads from
gut metagenome datasets than the other classifiers evaluated.

RESULTS

Metagenomic Classifiers and
Standardized Reference Database
We evaluated the performance of MCP and nine publicly
available metagenomic classifiers (Table 1), which use a variety
of approaches and have previously been shown to be among
the best performing classifiers (Lindgreen et al., 2016; Sczyrba
et al., 2017; Ye et al., 2019; Seppey et al., 2020). A single
standardized reference database was used by all classifiers in
order to evaluate classification performance independent of the
reference database (Nasko et al., 2018; Méric et al., 2019; Ye
et al., 2019), with the exception of MetaPhlAn2, which was used
with its pre-built marker database because building a custom
database was not practical. The standardized reference database
is comprised of 15,555 quality filtered isolate genomes from
12,250 bacterial and archaeal species (see section “Materials
and Methods”; Supplementary Table 1) estimated to have an
average completeness and contamination of 99.2 and 0.73%,
respectively. Only high-quality isolate genomes were included in
the standardized reference database to ensure that classification
performance would not be adversely impacted by low genome
quality and to reflect that most classifiers recommend the use
of reference databases comprised solely of complete isolate
genomes (see section “Materials and Methods”). Species were

TABLE 1 | Properties of classifiers compared in this study.

Classifier Version Classifier type Base type References

MCP 2.0.15 Genome DNA This study

Ganon 0.1.5 k-mer (k = 19) DNA Piro et al., 2020

Kraken 2.0.7 k-mer (k = 35) DNA Wood et al., 2019

Bracken 2.5.0 k-mer (k = 35) DNA Lu et al., 2017

MetaCache 0.9.0 k-mer (k = 16) DNA Müller et al., 2017

Centrifuge 1.0.4 Genome DNA Kim et al., 2016

DIAMOND-LCA 0.9.29 Protein Protein Buchfink et al., 2015

Kaiju 1.7.2 Protein protein Menzel et al., 2016

mOTUs 2.5.1 Marker DNA Milanese et al., 2019

MetaPhlAn# 2.96.1 Marker DNA Truong et al., 2015

#Evaluated using MetaPhlAn database v296 downloaded on February 24, 2020.
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limited to a maximum of five representative genomes in order
to reserve a wide diversity of strains for simulating in silico
mock communities. Species represented by > 1 genome (1,474
of 12,250) had an average intraspecific ANI of 97.8 ± 0.96%.
The standardized reference database and comparison of profilers
was limited to bacterial and archaeal species as not all classifiers
support the classification of eukaryotic or viral species.

Three parameter settings for the MCP were evaluated: (i)
MCP with the standardized reference database and default
parameters used to filter out expected FP predictions (referred to
as MCP); (ii) MCP without removing expected FPs (referred to
as unfiltered MCP or uMCP); and (iii) MCP with default filtering
parameters using the Microba Genome Database (MGDB), which
comprises 73,646 dereplicated genomes from 28,246 species and
is the reference database used by MCP in practice (referred
to as MCP-MGDB).

Simulation of in silico Mock
Communities
We simulated 140 in silico mock microbial communities
with varying species diversity, intraspecific diversity, and
genomic similarity to reference database genomes (Table 2
and Supplementary Table 2). Communities were comprised
of bacterial and archaeal species and simulated with either
medium (100 ± 25) or high (500 ± 100) species diversity
relative to previously used mocks (Sczyrba et al., 2017), with
each species represented by either a single strain or up to 10
randomly selected strains (see section “Materials and Methods”).
The average nucleotide identity (ANI) to reference genomes
was used to construct mock communities with high (ANI of
99% to 99.75%), moderate (ANI of 97% to 99%), and low
(ANI of 95% to 97%) genomic similarity to the standardized
reference database. A baseline of 95% ANI was selected to
match the commonly used operational definition of a prokaryotic
species (Jain et al., 2018; Parks et al., 2020). Mock communities

were simulated under all combinations of these parameters,
with the exception of mocks with high species diversity and
low ANI similarity, as there were insufficient species with
available genomes within this lower ANI range. In addition,
mock communities were simulated from the reference genomes
in order to establish a baseline at 100% ANI similarity for
examining the impact of increasing genomic dissimilarity from
reference genomes on classifier performance. The 140 mock
communities span 6,971 unique species from 2,268 genera
and 50 phyla, and contain species ranging from 0.0000019
to 80.5% of the community (Table 2). Communities were
simulated to a depth of 2.1 Gb using 2 × 150 bp paired-
end reads with strain abundance following a log-normal
distribution as this is commonly used for modeling microbial
communities (Curtis et al., 2002; Fritz et al., 2019; see section
“Materials and Methods”).

Establishing Detection Limits of
Classifiers
By default, many metagenomic classifiers report all species
with any evidence of being present within a sample, down
to a single mapped read, which can result in thousands of
low abundance FP species predictions, i.e., species not present
in the sample (Figures 1A,B; Supplementary Table 3). The
implicit expectation is that researchers will filter low abundance
predictions or only consider analyses which are insensitive to
FP predictions (Ye et al., 2019). Unfortunately, the former is
challenging without explicit guidance and the latter is highly
restrictive as it limits the ability to confidently assert the presence
of low abundance species in a sample. MCP, mOTUs, and
MetaPhlAn are exceptions as their predicted community profiles
contain only those species with sufficient evidence to assert
with high confidence that a species is present in a sample
(Figures 1A,B). Consequently, even for the mock communities
with high ANI similarity to reference database genomes, the

TABLE 2 | Properties of the 140 in silico mock communities averaged over the 10 replicates from each class.

