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Abstract: The bipartite entanglement in pure and mixed states of a quantum spin-1 Heisenberg
dimer with exchange and uniaxial single-ion anisotropies is quantified through the negativity in a
presence of the external magnetic field. At zero temperature the negativity shows a marked stepwise
dependence on a magnetic field with two abrupt jumps and plateaus, which can be attributed to the
quantum antiferromagnetic and quantum ferrimagnetic ground states. The magnetic-field-driven
phase transition between the quantum antiferromagnetic and quantum ferrimagnetic ground states
manifests itself at nonzero temperatures by a local minimum of the negativity, which is followed by
a peculiar field-induced rise of the negativity observable in a range of moderately strong magnetic
fields. The rising temperature generally smears out abrupt jumps and plateaus of the negativity,
which cannot be distinguished in the relevant dependencies above a certain temperature. It is
shown that the thermal entanglement is most persistent against rising temperature at the magnetic
field, for which an energy gap between a ground state and a first excited state is highest. Besides,
temperature variations of the negativity of the spin-1 Heisenberg dimer with an easy-axis single-ion
anisotropy may exhibit a singular point-kink, at which the negativity has discontinuity in its first
derivative. The homodinuclear nickel complex [Ni2(Medpt)2(µ-ox)(H2O)2](ClO4)2·2H2O provides a
suitable experimental platform of the antiferromagnetic spin-1 Heisenberg dimer, which allowed us
to estimate a strength of the bipartite entanglement between two exchange-coupled Ni2+ magnetic
ions on the grounds of the interaction constants reported previously from the fitting procedure of the
magnetization data. It is verified that the negativity of this dinuclear compound is highly magnetic-
field-orientation dependent due to presence of a relatively strong uniaxial single-ion anisotropy.

Keywords: spin-1 Heisenberg dimer; bipartite entanglement; exchange and single-ion anisotropy;
dinuclear nickel complexes

1. Introduction

Entanglement is one of the most peculiar features of quantum mechanics that does
not have a classical counterpart and resulted a controversial debate between two promi-
nent groups of physicists [1] in the 1930s. Protagonists of the so-called realist viewpoint
represented by Einstein, Podolsky and Rosen considered quantum mechanics as an in-
complete theory that has to be complemented by certain hidden variable(s) to avoid its
indeterminism [2] in opposite to proponents of the orthodox viewpoint represented by
Bohr and their followers [3]. This contradiction has been ultimately resolved only after
Bell formulated famous inequalities, which proved that any local hidden-variable theory is
incompatible with quantum mechanics [4]. It turned out that the principle of locality as the
fundamental assumption of the physical realism prohibiting superluminal propagation of
action on a distance must be rejected, because the violation of Bell inequalities has been
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decisively corroborated in numerous experiments requiring the repudiation of the locality
principle [5].

The quantum entanglement as a primary source of instantaneous action on a distance
(nonlocality) in quantum mechanics currently attracts renewed interest, because the en-
tanglement seems to be indispensable for a development of novel quantum technologies,
quantum computers and quantum information science [6,7]. The development of novel
technologies based on fully quantum grounds is unavoidable at least for two principal
reasons [8,9]. The first one closely relates to the miniaturization as the long-lasting trend in
technological innovations. The devices built on constantly smaller scales will ultimately
reach length scales of nanometers or angular momentum scales of Planck’s constant what
necessarily means that their design must be based on quantum-mechanical principles [8].
The second reason lies in that devices exploiting quantum-mechanical principles can
substantially outperform performance of devices based on classical grounds [9].

One of the most challenging current tasks in this rapidly developing research field
is to find a suitable physical realization of the quantum computer, which would serve
as a hardware for performing computational tasks with the help of efficient quantum
algorithms [10–12]. Electron spin systems represent one of promising candidates for a
design of quantum computers, because a two-level character of the electron spin provides
the simplest platform to encode a quantum bit [13]. Of course, two well defined energy
levels of the electron spin do not automatically guarantee implementation of a qubit
owing to the fact that a quantum superposition of states is often extremely fragile against
uncontrolled interactions of a qubit with its environment, i.e., the phenomenon referred to
as a quantum decoherence. The loss of quantum information due to the decoherence is
regarded as the most principal obstacle for the development of all quantum technologies
exploiting solid-state materials [14].

