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Introduction
Lung cancer is indeed the most prevalent and the deadliest 
cancer. There are 2 forms of lung cancer: small cell lung can-
cer (SCLC) and non-small cell lung cancer (NSCLC).1 Non-
small cell lung cancer affects about 85% of people, whereas 
small cell lung cancer affects almost 14%. In non-small cell 
lung cancer (NSCLC), lung adenocarcinoma (LUAD) and 
lung squamous cell carcinoma (LUSC) are commonly 
recorded. While adenocarcinoma is more frequently found in 
women, non-smokers, and most Asian ethnicities, small cell 
lung cancer is more frequently detected in Caucasian men. 
Tobacco use may be the main cause of this. Patients with 
small cell lung cancer are not just those who smoke; they are 
also those who are heavily exposed to second-hand smoke, 
pollution, occupational toxins and hereditary genetics. 
Precautions can be taken by using nicotine without the use of 
drugs like varenicline or agonists for the nicotine acetylcho-
line receptor. Use of e-cigarettes is one of the alternatives to 
prevent cancer.2

RNA sequencing would be preferable for detecting the ben-
eficial genes since it provides biological information about the 
cells as well as a few in-silico analytical details, these techniques 
can predict future problems and more information about can-
cer application.3 Next-generation sequencing plays a major role 
in RNA sequencing as the study includes applications of dif-
ferential gene expression analysis, cancer biomarkers, cancer 
heterogeneity and evolution, cancer drug resistance, the micro-
environment and immunotherapy.4 Many techniques for ana-
lysing cancer data have recently become available, allowing 
researchers and doctors to access vast amounts of data to ben-
efit cancer patients and add to existing research expertise. 
Mutaxome, as the name implies, is a database that was created 
for variants of 5 distinct cancer kinds utilising 20 different can-
cer exomes and contains thorough information about each sort 
of detected variant.5 Despite the availability of credible sources 
for extracting this information, the database aids in the task of 
accurately analysing and forming conclusions based on all 
available facts.6 A comprehensive analysis of cancer genomes 
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and how they are regulated into proteins is necessary for under-
standing how cancer spreads. In this, a proteogenomic approach 
is used, in which protein variations are investigated using mass 
spectrometry-based proteomics to interpret structural changes 
and transition order of proteins, as well as the identification 
and validation of cancer-related mutations to explain the 
effects of mutations on genes and the identification of 
Oncogenes and tumour suppressor genes.7

Artificial intelligence (AI) is the computer-programmed 
simulation of human intelligence. Artificial intelligence soft-
ware tools have been used in genetics, patient demographics and 
medical imaging for research and clinical applications with the 
least amount of human intervention. Artificial intelligence tools 
are usually used to interpret, determine and provide clinical 
information regarding the patient. Machine learning (ML) is a 
part of artificial intelligence, this technique teaches algorithms 
to learn how to make conclusions. Thus, NSCLC and SCLC 
are 2 major lung cancer forms detected worldwide. Identifying 
biomarkers with respect to lung cancer is easier using machine 
learning techniques. The following section discusses studies 
conducted in the domain of machine learning for gene expres-
sion analysis, with a focus on the ones related to lung cancer.

Related Study
Radiomics is a branch of medicine that applies machine learn-
ing to quantitative data derived from medical pictures for pur-
poses such as staging, therapy selection and response evaluation. 
Segmentation, feature extraction and machine learning model-
ling can all help with this.4 The region of interest, which is 
usually a tumour, is segmented first, and then evaluated for 
numerical data known as handcrafted characteristics. These 
characteristics are usually made up of first-order, texture, size, 
and form characteristics that may be combined with genetics, 
histology, blood biomarkers and patient demographics to 
develop prediction models.8 Some studies conducted on using 
machine learning for lung cancer classification were reviewed 
and they are discussed below.

Previous attempts at finding a solution to diagnosis of lung 
cancer has led to the development of Prostate, Lung, Colorectal 
and Ovarian Cancer Screening Trial risk model (mPL-
COm2012). In this study,9 the author has tried to use machine 
learning to predict lung cancer diagnosis. The data they used 
for this prediction as features were general clinical and lab data. 
The authors compared both the techniques and concluded that 
a machine learning model was more accurate for the early diag-
nosis of NSCLC. Previously developed models using machine 
learning techniques for early lung cancer detection gave accu-
racy which was not close to 90%. Therefore, a better model 
needs to be employed to increase the accuracy level, demon-
strating the need for better ML approaches to help prevent 
lung cancer deaths through early detection.10

Extensive research has been performed using machine 
learning techniques such as detection of sound and the study of 
CT Scan images for tracking down the infection.11,12 In the 

study13 authors reviewed the recent progress of Support Vector 
Machine (SVM), an ML classification model, in cancer 
genomic studies and concluded the paper by listing the down-
sides of the SVM classifier along with suggestions for improv-
ing the performance of the classifier.11

Further, neural networks on CT images attained higher accu-
racies of around 77%.14 In one of the research,15 the authors pre-
sent 2 machine learning models for classifying cell subtypes from 
different pathological regions of NSCLC. They developed a 
Random Forest and a decision tree classifier which achieved a 
Mathews correlation coefficient of 0.786 between model predic-
tions and actual results. To recognise the pattern for 4181 cancer 
polymorphisms that were identified across multiple cancer 
exome datasets that revealed common nucleotide base substitu-
tions that happened most frequently, a Decision Support System 
based on a Random Forest classifier was constructed. The tech-
nique can also be used to diagnose other genetic illnesses early, 
allowing for more efficient decision-making in healthcare and 
medicine.16 Though this algorithm supports the decision-mak-
ing of identifying the mutation patterns, there is no focus on 
finding the biomarkers specific to cancer-based on the expres-
sion values analysed obtained from transcriptome analysis.