ANI similarity Species
diversity

Strain
diversity

ANI to closest
reference

genome (%)

AF to closest
reference

genome (%)#

No.
species

Strains per
species

Species abundance
(%)

Identical: 100% Medium Single 100 100 106 ± 15.8 1 26.8 to 3.3 × 10−4

Identical Medium Multiple 100 100 92 ± 22.5 2.6 ± 0.16 62.9 to 9.0 × 10−5

Identical High Single 100 100 490 ± 96.0 1 26.9 to 1.9 × 10−6

Identical High Multiple 100 100 505 ± 74.8 2.5 ± 0.07 13.2 to 6.1 × 10−6

High: [99%, 99.75%] Medium Single 99.4 ± 0.22 94.5 ± 3.02 99 ± 21.3 1 38.0 to 2.4 × 10−4

High Medium Multiple 99.3 ± 0.22 94.4 ± 3.06 106 ± 29.7 4.7 ± 0.33 39.4 to 3.2 × 10−4

High High Single 99.4 ± 0.22 94.5 ± 2.93 499 ± 86.1 1 60.3 to 1.6 × 10−5

High High Multiple 99.3 ± 0.22 94.4 ± 3.00 450 ± 116 4.0 ± 0.32 18.4 to 1.3 × 10−5

Moderate: [97%, 99%) Medium Single 98.3 ± 0.54 90.9 ± 4.41 104 ± 24.3 1 62.3 to 2.3 × 10−4

Moderate Medium Multiple 98.4 ± 0.52 91.2 ± 3.94 106 ± 19.6 4.7 ± 0.16 29.6 to 3.2 × 10−4

Moderate High Single 98.3 ± 0.54 90.8 ± 4.23 509 ± 58.6 1 23.2 to 2.8 × 10−5

Moderate High Multiple 98.3 ± 0.53 91.1 ± 4.19 532 ± 70.9 3.8 ± 0.26 10.0 to 9.2 × 10−6

Low: [95%, 97%) Medium Single 96.4 ± 0.50 87.9 ± 4.56 93 ± 32.9 1 80.5 to 2.8 × 10−4

Low Medium Multiple 96.3 ± 0.52 88.0 ± 4.33 109 ± 26.6 3.2 ± 0.23 36.6 to 1.4 × 10−4

#AF, alignment fraction, i.e., percentage of orthologous regions shared between two genomes.
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FIGURE 1 | Metagenomic classifiers have different minimum species abundance limits at which species can be reliably detected. (A) Number of false positive
species predictions made by each classifier on mock communities with decreasing ANI similarity to reference database genomes. (B) Percentage of predicted
community profiles comprised of false positive predictions. The relatively low community percentages indicate that the majority of false positive predictions are low
abundance species. With the exception of the MCP, mOTUs, and MetaPhlAn, these results illustrate that low abundance species must be filtered from the profiles
predicted by metagenomic classifiers in order to reduce false positive predictions. (C) Median detection limit of each classifier over all mock communities at a given
level of ANI similarity to the reference database for varying FDRs. MCP, uMCP, and Ganon report zero false positives for mock communities comprised of genomes in
the reference database (identical ANI) and consequently have a median detection limit reported as 0% indicating that all species could be identified without any false
positives. Centrifuge and MCP-MGDB only report extremely low abundance false positives for the identical ANI mock communities resulting in median detection
limits of 0.00036 and 0%, respectively. Results for mOTUs and MetaPhlAn are not shown as they have substantially higher detection limits than the other classifiers
(Supplementary Figure 1 and Table 3). (D) Detection limit of each classifier on each mock community resulting in an FDR of 5%. MCP, MCP-MGDB, and Ganon
have detection level at or near 0% across all samples at a number of ANI levels so do not produce visible box-and-whisker plots (see Table 3). The box-and-whisker
plots show the lower and upper quartiles as a box, the median value as a line within the box, 1.5X the interquartile range as whiskers, and outliers as crosses.

evaluated classifiers report a high proportion of FPs (average of
86.4–96.8% of predicted species), with the exceptions of MCP
(0.18 ± 0.44%) and to a lesser extent mOTUs (3.6 ± 2.1%) and
MetaPhlAn (7.6± 3.7%) (Supplementary Table 3).

Here, the in silico mock communities were used to establish
detection limits for the different classifiers. Intuitively, the
detection limit of a classifier is the lowest abundance species in
a sample that can be identified before an unacceptable number
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of FP species are reported. While the tolerance for FPs is
subjective and application-specific, in general FP predictions
must be kept low in order to have confidence in the species
reported by a classifier. We define the detection limit of each
classifier as the lowest reported abundance at which a target false
discovery rate (FDR) can be achieved. As expected, the detection
limit increases as community members becoming increasingly
divergent from genomes in the reference database (Figure 1C).
The detection limit also varies substantially between classifiers
with MCP having the lowest detection limit regardless of the
target FDR (Figure 1C and Table 3). At an FDR of 0.1%
(i.e., 1 in 1,000 species expected to be FPs), the MCP had
a mean detection limit of 0.0068, 0.069, and 0.52% on mock
communities with high, moderate, and low ANI similarity to
the reference database, respectively (Table 3). Examining the
results at an FDR of 5% illustrates that the detection limit
varies substantially for individual mock communities at a specific
ANI similarity (Figure 1D). This highlights the challenge in
specifying a fixed abundance threshold for filtering classification
results which will reliably remove the majority of FP species
and, hence, the need for classifiers to directly address the issue
of FP predictions.

Predicting the Presence or Absence of
Species
In order to assess the accuracy of species predictions for the
different classifiers, we conservatively removed low abundance
populations at <0.01% as these have a high probability of
being reported as FPs by all classifiers other than the MCP
(Figure 1C). Removing lower abundance species ensures more
accurate results as it acknowledges that species comprising
the long tail of microbial communities (Curtis et al., 2002;
Fritz et al., 2019) cannot be identified by most metagenomic
classifiers without reporting unacceptable numbers of FPs
(Figures 1A,B). The mock communities contained an average
of 271.4 ± 205.8 and 210.0 ± 141.9 species before and
after removal of species at <0.01% abundance, respectively
(Supplementary Table 2).

The performance of classifiers generally decreased with
increasing ANI divergence from the reference database (Figure 2,
Table 4, and Supplementary Table 4), consistent with previous
studies showing the importance of using a comprehensive
reference database (Méric et al., 2019; Piro et al., 2020). MCP
reported the lowest number of FP species as indicated by its
high precision (Figure 2A). However, there is typically a trade-
off between precision and recall, and this is reflected in MCP
failing to identify some species whereas other classifiers such
as MetaCache and Bracken have high recall with low relative
precision (Figures 2A,B). MCP using the MGDB database
with equal weight given to precision and recall has the best
overall performance (F1 = 0.97 averaged across all mocks;
Figure 2C and Table 4), which demonstrates the positive
impact of using a large, comprehensive reference database.
Among the classifiers using the standardized reference database,
MCP has the best performance across all mock communities
(F1 = 0.96) followed by the uMCP profiles (F1 = 0.92), mOTUs
(F1 = 0.91), and MetaCache (F1 = 0.88) (Figure 2C and
Table 4). MetaPhlAn performs relatively poorly (F1 = 0.81)
despite using a reference database built from nearly six times as
many genomes as the standardized reference database illustrating
that a comprehensive database is not sufficient in and of itself to
provide good performance.

Microba Community Profiler provided the best overall
performance without the need for manual thresholding because
it automatically filters species profiles based on the number
of stringently mapped reads being assigned to a species. By
contrast, all other classifiers, with the exception of mOTUs
and MetaPhlAn, report large numbers of FPs despite limiting
results to species at ≥0.01% relative abundance (Figure 2D).
In order to further explore the performance of MCP relative
to the other classifiers, profiles were filtered at the species
abundance resulting in the highest F1 score as determined
independently for each classifier on each mock community
(referred to as the optimized F1 score). Notably, the average
MCP F1 score without optimization of 0.96 is higher than the
optimized F1 score of all other classifiers (Table 4). Establishing
the F1 optimized species abundance threshold is not possible on

TABLE 3 | Mean detection limit of classifiers at select false detection rates.

High ANI Moderate ANI Low ANI

Classifier 0.1% 1% 5% 10% 0.1% 1% 5% 10% 0.1% 1% 5% 10%

MCP 0.0068 0.0016 0 0 0.069 0.048 0.0027 0 0.52 0.52 0.069 0.014

Unfiltered MCP 0.25 0.23 0.023 0.011 0.23 0.21 0.056 0.025 0.98 0.98 0.26 0.079

MCP w/ MGDB 0.014 0.00097 0 0 0.17 0.14 0 0 1.5 1.5 0.037 0.0039

Ganon 0.30 0.27 0.045 0.021 0.38 0.35 0.095 0.046 2.2 2.2 1.1 0.62

Kraken 0.39 0.37 0.097 0.038 0.51 0.47 0.18 0.10 2.6 2.6 2.2 0.9

Bracken 0.41 0.38 0.11 0.042 0.58 0.54 0.21 0.11 2.9 2.9 2.6 1.1

MetaCache 0.36 0.33 0.049 0.021 0.49 0.43 0.098 0.037 2.7 2.7 2.2 0.55

Centrifuge 0.25 0.22 0.026 0.012 0.49 0.45 0.16 0.061 5.5 5.5 5.3 4.6

DIAMOND-LCA 0.14 0.13 0.042 0.018 0.15 0.15 0.053 0.032 0.33 0.33 0.3 0.12

Kaiju 0.27 0.24 0.085 0.032 0.62 0.60 0.12 0.061 1.8 1.8 1.5 0.56

mOTUs 4.0 3.9 0.13 0 2.6 2.6 0.7 0.041 19 19 18 10

MetaPhlAn 2.3 2.3 0.43 0.0094 2.9 2.9 1.6 0.063 2.5 2.5 0.96 0.15
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FIGURE 2 | Performance of metagenomic classifiers to predict the presence or absence of species measured using (A) precision, (B) recall, (C) F1 score, and (D)
number of false positive predictions on mock communities with decreasing ANI similarity to reference database genomes.

real data and any fixed abundance threshold will result in the
same or worse performance than achieved with these optimized
thresholds (Figure 1D).

Estimating the Relative Abundance of
Species
Based on mock community analysis (mocks filtered at ≥0.01%),
the accuracy of relative abundance estimates decreased with
increasing ANI divergence from the reference database (Figure 3,

Table 5, and Supplementary Table 5). Centrifuge, DIAMOND-
LCA, Kaiju, MetaPhlAn, and to a lesser extent mOTUs deviate
substantially from the expected species abundances (Table 5),
consistent with prior benchmarking of these classifiers (Ye et al.,
2019). The other classifiers have similar overall accuracy in terms
of L1 distance (i.e., absolute differences between profiles) with
MetaCache (9.0%) performing the best followed by MCP-MGDB
(10.0%), MCP (10.8%), and Bracken (11.1%) (Figure 3A and
Table 5). Results were similar for the relative absolute percent
error with MetaCache having a 1–2% overall improvement over
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TABLE 4 | Evaluation of classifiers to predict the presence or absence of species across the 140 mock communities with and without optimizing the F1 score
(mean ± std. dev.).

Classifier Precision Recall F1 score Precision (F1 optimized) Recall (F1 optimized) Optimized F1 score

MCP 0.98 ± 0.04 0.94 ± 0.06 0.96 ± 0.05 – – –

Unfiltered MCP 0.88 ± 0.13 0.97 ± 0.04 0.92 ± 0.09 0.94 ± 0.07 0.95 ± 0.06 0.94 ± 0.06

MCP w/ MGDB 0.99 ± 0.02 0.95 ± 0.04 0.97 ± 0.03 – – –

Ganon 0.81 ± 0.20 0.99 ± 0.01 0.87 ± 0.14 0.91 ± 0.10 0.94 ± 0.07 0.92 ± 0.08

Kraken 0.69 ± 0.24 0.99 ± 0.01 0.79 ± 0.18 0.87 ± 0.11 0.91 ± 0.09 0.88 ± 0.09

Bracken 0.68 ± 0.24 1.00 ± 0.01 0.78 ± 0.19 0.87 ± 0.11 0.90 ± 0.10 0.88 ± 0.09

MetaCache 0.80 ± 0.18 0.99 ± 0.01 0.88 ± 0.12 0.90 ± 0.09 0.95 ± 0.05 0.92 ± 0.07

Centrifuge 0.82 ± 0.21 0.95 ± 0.05 0.86 ± 0.15 0.89 ± 0.13 0.90 ± 0.10 0.90 ± 0.11