The objective of the present study is to develop and predict 
biomarkers of lung cancer using its semantic features and make 
a comparison between NSCLC and SCLC models. To achieve 
this, the paper compares 4 machine learning algorithms 
namely; Logistic regression (LR), K Nearest Neighbours(KNN), 
Support vector machine(SVM) and Random Forest Classifiers 
(RFC) was performed and more focus on the random forest 
technique was given as it performs regression and classification 
tasks, its prediction is easily understandable and most impor-
tantly it can handle large datasets effectively and has the high-
level accuracy and the hypothesis of predicting a model using 
semantic and radiomic feature with high accuracy for NSCLC 
and SCLC is achieved using Random Forest Classifier.

Methodology and Implementation
Dataset collection

The dataset used for the transcriptome analysis is available on 
NCBI SRA under the project ID SRP117020. This dataset 
was collected from patients suffering from non-small cell lung 
cancer. The analysis was started from raw sequencing data in 
fastq format. The selected samples were representing male and 
female with age criteria more than 50 years. The data consisted 
of RNA sequences with distribution of poor to well differenti-
ated adenocarcinomas and squamous cell cancers which were 
sequenced using Illumina Hiseq2500. The reference genome 
was obtained from the following page in NCBI (https://www.
ncbi.nlm.nih.gov/assembly/GCF_000001405.26/).

Quality check

Quality of the RNAseq reads was inspected using FastQC 
software.17

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/
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Read alignment and assembly of transcripts

RNA-seq reads were aligned to the human reference genome 
using a fast and sensitive alignment programme called 
HISAT2.18 The experiment is carried out using a standard 
protocol of tuxedo suite tools for which is useful for analysis of 
RNA-Seq data. The protocol is well described by different pro-
cesses which are more convenient to analyse raw sequences19 of 
large data in the context here with the human genome.

Differential gene expression analysis

The transcripts and expression levels obtained from Stringtie 
were subjected to get the differentially expressed genes which 
was performed using DESeq2 package.20,21 The package uses 
statistical methods to get the differentially expressed genes. A 
collective gene expression data for 19777 genes were obtained 
in our study which was compressed and given as data for the 
current study. The differential expression table was obtained 
with 7 columns.

The first column classifies them either as UP or DOWN, or 
unclassified Gene. The fold-change and the natural logarithm 
of the fold-change value are the next 2 columns, the data-
set  also contains the natural logarithm of CPM (counts per 
million), P-value, and False Discovery Rate (FDR) value.

Where fold change indicates the gene expression level, it is 
the ratio between the final value and initial value. The log of 
the fold change value, >1 indicates that it is expressed at a 
lower level and values <1 indicate that it is expressed at a 
higher level. P-value indicates the probability of the expression 
value.21 While CPM is the count sequence fragments library 
and multiplies the result by a million. And FDR measures the 
proportion of false discoveries among a set of hypothesis tests.22 
Thus, the algorithm is designed for gene names, up and down-
regulated, fold value, log fold value and P-values and the table 
is given as Supplemental S1

The differential gene expression analysis results were sub-
jected to pathway analysis using KOBAS. The execution of the 
transcriptomics pipeline is given as a flowchart in Figure 1.

Dataset annotation

Annotating data is an important step as we intended to use 
supervised machine learning algorithms to automate the pro-
cess of classification. The methods followed for classifying 
genes, was to identify literature in the domain of NSCLC and 
SCLC that relate to pathways causing the 2 diseases and 
review23-28 them. Then to identify the key pathways that are 
conclusively shown to cause NSCLC and SCLC of Lung can-
cer, respectively.

The genes considered for the study are processed using the 
KOBAS gene Oncology index to obtain the pathways they are 
involved in related to cancer.29 This is then compared with the 
pathways that are shown to cause NSCLC and SCLC. For 

every gene if it is involved in a pathway that causes either 
NSCLC or SCLC it is annotated as ‘NSCLC’ or ‘SCLC’, 
respectively, and ‘Both’ if it is causing both or ‘None’ if it is 
involved in none of the pathways.

As annotated feature is a categorical value One-Hot Encoding 
is used to convert the categorical value to 2 binary features, 
NSCLC and SCLC. It is understood that if the value of both 
SCLC and NSCLC is 0 then it causes none of the diseases, and 
if the value of both is 1 then it causes both the diseases.

After One-Hot encoding the dataset has 19 777 records 
with 8 columns. A randomly chosen sample of the dataset is 
shown in Figure 2. The complete dataset can be found here.

After annotation, 691 genes were classified as causing 
NSCLC, and 921 genes were classified as causing SCLC.

Dataset Pre-processing

The complete process of data processing before analysis is rep-
resented as a flowchart in Figure 3.

(1)  Under-sampling using Near Miss: The number of genes 
classified as NSCLC and genes not classified as NSCLC 
is of the ratio 1:27.5 and the number of genes classified as 
SCLC and genes not classified as SCLC is of the ratio 
1:21, which is known as the class weight ratio. To address 
the imbalance in the dataset, 3 options are available: using 
a downsampling algorithm to reduce the number of 
majority class data points to balance the dataset, using an 
up-sampling algorithm to synthetically generate new 
data points of the minority class to increase the number 
of samples and balance the class weight ratio.30

Each of these algorithms has its own disadvantage, down 
sampling causes loss in information and up-sampling may cor-
rupt the data. Therefore, a combination of both algorithms is 
used in most cases.31 But for the dataset selected, up sampling 
is not a feasible option because the number of minority class 
data points is very less, which means the number of syntheti-
cally generated data points will be more than the actual num-
ber of real data points. This is undesirable and will result in the 
model being overfitted, because on average the synthetically 
generated data will be the same as the original data, when the 
number generated is comparable to the original number of 
available data points. Therefore, a down-sampling technique, 
called Near Miss, which is a heuristic sampling method that is 
based on the nearest neighbour’s algorithm is used to reduce 
the number of data points in the majority class (non-NSCLC 
or non-SCLC).32 This algorithm was selected because it trans-
forms the classes such that the width between the 2 classes is 
maximised, by removing data points close to the boundary.