DIAMOND-LCA 0.83 ± 0.15 0.72 ± 0.11 0.76 ± 0.09 0.87 ± 0.11 0.70 ± 0.10 0.77 ± 0.08

Kaiju 0.73 ± 0.23 0.95 ± 0.04 0.80 ± 0.17 0.87 ± 0.12 0.87 ± 0.09 0.87 ± 0.10

mOTUs 0.90 ± 0.11 0.92 ± 0.03 0.91 ± 0.07 0.91 ± 0.10 0.92 ± 0.04 0.91 ± 0.07

MetaPhlAn 0.92 ± 0.03 0.73 ± 0.08 0.81 ± 0.07 0.92 ± 0.03 0.73 ± 0.08 0.81 ± 0.05

MCP and MCP w/MGDB were run with default settings without F1 optimization.

the other classifiers (Figure 3A and Table 5). These results
indicate that MCP, MCP-MGDB, Ganon, Kraken, Bracken, and
MetaCache are all able to provide reasonably accurate species
abundance estimates although the obtained accuracy depends
heavily on the similarity of community members to genomes in
the reference database. This is seen most clearly with the low ANI
similarity mock communities where the abundance estimates are
substantially less accurate and more variable (Figure 3A).

The high precision of the MCP (Figure 2A) resulted in only a
small percentage of the predicted community being comprised of
FP species (0.18± 0.45%; Table 5). This is in contrast to the other
classifiers which predict more FP species at an appreciably higher
percentage of the community, e.g., MetaCache at 1.97 ± 3.0%
and Bracken at 3.92 ± 4.53% (Figure 3C and Table 5).
The low ANI similarity mock communities best highlight the
tradeoff between the MCP and a more lenient classifier such
as MetaCache where FP species account for 1.0 ± 0.77 and
6.6± 3.2% of the reported communities, respectively (Figure 3C
and Supplementary Table 5). Classifiers generally only fail to
identify low abundance species with MCP showing slightly
decreased performance as expected from its lower recall rate
(Figures 2B, 3D and Table 5). This again highlights the trade-off
between false negative (FN) and FP predictions, and illustrates
that the MCP favors a slight increase in the percentage of
the community that is undetected (Figure 3D) in order to
substantially reduce the percentage of the reported community
comprised of erroneously identified species (Figure 3C).

Comparison of Metagenomic Classifiers
on Human Gastrointestinal
Metagenomes
Community profiles produced by MetaCache, Kraken, Bracken,
mOTUs, and MetaPhlAn were compared to those obtained
using the MCP on a set of 33 US fecal metagenomes with
between 6 and 7 million paired reads from three distinct studies
(Supplementary Table 6). These studies were selected in order to
evaluate classifiers on fecal samples processed by different labs,
from individuals under a range of conditions, and with a read

length and sequence depth similar to the in silico samples. We
focused on these classifiers as they were the strongest performing
classifiers on the in silico mock communities and/or are widely
used by the research community. Unlike the in silico mock
community analysis, here each classifier was evaluated using
its recommended reference database. MCP uses the MGDB
which consists of 73,646 dereplicated genomes spanning 28,246
species clusters (see section “Properties of the Microba Genome
Database”). MetaCache uses a reference database comprising
16,488 bacterial, 343 archaeal, and 8,999 viral genomes annotated
as complete in RefSeq. Kraken and Bracken use a slightly
expanded set of 18,871 bacterial, 360 archaeal, and 9,334 viral
genomes along with a human reference genome and a collection
of known vectors. mOTUs uses a pre-built database of marker
genes obtained from ∼25,000 bacterial and archaeal reference
genomes which have been supplemented with additional marker
genes obtained from public metagenomes. The MetaPhlAn
database consists of ∼1.5 million unique clade-specific marker
genes obtained from∼100,000 bacterial, archaeal, and eukaryotic
genomes. Species profiles for all classifiers are defined according
to the NCBI Taxonomy (Federhen, 2015) with the exception of
the MCP which uses the GTDB taxonomy (Parks et al., 2020).

Since the community composition of the fecal samples is
unknown, other measurable aspects of the community profiles
produced by each metagenomic classifier were evaluated. The
percentage of reads assigned to a species was substantially
higher for the MCP (82.4% on average) than Kraken (43.3%
on average), Bracken (51.3% on average), or MetaCache
(43.8% on average; Figure 4A and Supplementary Table 6).
This was attributed to the large number of uncultured gut
microbiome species represented in MGDB that are absent
from the reference databases used by the other classifiers.
By design, mOTUs and MetaPhlAn only classify the small
subset of reads that map to marker genes and thus assessing
percentage of mapped metagenomic reads is not a meaningful
comparison. As expected, Kraken, Bracken, and MetaCache
report thousands of species (Figure 4B), the great majority of
which are likely low abundance FPs based on mock community
results (Figures 1A,B). Consequently, species with an estimated

Frontiers in Microbiology | www.frontiersin.org 7 April 2021 | Volume 12 | Article 643682

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-643682 April 19, 2021 Time: 11:51 # 8

Parks et al. Taxonomic Profiling of Metagenomic Datasets

FIGURE 3 | Performance of metagenomic classifiers to predict species abundances. (A) L1 distance (0% = identical to ground truth; 200% = no species in common
with ground truth) between the ground truth and predicted species profiles. (B) Mean relative error of species present in both the ground truth and predicted species
profiles. (C) Sum of false positive species abundances. (D) Sum of false negative species abundances. Lower values indicate better performance. Results are
provided across mock communities of increasing ANI divergence from the reference database. Results for Centrifuge, DIAMOND-LCA, Kaiju, and mOTUs are not
shown as they have substantially worse species abundance estimates than the other classifiers (Supplementary Figure 2).

abundance <0.01% were removed as these are expected to
be predominately FP predictions. Bracken reports the largest
number of species with an abundance≥0.01% (175.3 on average)
followed closely by MCP (162.0 on average), MetaCache (151.6
on average), and Kraken (146.3 on average; Figure 4C and
Supplementary Table 6). It is notable that mOTUs (123.7 on
average) and MetaPhlAn (71.2 on average) report the fewest
species in these samples, but were observed to produce far
fewer FPs than Kraken, Bracken, and MetaCache on the in silico
mock communities (Figure 2D). This suggests that these latter

classifiers may only be reporting greater numbers of species than
mOTUs as a result of increased numbers of FP predictions.

Properties of the Microba Genome
Database
The MGDB, the default reference database for the MCP, consists
of 73,646 dereplicated genomes from 28,246 species clusters as
defined by the GTDB (Parks et al., 2018, 2020). The 73,646
genomes in the MGDB were selected in order to provide
comprehensive coverage of the genomic diversity within each
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TABLE 5 | Performance statistics for species abundance estimates across the
140 mock communities (mean ± std. dev.).

Classifier L1 distance Relative error
(%)

Abundance of
FPs (%)

Abundance of
FNs (%)

MCP 10.8 ± 10.47 11.2 ± 10.97 0.18 ± 0.45 0.20 ± 0.25

Unfiltered MCP 11.3 ± 10.98 11.9 ± 11.92 0.73 ± 0.96 0.08 ± 0.12

MCP w/ MGDB 10.0 ± 7.60 10.1 ± 6.69 0.27 ± 0.82 0.31 ± 0.78

Ganon 11.6 ± 9.90 10.8 ± 11.32 1.72 ± 2.32 0.03 ± 0.05

Kraken 14.4 ± 11.39 12.9 ± 13.53 3.42 ± 3.89 0.06 ± 0.35

Bracken 11.1 ± 10.33 10.5 ± 13.50 3.92 ± 4.53 0.05 ± 0.35

MetaCache 9.0 ± 8.05 10.0 ± 11.46 1.97 ± 3.00 0.02 ± 0.03

Centrifuge 49.0 ± 22.18 52.7 ± 24.92 2.97 ± 5.73 0.28 ± 0.32

DIAMOND-LCA 78.1 ± 9.54 68.6 ± 7.27 0.54 ± 0.53 3.05 ± 2.41

Kaiju 42.5 ± 13.48 34.6 ± 11.20 2.19 ± 2.59 0.20 ± 0.19

mOTUs 18.26 ± 11.86 37.2 ± 34.86 4.79 ± 5.76 4.58 ± 4.69

MetaPhlAn 43.3 ± 19.97 37.9 ± 40.37 3.58 ± 3.21 16.63 ± 10.82

FIGURE 4 | Comparison of metagenomic classifiers on 33 US fecal samples.
Community profiles were produced by each classifier using their
recommended reference database. (A) Percentage of reads assigned to a
species in community profiles. (B) Number of species reported by each
classifier. (C) Number of species reported by each classifier with an estimated
abundance ≥ 0.01%.

species and with a specific focus on the human gastrointestinal
tract. These genomes were obtained from a variety of sources
including the NCBI Assembly database (52.4%), recent large-
scale efforts to recover human gastrointestinal MAGs (35.7%;
Almeida et al., 2019; Nayfach et al., 2019; Pasolli et al.,
2019) or isolates (1.2%; Forster et al., 2019; Zou et al., 2019),
and Microba’s own initiatives to obtain MAGs from customer
samples (7.6%) and public metagenomes (3.2%; Figure 5A).
The 73,646 MGDB genomes are predominantly MAGs (66.3%;

Figure 5A) in agreement with a recent estimate that ∼70% of
microbial species in the human gastrointestinal tract remain to
be cultured (Almeida et al., 2021). These MAGs have an average
completeness of 89.5± 10.0% and contamination of 1.34± 1.48%
with∼60% meeting the completeness and contamination criteria
used to define high-quality MAGs (Bowers et al., 2017).

Nearly 50% (13,673) of the 28,246 species in the MGDB are
comprised solely of uncultured genomes (i.e., MAGs or single-
amplified genomes) with 625 species being comprised exclusively
of MAGs obtained by Microba (Figure 5B), which is reflected in
their taxonomic assignments. Only 36.6% of the 28,246 species
clusters in the MGDB have a species assignment in the NCBI
Taxonomy (Figure 5B). For this reason, the MGDB and by
extension the MCP uses the GTDB as a taxonomic resource as it
provides a substantial improvement in taxonomic resolution with
87.5% of the MGDB species having a GTDB species assignment.
Furthermore, adoption of the quantitative criteria used by the
GTDB to circumscribe taxa allowed the 625 species exclusive to
Microba to be readily identified and given temporary placeholder
names with appropriate higher taxonomic ranks as determined
by the GTDB-Tk (Chaumeil et al., 2020). The lack of taxonomic
resolution in the NCBI Taxonomy extends beyond the rank of
species with only 56.8 and 62.5% of MGDB species clusters having
an NCBI genus or family assignment, respectively. In contrast,
97.9 and 99.8% of MGDB species clusters have GTDB genus or
family assignments, respectively.

Performance of MCP With the MGDB on
Mocks and Gastrointestinal Samples
Microba Community Profiler generally performs better on
in silico mock communities using the more comprehensive
MGDB than the relatively small standardized reference database.
In particular, use of the MGDB results in an improvement
in correct identification of species comprising the mock
communities and in the accuracy of species abundance estimates
(Tables 4, 5). The proportion of the community resulting from FP
(0.18–0.27%) or FN (0.20–0.31%) predictions increases slightly
with the use of the MGDB (Table 5). We attribute this to
challenges inherent in robustly distinguishing between highly
similar species which are more prevalent in the MGDB (28,246
species) compared to the standardized reference database (12,250
species). Low levels of contamination in MAGs within the MGDB
may also contribute to the small increase in FPs.