(2)  Standardised Scaling of Data: Initially, an exploration 
of data was performed to verify if the dataset warranted 
data cleaning, as shown in Table 1. It was found that 
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there were no null values and outliers in any one feature 
were limited to a few samples. These were not discarded 
as they may contain valuable information about the 
dataset. However, the features set had values ranging 
between 2 arbitrary values. To avoid this difference from 
creating bias in the model, the values for all the features 
were scaled using a Gaussian scalar function, which sub-
tracts the mean of the feature set from each value and 
then scales the set to unit variance. The equation (1) 
describes how each value (zi) is calculated from its initial 
value xi

Figure 1. Implementation of transcriptome analysis.

                                   z x
i

i=
− µ
σ

 (1)

where μ is the mean of values of a feature, and standard devia-
tion is represented as σ. The processed dataset used is given as 
Supplemental Table S1.

Machine learning techniques

For training the Machine Learning model for the dataset, the 
following features were selected, FC, logFC, and P-value. The 
data was split into a training, testing and validation set in the 
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proportion 60:20:20, respectively. Four types of Classification 
models were implemented and tested, Logistic Regression, 
KNN Classifier, Support Vector Machine Classifier and Random 
Forest Classifier. Precision is considered an appropriate perfor-
mance metric for comparing the classifiers, because of the imbal-
ance in the dataset. All the machine learning algorithms were 
implemented with Python using the scikit-learn library and the 
pre-processing of the data using the imbalance library.33,34 Code 
can be found in the GitHub repository (https://github.com/
abhayhk2001/NSCLC-Gene-Classification). In the following 
subsections, we will discuss each technique and how it was 
implemented, fine-tuned and tested.

Python provides many model selection API’s, out of which 
we have used GridSearchCV()or RandomSearchCV() for 
hyper-tuning the model.35,36 Both the methods require the fol-
lowing parameters.

(1) The machine learning model instance

(2)  Parameter space: set of parameters to be optimised and 
their values

(3) Method for evaluating
(4) score function

GridSearchCV() performs an exhaustive search of all the 
parameter combinations and evaluates the score function and 
returns the combination which gives the best results.

RandomSearchCV() searches the parameter space in an 
optimised way so the number of computations performed is 
minimal.

The score function is the evaluation metric that has to be 
maximised or minimised. Due to the unbalanced nature of the 
dataset average precision was chosen as the score function.

(1)  Logistic Regression: Logistic Regression is a simple 
classification algorithm used for modelling a probability 
distribution of a discrete outcome of a variable. It is 

Figure 2. Randomly chosen sample of the dataset with 19 777 records and 8 columns.

Figure 3. Flowchart chart for data preprocessing.

Table 1. Data Exploration results showing mean, standard deviation, minimum and maximum values for all the features.

FC LOgFC LOgCPM P-VALuE FDR

Count 19 778.0 19 778.0 19 778.0 19 778.0 19 778.0

Mean 0.349 0.11 3.176 0.327 0.472

Std 2.277 0.604 3.037 0.31 0.317

Min −65.958 −6.043 −2.46 0.0 0.0

Max 119.924 6.906 14.555 1.0 1.0

https://github.com/abhayhk2001/NSCLC-Gene-Classification
https://github.com/abhayhk2001/NSCLC-Gene-Classification
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commonly used for binary classification, such as true/
false, and yes/no. Logistic regression can be used for 
multinomial regression problems.37 Despite being an 
extension of a linear regression to solve classification 
problems, the Logistic regression performs effectively 
with most problems.

The given data is in the form of (X, Y) where X is the matrix of 
features for every sample (m samples and n features) and Y is 
the target variable which is considered to be binary (0, 1). 
Logistic Regression trains a model to predict the class(Y) of a 
new vector Xq. To achieve this the logistic regressor approxi-
mates the conditional probability given by:

                                      P x w;( )  (2)

                                      P x w;( )  (3)

Equation (2) calculates the probability that the value of the 
target function is 1 given the values of the features and the 
weights and equation (3) calculates the probability that the 
value of the target function is 0 given the values of the features 
and the weights.38 The function which separates the classes is 
chosen to be a linear combination of all the features. Let X = x1, 
x2 . . ., xn

where each xi is a vector of m values. Then the weight matrix 
is:

 a w w x w x w xn n= + + +…+0 1 1 2 2  (4)

The output of the first iteration is calculated using the logistic 
function.

 y
e a1
1

1
 =

+ −
 (5)

The loss function used by the logistic regression can be the 
cross-entropy loss function or the maximum likelihood esti-
mate.39 In the paper’s implementation the loss function used is 
the cross-entropy loss function given by equation (6) and the 
weight matrix is updated using equation (7).

     cost w
m

y loglog y y loglog yi i i ii

i m

( ) = − ⋅

+ −( ) −( )=

=∑

1

1 1
1
( { )} 

 
 (6)

                   wi w y y xj j
i

i

i n
= − ⋅ −( )( )( )=

=∑α 

1
 (7)

This implementation of the Logistic Regression uses the API 
Logistic Regression () from Python’s sklearn.linear model 
library. The model was trained, then validated with the pro-
cessed dataset and produces the following results after fine tun-
ing. The fine-tuning hyperparameters used are inverse of 
regularisation strength(C), norm of the penalty (penalty) and 
algorithm to use in the optimization problem (solver). For 
Logistic regression the size of the parameter space is small and 

thus an exhaustive search for all the combinations was per-
formed using GridSearchCV(). The best results were given 
when C = 1, penalty = ‘l1’ and solver = ‘liblinear’. In this case, the 
validation sets gave the following results (weighted average): 
accuracy 74%, precision 75%, recall 75% and F1 score 75%.

(2)  kNN Classifier: K Nearest Neighbors Classification is 
one of the most common machine learning classifiers 
which can be easily understood visually. It is a non-par-
ametric, lazy learning classification method, which clas-
sifies by first finding the k nearest neighbours of the 
given data point using euclidean distance and then using 
majority voting among those samples to estimate the 
class of the given data point.40 kNN has proven to be an 
effective algorithm in multiple cases. However, the 
model is dependent on k, and its value has a major impact 
on the accuracy of the algorithm. The model is also 
dependent on the distance metric used to find the near-
est neighbours. To tune the value of k the elbow method 
is used internally by Syakur et al.41 This method plots 
the error of the model as a function of k as shown in 
Figure 4. The graph plotted is assumed to be a bent hand 
viewed from the side. When a steep decline is observed 
(the upper arm bend) the lower point of that steep 
decline is the optimal value of k (at the point where the 
elbow is present).

The distance metric used in the paper’s implementation is 
Euclidean distance. The distance between 2 points is given by:

 d x y x yi ii

n
,( ) = −( )( )=∑ 2

1
 (8)

where, x = {x1, x2, . . . xn}and y = {y1, y2, . . . yn} are 2 vectors 
describing the point’s position in Euclidean space. For any new 
point, xq the distance to all the points in the training set is 
calculated and the k nearest neighbours are found. The class of 
the new point is then estimated by finding the majority class of 
the k nearest neighbours. The equation describing the above 
steps is:

 Pr Y j X x
k

I y jii N
( | )= = = ⋅ =( )( )

∈∑0
1

0
 (9)

In equation (9) the function I returns 1 if the yi is of category j 
or 0 otherwise. kNN also has a high cost for classifying new 
data points, because all the computation takes place during 
testing, and verification and not during training.42 Being sim-
ple, non-linear and not having intrinsic parameters are some of 
its advantages. It can perform poorly in higher-dimensional 
space but for our purpose, that will not be an issue.

This implementation of the KNN Classifier uses the API 
KNeighborsClassifier() from Python’s sklearn.neighbors 
library.43 The model was trained, then validated with the pro-
cessed dataset and produces the following results after fine tun-
ing. The fine tuning hyperparameters for the kNN model are 
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the number of neighbours to use (n neighbours) and the power 
parameter for the Minkowski metric (p).

For KNN classifiers the size of the parameter space is small 
and thus an exhaustive search for all the combinations was per-
formed using GridSearchCV(). The best results were given 
when n neighbours = 9 and P = 1. In this case, the validation sets 
gave the following results (weighted average): accuracy 79%, 
precision 75%, recall 82% and F1 score 77%.

(3)  Support Vector Classifier: Support vector machine 
classifier works by finding a decision boundary such that 
the data points, when plotted, are separated into classes 
by that hyperplane in the feature space, and the separa-
tion is the largest possible. Thus, it is called a maximum 
margin classifier.44

The kernel trick is the advantage of using SVMs, this tech-
nique maps the features in a higher dimensional space in which 
the classes are well-separated by a hyperplane.45 For a particu-
lar vector of features (x) the kernel function ϕ is applied and 
the result is a new vector with a different number of 
dimensions.

The mapping is described in equation (10).

 φ( ) : |x R R m dd m→ >  (10)

Finding the hyperplane for classification is the task for the 
model. Due to low dimensionality, the performance of SVM 
models can be hindered. Any hypothesised hyperplane is 
described by:

 H w x bT: ( ) + = 0  (11)

where H represents the hyperplane equation, w is the vector of 
weights, b is the bias term of the hyperplane equation and x is 
the vector of features.

An SVM classifier with a radial basis function as its kernel 
function has to optimise the width of the Gaussian (γ = 0.5 × σ2, 
where σ is the width) and the soft margin parameter (C).46 The 
value of C is a trade-off between a smooth decision surface (small 
C, less biassed) and a better fit (large C, more accurate).47

This implementation of the Support vector machine classifier 
uses the API SVC () from Python’s sklearn.svm library.48 The 
model was trained, then validated with the processed dataset and 
produces the following results after fine tuning. Fine Tuning was 
done with cross-validation where the training set is split ran-
domly into n equal sets of data points. Sequentially the classifier 
is show n−1 of these sets, and then the remaining set is used to 
calculate the error in prediction.49 This process is repeated n times 
with different choices for n and the average error is calculated for 
every parameter, Regularization parameter (C) and Kernel coef-
ficient (gamma).50 The pair of values which minimises the cross-
validation error is selected as the best parameters. GridSearchCV() 
is used to perform this hyper parameter tuning. The best results 
were given when C = 1000 and gamma = 1, with the RBF kernel. 
In this case, the validation sets gave the following results: accuracy 
81%, precision 83%, recall 82% and F1 score 82%.