As the MGDB is comprised of a large number of MAGs and
isolates specific to the human gastrointestinal microbiome, we
expect the benefits of the MGDB to be more pronounced on
samples from this habitat than on the in silico mock communities.
To illustrate this, we further examined the species profiles
produced by the MCP using the MGDB on the 33 US fecal
samples. The MCP reports an average of 165.7± 44.8 species per
sample with 82.4 ± 4.7% of reads being mapped to a species in
the MGDB (Figures 5C,D). The 7,950 unique MAGs obtained
by Microba account for >10% of the genomes comprising
the MGDB (Figure 5A) and capture genomic variation within
species not accounted for by publicly-available genomes. This is
illustrated by MCP mapping reads to 5,590 ± 1,768 genomes
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FIGURE 5 | Properties of the Microba Genome Database (MGDB) and the results of profiling 33 US fecal samples using the MCP with the MGDB as a reference
database. (A) Proportion of MAGs, isolates, and SAGs within the 73,646 genomes comprising the MGDB along with the source of these genome assemblies.
Gastrointestinal MAGs were recovered from the studies of Almeida et al. (2019), Nayfach et al. (2019), and Pasolli et al. (2019) and gastrointestinal isolates from the
studies of Forster et al. (2019) and Zou et al. (2019). (B) Proportion of the 28,246 MGDB species clusters comprised exclusively of uncultured genomes (i.e., MAGs
or single-amplified genomes) obtained from multiple sources or solely of MAGs recovered by Microba. This is followed by the proportion of MGDB species clusters
that can be assigned a GTDB or NCBI species assignment. (C) Total number of species reported by the MCP for each sample and the number of these species
which are uncultured species or Microba MAG-exclusive species. (D) Total percentage of reads assigned by the MCP to genomes in the MGDB and the percentage
assigned to isolates, public MAGs/SAGs, or MAGs obtained by Microba. (E) Percent identity of reads mapped by the MCP for 33 US fecal samples and in silico
mock communities with decreasing ANI similarity to genomes in the standardized reference database.

on average across the 33 fecal samples and 1,365 ± 459 of
these being to Microba recovered MAGs. Notably, 25.3 ± 5.7%
of reads have a best mapping to a MAG obtained by Microba
(Figure 5D) and 45.5% of samples contain a Microba MAG
which accounts for≥5% of the mapped reads. This highlights the
benefits of using a reference database with strains specific to the
habitat being studied.

We assessed the similarity of strains found in the human
gastrointestinal tract to genomes comprising the MGDB by
considering the percent identity (PI) and percent alignment
length (PA) of reads mapped by the MCP. Mapped reads
had a PI and PA of 99.72 and 99.99%, respectively, averaged
over the 33 fecal samples. Comparing these similarity values
to the PI observed for the in silico mock communities with
known ANI to reference genomes suggests strains found in the
human gastrointestinal tract generally have high ANI (i.e., >99%)
to MGDB reference genomes (Figure 5E and Supplementary
Table 7), indicating that it is a comprehensive database for fecal
microbiome profiling.

DISCUSSION

The MCP was developed to provide accurate metagenomic
profiles of fecal microbiomes. Here we evaluated the performance

of the MCP relative to nine metagenomic classifiers that are
widely used and/or have been shown to be among the best
performing classifiers (Lindgreen et al., 2016; Sczyrba et al.,
2017; Ye et al., 2019; Seppey et al., 2020). Benchmarking was
performed using 140 in silico mock communities with decreasing
ANI similarity to genomes in a standardized reference database.
To the best of our knowledge, this is the first benchmarking
study to explicitly investigate the impact of genomic similarity to
reference database genomes on classification performance. Our
results show that the MCP has the highest combined precision
and recall (i.e., F1 score) among all evaluated classifiers indicating
that the optimized trade-off between FP and FN predictions
used by MCP provides the most accurate community profiles
(Figure 2). The strong performance of the MCP was observed
across all mock communities demonstrating that it can reliably
identify species even when strains are up to 5% divergent at the
nucleotide level from genomes in the reference database. This
is in contrast to the other evaluated classifiers which showed
a substantial reduction in performance on mock communities
with low similarity to genomes in the standardized reference
database (Figure 2C). We attribute the strong performance
of the MCP to the additional information provided by a
reference database of genome assemblies as opposed to k-mers
or select marker genes (see section “Materials and Methods”).
However, the MCP is typical of genome alignment methods

Frontiers in Microbiology | www.frontiersin.org 10 April 2021 | Volume 12 | Article 643682

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-643682 April 19, 2021 Time: 11:51 # 11

Parks et al. Taxonomic Profiling of Metagenomic Datasets

in that it has higher computational requirements than these
alternative approaches.

Microba Community Profiler, Kraken, Bracken, and Ganon
all provide sound estimates of the relative abundance of
microbial species in moderate and high ANI mock communities
with MetaCache showing slightly better abundance estimates
(Figures 3A,B). An advantage of MCP is a smaller portion of
FP predictions (Figure 3C) giving researchers confidence in the
predicted community profile. All classifiers failed to provide
accurate estimates of the abundance of species on the low ANI
mock communities (Figures 3A,B) with the standard reference
database. While this limitation warrants further investigation to
improve classifier performance, inspection of community profiles
of fecal samples produced by the MCP when using the MGDB
as a reference database suggests that strains found in the human
gastrointestinal tract typically have high ANI similarity to MGDB
reference genomes (Figure 5E). This is encouraging as the mock
community results suggest that low abundance species (<0.01%)
can be identified by the MCP with a low FDR when using a
reference database containing closely related strains (Figure 1C
and Table 3).

Our benchmarking analysis follows the recommendation
that classifiers be evaluated independently of their reference
database (Ye et al., 2019) as the specific composition of databases
can have a considerable impact on classification performance
(Nasko et al., 2018; Méric et al., 2019). This is evident from
the higher number of reads from human fecal samples that
were classified by MCP compared to MetaCache, Kraken, and
Bracken using the default reference databases of each classifier
(Figure 4A). We attribute the substantially higher percentage
of reads classified by MCP, in part, to the use of a more
comprehensive human gut microbiome database (Figure 5A),
consistent with previous studies showing the benefit of including
human gastrointestinal MAGs (Almeida et al., 2019; Nayfach
et al., 2019; Pasolli et al., 2019). As the recovery of MAGs
is outpacing our ability to culture new species, it is critical
for metagenomic classifiers to make use of this additional
source of information, including taxonomic frameworks that
accommodate uncultivated species, such as GTDB (Parks et al.,
2020; Figure 5B).

The majority of evaluated classifiers provide only a partial
solution to the goal of establishing which species are present
within a community. This is exemplified by the large number
of FPs reported by Ganon, Kraken, Bracken, MetaCache,
DIAMOND-LCA, and Kaiju (Figure 5D). Ultimately, these
classifiers require researchers to investigate the resulting profiles
to establish suitable criteria for establishing which species are
likely true positives (TPs; Ye et al., 2019). This is in contrast
to MCP, mOTUs, and MetaPhlAn which explicitly aim to
produce community profiles comprised solely of TP predictions,
without user input.