(4)  Random Forest Classifier: A random forest classifier, 
which is a collection of decision trees, is an ensemble learn-
ing method. It is a simple structure, simple to understand, 
and better efficient than similar approaches. The capacity 
to adapt to problem space settings and independence from 
the data domain is the most demanding concern with dif-
ferent types of classifiers51 and this is where the Random 
Forest classifier performs better. They classify a datapoint 
by combining the predictions of multiple trees.

The Random Forest algorithm works based on Bagging. 
Bagging is a method of ensemble which divides the dataset 
into random subsets and each of these ‘bagged’ set is used to 

Figure 4. Plot of error of model vs value of k – used by elbow method to find the optimal value of k for NSCLC (Orange) and SCLC (blue) models.
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construct a basic decision tree.52 This process is repeated mul-
tiple times to get a large enough set of trees, called a forest to 
give reasonable predictions. At each node of a tree, the algo-
rithm decides the way of splitting the data based on one or 
more feature values. For classification problems, the output of 
the random forest is the output selected by most trees. They 
usually outperform decision trees.53 Adding more trees does 
not improve test performance beyond a certain point, thus ran-
dom forests are robust against overfitting.

To construct a decision tree the feature that has to be split is 
selected. To decide which split will be optimal a split measure 
is used. The Gini index, one such split measure, is calculated as 
shown in equation (12) and used as a measure for the impurity 
of a node, that is, if a split is performed based on the value, how 
distributed would each of the split datasets be.48

 gini index Pii

n
= −

=∑1 2

1
( )  (12)

This metric for measuring the impurity of a node is much more 
computationally efficient than Entropy. The lower the Gini 
index, the more optimal the node is for splitting. After the split, 
the separated nodes each have a subset of the dataset with 
lesser columns and one less feature. This process is repeated 
multiple times to construct a tree, and then a forest.

The random forest implementation in Scikit-Learn calcu-
lates the importance of a node using Gini Importance; it always 
generates a decision tree with 2 nodes. The Gini importance is 
calculated with:

 GI w C w C w Cj j j left j left j right j right j= − −( ) ( ) ( ) ( )  (13)

where, GIj = the importance of node j, wj = weighted number of 
samples reaching node j, Cj = the impurity value of node j, 
left(j) = child node from left split on node j, right(j) = child node 
from right split on node j.

The importance of each feature vector is calculated as given 
in equation (14).

 f
GI

GI
i

j j

k all nodes j

=
∑

∑ ∈ _

 (14)

where fi = the importance of feature i, GIi = the importance of 
node j. Based on this metric the tree is built and then the next 
set of input vectors(bag) is selected and the same process is 
repeated. The final forest is a collection of generated trees. This 
implementation of the Support vector machine classifier uses 
the API RandomForestClassifier() from Python’s sklearn.
ensemble library.54 The model was trained, then validated with 
the processed dataset and produces the following results after 
fine tuning. The hyperparameters for a random forest classifier 
are: number of trees built during training (n estimators), the 
maximum number of features each node considers (max fea-
tures), number of leaves required to split a node (min sample 
leaf ), number of the processor to be used (n jobs) and the maxi-
mum depth of the tree (max depth).

The number of hyperparameters for random forest classifi-
ers is large and thus the parameter space is also large. Using 
GridSearchCV() is an efficient method for hyperparameter 
tuning. Therefore, RandomSearchCV() was used to perform 
the hyperparameter tuning.

The best results were given when n estimators = 1200, max fea-
tures = sqrt, min sample leaf = 4, n jobs = −1 and max depth = 100. In 
this case, the training and validation sets gave the following results: 
accuracy 87%, precision 86%, recall 84% and F1 score 85%.

Ensemble algorithms

Ensembling is a method by which many machine learning mod-
els are combined to form one better performing predictive model 
or ensemble model.55 If we consider the based model to be a deci-
sion tree. An ensemble algorithm made of decision trees uses each 
tree’s output and aggregates the results. Similarly for other algo-
rithms the ensembled version of that algorithm is more robust to 
small changes in the dataset and produces better results.56

The paper implements 2 ensemble algorithms XgBoost and 
Adaboost algorithm and compares the result with the machine 
learning algorithms.

(1) XgBoost Algorithm: XGBoost stands for Extreme 
Gradient Boosting. Gradient Boosting is a popular boosting 
algorithm which evaluates the predictor produced, evaluates 
its errors and rectifies them in further iterations of the algo-
rithm. XgBoost uses decision trees as its base model. It com-
bines a linear model with a boosting tree model.57 XgBoost 
rectifies errors created by previous decision trees and new 
trees are formed. Each tree is dependent on the previous 
tree. After a tree is formed the algorithm does not modify 
the weights of the decision tree.

The model is initialised as

 f x argmin L yii

N

0 1( ) =
( ) = ( )∑

θ θ,  (15)

Here f is the predictor, and L is the loss function. Then the 
gradient and hessian vector are calculated for the loss function 
with respect to the f.

Then the optimal predictor for the current iteration is cal-
culated as shown in 17:
      

φ φφm m i
m i

m i

ii

N
argmin h x

g x

h x
x 





= ( ) − ( )
( )

− ( )












∈ =∑Φ 1

2

2

1

 
(16)

 f x xm m( ) ( ) = ( )� �αφ  (17)

where, h is hessian matrix, g is gradient, and alpha is the 
learning rate.