Microba Community Profiler is under ongoing development
and MGDB is constantly updated with genomes of newly
identified species. Current efforts are focused on improving
the accuracy of species abundance estimates by expanding the
genomic diversity of gut species captured by the MGDB and
exploring if unclassified reads can be assigned to species without

increasing FP predictions. Future improvements to the detection
limit of MCP include identifying and removing contamination
in reference genomes which can result in low abundance FP
predictions. While there are opportunities to continue improving
the performance of MCP, the results of this study illustrate
that the current version of MCP is the best overall classifier.
Community profiling with the MCP is available to the public
and scientific community as a service provided by Microba Life
Sciences1.

MATERIALS AND METHODS

Standardized Reference Database for
Classifiers
A reference database of 15,555 genomes from 12,250 species was
constructed from RefSeq release 97 (Kitts et al., 2016) obtained
from NCBI on November 22, 2019 for use by all metagenomic
classifiers (Supplementary Table 1). Only isolate genomes
estimated to be >90% complete with <5% contamination by
CheckM v1.0.13 (Parks et al., 2015 and where the assembly
meets the following criteria were considered for inclusion in the
database: (i) <500 contigs, (ii) N50 >20 kb, and (iii) <10,000
undetermined bases. In addition, only genomes with species
designations forming a 1-to-1 mapping between the GTDB
R04-RS89 (Parks et al., 2018) and NCBI (Federhen, 2015;
downloaded November 22, 2019) taxonomies were considered to
help ensure reference genomes had correct species assignments.
This limited the genomes selected for the reference database
to those in GTDB R04-RS89 (based on RefSeq release 89),
in order to allow recently submitted genomes to be used for
generating in silico mock communities. A maximum of five
genomes were selected for each species in order of assembly
quality as defined by Q = completeness – 5 × contamination –
0.05 × (no. contigs) – 0.00005 × (no. undetermined bases),
with an additional 100 added to the assembly quality if
it was annotated as complete as determined by consulting
the “assembly level” annotation at NCBI. In order to avoid
having highly similar genomes in the reference database, a
genome was only included if it had an ANI < 99% to all
other intraspecific genomes as determined with Mash v2.1.1
(Ondov et al., 2016). The reference database contains 10,776
species with exactly one genome and 1,474 species represented
by > 1 genome, and these species have an average intraspecific
ANI of 97.8 ± 0.96% as determined with FastANI v1.3
(Jain et al., 2018).

Generation of in silico Mock
Communities
In silico mock communities were constructed from RefSeq
release 97 genomes which passed the same filtering criteria
used for the standardized reference database, including
the requirement of a 1-to-1 mapping between GTDB and
NCBI species assignments (see above). The 67,299 genomes

1https://microba.com/microbiome-research/
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in RefSeq release 97 not covered by GTDB R04-R89 were
assigned GTDB classifications using GTDB-Tk v0.3.3
(Chaumeil et al., 2020). Intraspecific ANI values between
reference database genomes and potential mock community
genomes were calculated with FastANI v1.3. These ANI
values were used to generate mock communities comprised
of genomes which were increasingly divergent from those in
the standardized reference database at ANI intervals of [99,
99.75%], [97, 99%), and [95, 97%) (Table 2). In addition,
mock communities comprised of genomes in the reference
database (ANI = 100%) were considered as these provide a useful
point of comparison.

The number of species in a mock community was modeled on
a normal distribution with µ (mean number of species) = 100
and σ (standard deviation in number of species) = 25, or
µ = 500 and σ = 100, in order to generate medium and
high complexity communities, respectively. Communities were
constructed with either a single genome selected from each
species, or with 2–10 genomes randomly selected from each
species. The relative abundance of genomes comprising mock
communities was drawn from a log-normal distribution with a
mean of 1 and a standard deviation of 2 as commonly used for
modeling microbial communities (Curtis et al., 2002; Fritz et al.,
2019).

The number of paired reads generated for each genome
was ni = N ×

(
aisi/

∑
j ajsj

)
, where si is the size of genome i,

ai is the relative abundance of genome i, and N is the total
number of paired reads comprising the in silico community.
All in silico communities were simulated to a depth of 2.1 Gb
by randomly sampling 2 × 150 bp paired-end reads with
an insert size of 200 ± 25 bp across each genome in the
mock community.

Building Custom Databases for
Metagenomic Classifiers
The genomes comprising the standardized reference database
were used to build a custom database for each classifier using
recommended default parameters. Genomes comprising the
standardized reference database were contained in individual
FASTA files in a single directory (db_genomes) and concatenated
into a single FASTA file (db_genomes_all.fna) in order to
facilitate the requirements of the different metagenomic
classifiers. The custom databases were built using the same NCBI
Taxonomy data files used while constructing the standardized
reference database which were obtained from NCBI2 on
November 22 2019 and consist of the files nodes.dmp,
names.dmp, merged.dmp, nucl_gb.accession2taxid, and
nucl_wgs accession2taxid. DIAMOND and Kaiju require
protein sequences which were called for each reference
genomes using Prodigal v2.6.3 (Hyatt et al., 2010) and
the translation table specified at NCBI: prodigal -c -m -
q -f gff -p single -g <trans_table> -i <ref_genome> -a
<aa_output>. Prodigal was used to predict protein sequences
as NCBI does not provide protein sequences for all genomes

2https://ftp.ncbi.nih.gov/pub/taxonomy/

comprising the standardized reference database. A mapping
file indicating the NCBI species ID for each predicted protein
(db_proteins_all.taxid_map.tsv) and a FASTA file containing
all proteins (db_proteins_all.faa) were created to facilitate
building the DIAMOND and Kaiju databases. The commands
executed to build custom databases for each classifier are given
in Supplementary Table 8.

Species-Level Community Profiling With
Metagenomic Classifiers
Community profiles were generated for mock communities
using each of the metagenomic classifiers run with default
parameters (Supplementary Table 9). DIAMOND indicates
the lowest common ancestor (LCA) for each query read,
but does not produce a profile indicating the proportion of
reads assigned to each species. A custom script was used
to tabulate the proportion of reads assigned to each species.
Reads with an LCA above the rank of species were considered
unclassified for the purposes of creating a species profile for
each mock community.