All output variables have weights based on their priority. 
These values are changed after every iteration, and this varia-
tion leads to the ensembling nature of the algorithm. But due 
to its forest kind structure and aggregation, the interpretability 
of the algorithm is reduced.58
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Output of this algorithm is the predictor f, such that,

 f x f x f xM mm

M� � �( ) = ( ) = ( )( ) =∑ 0
 (18)

This implementation of the XGBoost Classifier uses the API 
XGBClassifier() from Python’s xgboost library. The model was 
trained, then validated with the processed dataset and produces 
the following results after fine tuning. The hyper parameter 
chosen to optimise XgBoost were: learning task (objective), the 
learning rate (learning rate), Maximum depth allowed for one 
decision tree (max depth), minimum sum of weight required in 
a child (min child weight), Sample ratio for training (subsam-
ple), number of boosting rounds (n estimators). Here the 
parameter space is large, so RandomSearchCV() is used to get 
the optimal parameters. The best results were given when 
‘learning rate = 0.05, max depth = 5, min child weight = 11, n 
estimators = 7, objective = ‘reg:squarederror’, subsample = 0.7. 
The model gave a precision of

(2)  AdaBoost Algorithm: AdaBoost stands for Adaptive 
Boosting. It is an ensemble algorithm used mainly for 
binary classification. It can be used to combine both weak 
learners and strong base models. In both cases if the per-
formance of one is better than the previous iteration, it can 
be proven to converge to a better model than the base.59 In 
some cases, AdaBoost is less susceptible to overfitting 
compared to other machine learning and ensemble algo-
rithms. Generally, AdaBoost is used with decision trees 
with only one split as its base learner. This type of tree is 
called a decision stump. It works similarly to XGboost by 
assigning higher points to mis-classified data points and 
iterating the algorithm again. After a number of iterations, 
when the error is minimised, the algorithm is complete.60

This implementation of the AdaBoost Classifier uses the API 
AdaBoostClassifier() from Python’s sklearn.ensemble library.61 
The model was trained, then validated with the processed data-
set and produces the following results after fine tuning. The 
hyper parameters chosen to optimise AdaBoost were the learn-
ing rate (learning rate), number of boosting rounds (n estima-
tors). Here the parameter space is small, so an exhaustive search 
was performed using GridSearchCV() to get the optimal 
parameters. The best results were given when ‘learning 
rate = 0.05, n estimators = 100. Table 7 shows the performance 
metrics for the AdaBoost model when tested with the valida-
tion set. The 3 metrics precision, recall and F1 score are shown 
for predicting NSCLC (1) or non-NSCLC (0) under the 
NSCLC column and similarly for SCLC.

Results and Discussion
Quality check and read alignment

The datasets collected when subjected to quality assessment. 
The reads showed good per base quality (ranging between 32 
and 38) and average spot length of 199. The sequence length 
showed an average of 6-7 Giga base pairs (Gbp). Alignment of 

the reads to the human reference genome gave SAM files 
whose alignment rates were above 85% which was later con-
verted to BAM which is the compressed binary version of 
SAM files. The alignment files were subjected to transcriptome 
reconstruction using StringTie resulting in an annotation file 
(gtf format). The transcript file and the alignment files are 
given as input for obtaining the differential gene expression.

Differential expression analysis

The relevant packages were installed to run DESeq2, and the 
phenotype data was loaded in .csv format which contained 
sample ID and Gender of the sample. The transcriptome 
pipeline was run between 2 sample sets (male and female). 
DESeq2 has the requirement namely reference and sample 
condition. Females were chosen to be the reference condition 
and Males were chosen to be the sample condition as this 
experimental design gives a comparison between the 2 condi-
tions. Differential gene expression was run between the male 
and female samples which gave a table with 3 main values. 
One, fold change value referring to the ratio between expres-
sion levels in male and female. Two, the log of the fold changes 
value. The fold change values that are <1 indicate that it is 
expressed at a lower level and values >1 indicate that it is 
expressed at a higher level. The fold change values indicate the 
up and downregulation of the genes (1 indicating upregulation 
and −1 indicating down regulation). Lastly, P-value indicates 
the probability of the expression value. When all the differen-
tially expressed genes obtained from DeSeq2 were subjected 
to pathway analysis using KOBAS the field organism was set 
to be Homo sapiens and method as Gene symbol ID. The dif-
ferentially expressed genes were involved in different path-
ways. Manual analysis for classifying the genes from 
transcriptome analysis causing non-small cell lung cancer and 
small cell lung cancer was performed before the implementa-
tion of ML algorithm. The genes that had the hit specific to 
NSCLC and SCLC were considered and shortlisted as pos-
sible biomarkers from the transcriptome analysis performed. 
The genes with specific pathway hit to only non-small cell 
lung cancer and small cell lung cancer were taken which is 
shown in Tables 2 and 3. The table shows the genes which are 
differentially expressed with the fold change. The biomarkers 
shortlisted have fold change values of 1 and -1 indicating the 
up and down regulation.

Once Transcriptome analysis was performed and the genes 
responsible for NSCLC and SCLC were classified, the differ-
ential gene expression table was subjected to ML 
implementation.

ML model results

For a classification problem, the performance evaluation is 
done through the confusion matrix. It is a 2 × 2 matrix with the 
primary diagonal representing the True positive (TP), pre-
dicted and actual are positive and true negative (TN), predicted 
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and actual are negative. The other diagonal has False positive 
(FP) predicted is negative but actual is negative and False neg-
ative (FN) predicted is negative but actual is negative. The per-
formance metrics are accuracy, precision, recall (sensitivity) and 
F1 score, which are defined by the equations (19)–(22), 
respectively.

 accuracy
TP TN

TP TN FP FN
=

+
+ + +  (19)

 precision
TP

TP FP
=

+
 (20)

 recall
TP

TP FN
=

+
 (21)

 F score
precision recall

precision recall
1

2
=

⋅ ⋅
⋅  (22)

For each algorithm accuracy, precision, recall and F1 score for 
classes 0 and 1 with the weighted average are given in Tables 4 
and 5 for NSCLC and SCLC respectively.

Precision and F1 score were taken as the most important 
performance metric. This is because of the imbalance in the 
dataset and precision is used to get a class wise performance 
of the algorithm rather than the overall performance which is 
offered by accuracy, f1 score combines the precision and recall 
results to get an overall performance without losing informa-
tion about the class wise divide. The paper focuses on the 
True positives because they are the biomarkers for the 

NSCLC and SCLC respectively. Considering these metrics, 
the Random Forest classifier performed well as its prediction 
is based on the feature values. kNN classifier and Support 
vector machine classifier’s performance was similar and they 
perform worse than the random forest classifier. The worst 
performer was the logistic regressor, possibly because of the 
limited number of features.

ROC curve for the models

The Receiver Operating Characteristic (ROC) curve is a graph 
used in a binary classification model to determine the optimal 
threshold for the classification curve. It is a plot of True Positive 
Rate vs False Positive Rate (TPR vs FPR). The value of TPR 
is calculated as in Equation 23 which is equal to sensitivity of 
the model, equation (21) and the value of FPR is calculated as 
in equation (24).

 TPR
TP

TP FN
sensitivity=

+
=  (23)

 FPR
TP

TP FN
specificity=

+
= −1  (24)

In Figure 5, the ROC curve is plotted for the Logistic 
Regression (Logistic), K-Nearest Neighbours (kNN), Support 
Vector Machine (SVM) and Random Forest Classifier (RFC) 
classifiers. Their respective AUC values are also mentioned. 
The ROC curve for the Random Forest Classifier flattens 

Table 2. genes classified to cause non-small cell lung cancer based on fold change values and Pathway hit specific to NSCLC.

gENE NAME FOLD CHANgE LOgFC P-VALuE

BRAF −1.175047077 −0.232718558 .018633125

MAP2K1 −1.022807008 −0.03253395 .744522768

KRAS 1.127233255 0.172786079 .188553802

EgFR −1.414885263 −0.500685065 .058563585

NRAS 1.30453481 0.383535442 .011449642

Table 3. genes classified to cause small cell lung cancer based on fold change values and Pathway hit specific to SCLC.

gENE NAME FOLD CHANgE LOgFC P-VALuE

E2F3 1.009993658 0.014346234 .913188853

FHIT −1.15175616 −0.203835313 .164771745

ATF6 −1.074288737 −0.103381799 .260386661

gADD45A −1.136079068 −0.184063246 .346845743

CDK6 1.11646539 0.158938528 .397918418

PDgFA −1.243269508 −0.314139069 .088348324

PDgFC −1.506741298 −0.591431732 .000298007
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Table 4. Table of performance metrics of different ML algorithms for NSCLC.

ML MODEL CLASS NSCLC

ACCuRACy PRECISION RECALL F1 SCORE

Logistic regression 0 0.68 0.68 0.68 0.71

1 0.68 0.68 0.68 0.81

W. Avg 0.68 0.68 0.68 0.77

k-Nearest neighbours 0 0.7 0.84 0.76 0.76

1 0.76 0.79 0.77 0.76

W. Avg 0.73 0.82 0.77 0.76

Support vector machine 0 0.74 0.88 0.8 0.84

1 0.87 0.71 0.78 0.86

W. Avg 0.8 0.79 0.79 0.85

Random forest classifier 0 0.79 0.87 0.86 0.84

1 0.88 0.79 0.82 0.89

W. Avg 0.85 0.84 0.84 0.86

XgBoost algorithm 0 0.86 0.80 0.83 0.82

1 0.79 0.85 0.82 0.79

W. Avg 0.83 0.82 0.82 0.81

AdaBoost algorithm 0 0.80 0.84 0.83 0.80

1 0.83 0.79 0.81 0.85

W. Avg 0.81 0.81 0.81 0.83

Table 5. Table of performance metrics of different ML algorithms for SCLC.

ML MODEL CLASS SCLC

ACCuRACy PRECISION RECALL F1 SCORE

Logistic regression 0 0.83 0.76 0.68 0.68

1 0.7 0.75 0.68 0.68

W. Avg 0.76 0.76 0.68 0.68

k-nearest neigh-bours 0 0.85 0.77 0.7 0.84

1 0.79 0.76 0.76 0.79

W. Avg 0.82 0.77 0.73 0.82

Support vector machine 0 0.88 0.86 0.74 0.88

1 0.82 0.84 0.87 0.71

W. Avg 0.85 0.85 0.8 0.79

Random forest classifier 0 0.88 0.87 0.79 0.87

1 0.77 0.83 0.88 0.79

W. Avg 0.85 0.85 0.85 0.84

XgBoost algorithm 0 0.80 0.81 0.86 0.80

1 0.79 0.80 0.79 0.85

W. Avg 0.81 0.81 0.83 0.82

AdaBoost algorithm 0 0.85 0.82 0.80 0.84

1 0.81 0.83 0.83 0.79

W. Avg 0.83 0.83 0.81 0.81
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above all other classifier’s curves, therefore it can be concluded 
that Random Forest Classifier is best performing classifier. The 
AUC values for the classifiers will justify this statement. AUC 
(Area Under the curve) measures the 2D area under the ROC 
curve. The ROC curve, along with the Area under the curve 
(AUC) values for each of the 4 classifiers is shown in Figure 3, 
based on their performance on the final test set.