MetaPhlAn results were obtained using the
v296_CHOCOPhlAn_201901 marker set which may have
species assignments that differ from those defined for the in silico
mock communities due to reclassifications at NCBI. To account
for this, the NCBI TaxIds produced by MetaPhlAn were used
to establish species names as defined in the November 22, 2019
NCBI Taxonomy data files, the same files used to construct the
mock communities.

Microba Genome Database
The MGDB v2 was built from genomes in GTDB R04-RS89,
MAGs obtained from Australian fecal samples, MAGs mined
from SRA samples by Microba, and MAGs and isolate genomes
from Almeida et al. (2019), Forster et al. (2019), Nayfach
et al. (2019), Pasolli et al. (2019), and Zou et al. (2019).
Together these sources span 411,415 genomes after removing
lower quality assemblies as defined by having a completeness
estimate <80%, a contamination estimate >5%, being comprised
of >1,000 contigs, or having an N50 < 5 kb. These genomes
were dereplicated based on ANI similarity to obtain a final
database consisting of 73,646 genomes from 28,246 species.
Completeness and contamination estimates for genomes within
the MGDB were determined using CheckM v1.1.2 (Parks
et al., 2015). Genomes without taxonomic assignments in
GTDB R04-RS89 were assigned a GTDB classification using
GTDB-Tk v0.3.3 (Chaumeil et al., 2020) and additional species
clusters defined using the ANI criteria used by the GTDB
(Parks et al., 2020).

MCP Database Indexing, Read Mapping,
and Community Profiling
Microba Community Profiler is propriety software available
by contacting Microba Life Sciences at https://microba.com/
microbiome-research. MCP is a whole-genome alignment tool,
which uses a combination of BWA v0.7.17 (Li and Durbin, 2009),
SAMtools v1.7 (Li et al., 2009), and custom software optimized
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to ensure that reads are assigned to reference genomes that are
closely related to the strains comprising a metagenomic sample.
Mapping the 140 in silico mock communities (each 2.1 Gb,
2× 150 bp paired-end reads) required 37.6± 9.9 min on average
and profiling required 14.5 ± 2.4 min on average when using 64
Intel Xeon 2.00 GHz processors.

Classifier Performance Metrics
Precision and recall can be defined in terms of the number
of species correctly (TP) and incorrectly (FP) identified by a
classifier along with the number of unidentified species present
in a sample (FN). Precision, P = TP/(TP+FP), is the fraction
of species identified by a classifier that are correct, while recall,
R = TP/(TP+FN), is the fraction of correctly identified species
within a sample. The F1 score is the harmonic mean of precision
and recall, (2× P× R)/(P+R), which weights these terms equally
in a single metric.

Absolute and relative percent error for each species within
a sample is defined in terms of the true, T, and estimated, E,
abundance of a species. Absolute error, A = |T-E|, indicates
how close abundances estimates are to the true abundance
of a species, while relative percent error, R = 100 × A/T,
expresses how large the absolute error is compared to
the true abundance which highlights poor estimates of low
abundance species. The L1 (Manhattan) distance is the sum
of absolute errors across all ground truth and predicted
species which provides a measure that incorporates FP
predictions (Ye et al., 2019). The mean relative percent
error across all ground truth species in a sample was used
for assessing classifier performance. Different ground truth
abundances were used for classifiers that estimate (i) the
relative proportion of reads from each species (Ganon, Kraken,
Bracken, MetaCache, DIAMOND-LCA, and Kaiju) and (ii) the
relative proportion of reads normalized by genome size (MCP,
Centrifuge, mOTUs, and MetaPhlAn).

Previous benchmarking studies have suggested the use of the
Euclidean distance and the area under the precision–recall curve
(AUPR) for evaluating classifier performance (Ye et al., 2019).
We elected to use the L1 distance as it does not give additional
weight to high abundance species and report precision and recall
independently as the AUPR is known to be biased toward low-
precision, high-recall classifiers (Ye et al., 2019). This is a notable
limitation as many classifiers fall into this categorization.

Establishing Classifier Detection Limits
The detection limit for classifiers was defined as the lowest
abundance species in a sample that achieved a specified FDRs,
FDR = FP/(TP+FP). This was determined by ordering identified
species in ascending order of abundance and calculating the FDR
after filtering species below each abundance level. The detection
limit for a sample is the lowest abundance at which the desired
FDR could be achieved.

Community Profiles for Human
Gastrointestinal Metagenomes
Metagenomic data from three published studies of US
fecal (Supplementary Table 6) were processed by selected

metagenomic classifiers using recommended reference databases.
Samples with 2× 150 bp paired read were considered in order to
allow a direct comparison with results obtained on the in silico
samples. Samples were downloaded from the NCBI Sequence
Read Archive (Leinonen et al., 2011) and processed to remove
potential human contamination by mapping reads to the human
reference genome (GRCh38.p12) using the MEM method of
BWA v0.7.17-r1188 (Li and Durbin, 2009). Reads mapped as
proper pairs where either read had a PI≥95% and PA≥90% were
considered human and removed from the sample. Remaining
reads were processed using Trimmomatic v0.36 (Bolger et al.,
2014) to remove adapters, filter leading or trailing bases with a
quality score <3, clip reads when the average 4-base window had
a quality score <15, and discard reads <100 bp in length after
applying the previous QC steps. Samples with <6 million reads
after QC were discarded and samples with >7 million pairs were
subsampled to 7 million paired reads using seqtk v1.2-r943 in
order to minimize the effect of sequencing depth and make these
samples comparable in depth to the in silico samples.

Reference databases for MetaCache and Kraken were obtained
using the scripts and recommended parameters suggested by
these classifiers (Supplementary Table 10). These databases
were built on March 3, 2020. Kraken v2.0.8 was used for
this analysis as opposed to v2.0.7 as changes to NCBI data
formats required the use of this later version. MetaCache
and Kraken differ in the set of included reference genomes
as MetaCache only considered genomes annotated as a
“Complete Genome” at NCBI, while Kraken also includes
genomes annotated as “Chromosome.” Bracken results are
derived from the mapping information produced by Kraken.
mOTUs and MetaPhlAn results were obtained using pre-built
marker databases. Profiling was performed as previous described
(Supplementary Table 9).
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