Best performing algorithm

If ROC curves for two different models do not intersect 
when plotted, their AUC values can be used to compare the 
model’s performance [41,62,63]. An ideal ROC curve has a 
steep increase (large TPR for low FPR) in the beginning and 
then flattens out, i.e., it will have a high AUC value (≈ 1). 
Therefore, the higher the AUC value the better the perfor-
mance of the model. In this case, the Random Forest 
Classifier has the highest AUC value of 0.9. Thus, from 

observation and the AUC values, it can be conclusively stated 
that Random Forest Classifier is the best-performing algo-
rithm for the dataset used in the experiment, and has been 
shown to perform well for similar classification problems in 
bioinformatics.

Therefore, the model was validated using the validation set on 
the Random Forest classifier to get the best possible result with-
out overfitting. This was done through a cross-validation tech-
nique with different values of n, to see if the performance flattens. 
Figure 6 shows this process as a flowchart with the Bootstrapping 
method used to run multiple trainings on the model to improve it 
each time. The algorithm was able to increase its average preci-
sion by 0.4 units and the model gave an average precision of 0.91 
and F1 score of 0.92. Figure 7 shows the plot of average precision 
vs the cross-validation fold value (n). This graph has one line 
showing the performance on the SCLC classification and the 
other showing performance of the NSCLC classification.

Therefore, this technique can be used to identify if a gene is 
involved in a pathway that causes either NSCLC or SCLC or 
not, with feature values such as FC value, the logarithm of FC 
value and p-Value. The Random Forest Model will be able to 
identify the genes with reasonable accuracy.

Prediction of the Genes responsible for non-small 
cell lung cancer and small cell lung cancer

Differential expression analysis of the transcriptome sequence 
showed BRAF, MAP2K1, KRAS, EGFR, NRAS to be the pos-
sible markers for NSCLC and E2F3, FHIT, ATF6, GADD45A, 
CDK6, PDGFA, PDGFC to be the genes causing SCLC.

The ML algorithm implemented with the features logFC 
and p-value showed some of the candidate genes that could be 
possible biomarkers for NSCLC, SCLC and common bio-
markers. The biomarker prediction from the ML algorithm is 
shown in Tables 6 to 8.

Figure 5. ROC curve and AuC values for the 4 different classifiers: 

Support Vector Machine (blue), Logistic Regression (orange), KNN 

Classifier (green) and Random Forest Classifier (red).

Figure 6. Flowchart for the Bootstrapping method used to improve Random Forest Classifier model.
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Figure 7. Average Precision of Random Forest Classifier after using Bootstrapping method to improve the model for NSCLC (blue) and SCLC (orange).

Table 6. Predicted biomarkers for NSCLC from ML algorithm.

PREDICTED gENES FOR 
NSCLC

FOLD CHANgE LOgFC P VALuE

BRAF −1.17505 −0.23272 .01863

KRAS 1.12723 0.17279 .18855

NRAS 1.30453 0.38354 .01145

EgFR −1.41489 −0.50069 .05856

Table 8. Common biomarkers for NSCLC and SCLC from ML Algorithm.

COMMON MARKERS FOR NSCLC AND SCLC FOLD CHANgE LOg FC P VALuE

CDK4 1.122603645 0.166849 .432725

BAK1 −1.034605696 −0.04908 .74456

CDK6 1.11646539 0.158939 .397918

CDKN1A −1.015498272 −0.02219 .895518

DDB2 1.140508189 0.189677 .110408

E2F3 1.009993658 0.014346 .913189

FHIT −1.15175616 −0.20384 .164772

gADD45A −1.136079068 −0.18406 .346846

Table 7. Predicted biomarkers for SCLC from the ML Algorithm.

PREDICTED gENES FOR SCLC FOLD CHANgE LOg FC P VALuE

ATF6 −1.074288737 −0.10338 .260387

ATF3 −1.197652552 −0.26021 .301848

PIP5K1C 1.009868788 0.014168 .907544

PDgFA −1.243269508 −0.31414 .088348

PDgFC −1.506741298 −0.59143 .000298

PDgFD −1.260622972 −0.33414 .125071
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Conclusion
Lung cancer is one of the most lethal cancers on the globe. 
There are 2 forms of lung cancer: non-small cell lung cancer 
and small cell lung cancer. Genes that regulated up and down 
were identified using RNA-seq. The massive data was assem-
bled using artificial intelligence and machine learning, and a 
random forest was created to simplify and make it easier to 
grasp. Non-small cell lung cancer and small cell lung cancer are 
the 2 types of lung cancer that the model was created to classify. 
This is done to find the genes that correspond to one of the 
pathways in each category. These genes that were discovered 
are lung cancer biomarkers.

Four Machine Learning Algorithms were compared, and 
each algorithm had a marginal difference in accuracy. Random 
Forest Classifier showed 87% accuracy and helped us in clas-
sifying the biomarkers causing non-small cell lung cancer and 
small cell lung cancer. With an external system the code will be 
able to detect any genes that may be involved in either SCLC 
or NSCLC pathways and then return the names of these genes, 
these are the biomarkers for the disease. From the study BRAF, 
KRAS, NRAS and EGFR could be the possible biomarkers for 
NSCLC and ATF6, ATF3, PGDFA, PGDFD, PGDFC and 
PIP5K1C could be the possible biomarkers for SCLC. 
Additionally, the model also predicted a few possible common 
markers for NSCLC and SCLC; CDK1, CDK6, BAK1, 
DDB2, E2F3, FHIT, GADD45A, CDKN1A. The authors 
intend to expand their research in order to increase the model's 
accuracy in the near future which will be performed using 
multi-layer artificial neural networks and Generative 
Adversarial Network (GAN) analysis. Therefore, the current 
study offers significant insights on biomarkers for lung cancer.
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