Molecular-based magnetic materials, which are composed from weakly coupled dis-
crete magnetic molecules, belong to the most perspective electron spin systems for a
quantum computation [15–17] and quantum information processing [18,19]. The molecular
magnets generally possess well defined pattern of discrete energy levels, whereas the
associated quantum states can be easily tuned and coherently manipulated by the pulsed
ESR technique [20]. The molecular magnetic materials thus naturally satisfy most impor-
tant requirements imposed on basic building blocks of quantum computers [21,22] and
hence, they can be regarded as prominent resources for the quantum computation [15–17],
the storage and processing of quantum information [18,19]. Implementation of Grover’s
search algorithm for instance requires a quantum superposition of ’single-molecule’ spin
states, which may be addressed through a multi-frequency sequence of electromagnetic
pulses according to the protocol developed by Leuenberger and Loss [15]. It turns out,
moreover, that exchange-coupled magnetic molecules afford convenient resource for the
implementation of quantum-mechanically entangled gates [23–26]. The quantum entan-
glement is eventually thought of as a key feature, which provides quantum algorithms
an enormous advantage over classical algorithms. The molecular magnetic materials,
which are composed of greater number of metal centers with nonzero resultant spin, may
thus provide a route to large-scale quantum computations based on controlled logic gates
employing the quantum entanglement between electron spins [27–29]. Shor’s factoring
algorithm [12] as one of the most efficient quantum algorithms indeed addresses the com-
putational challenge of factoring to prime numbers by exploiting the entanglement between
‘many-particle’ states.

From the theoretical point of view, the molecular-based magnetic materials are tradi-
tionally described by quantum Heisenberg spin models, which allow qualitative as well
as quantitative characterization of their magnetic properties and quantum entanglement.
The bipartite entanglement within pure and mixed states of the Heisenberg spin models
can be for instance quantified in terms of von Neumann entropy of the reduced density
matrix [30], concurrence [31,32] or negativity [33,34]. In addition, these entanglement mea-
sures can be related to measurable magnetic and thermodynamic quantities [35] and hence,



Molecules 2021, 26, 3420 3 of 19

they are also amenable to experimental testing [36,37]. While the concurrence and related
entanglement of formation [31,32] is perhaps the most widely used entanglement measure
for spin-1/2 Heisenberg systems constituted from two-dimensional qubits, the negativity is
most commonly used entanglement measure for more general spin-S Heisenberg systems
with higher spin magnitude S > 1/2 providing platform built from d-dimensional qudits.
In general, the entanglement features of the spin-S (S > 1/2) Heisenberg systems are much
less studied in comparison with their spin-1/2 counterparts owing to higher computational
complexity [6,7].

As far as the spin-1 Heisenberg systems are concerned, the concept of negativity was
applied in order to investigate a thermal entanglement of the spin-1 Heisenberg chain with
different number of spins assuming bilinear and biquadratic interactions [38,39]. The ther-
mal entanglement of a spin-1 Heisenberg dimer in an inhomogeneous magnetic field [40],
Dzyaloshinskii–Moriya interaction [41] or under the concurrent effect of inhomogeneous
magnetic field and Dzyaloshinskii–Moriya interaction [42] was also examined in particular.
The relation between the quantum entanglement and quantum phase transitions of spin-1
Heisenberg clusters [43] and chain [44] were studied by an exact diagonalization and
renormalization group method, respectively. Interestingly, the threshold temperature of
a quantum spin-1 XY chain, at which the thermal entanglement vanishes, turns out to be
independent of the number of spins [45]. The dimerization and spin frustration also have
highly nontrivial effect upon the thermal entanglement of a spin-1 Heisenberg chain with
an anisotropic exchange interaction [46]. The thermal entanglement of a spin-1 Heisenberg
dimer with both linear and nonlinear coupling terms was studied on an optical lattice
in presence of the magnetic field, which demonstrated that biquadratic interaction may
enhance the thermal entanglement [47].

In the present paper, we will investigate in detail the quantum and thermal entan-
glement within pure and mixed states of a spin-1 Heisenberg dimer accounting for the
exchange anisotropy, uniaxial single-ion anisotropy and magnetic field. The strength of
bipartite entanglement of a spin-1 Heisenberg dimer will be examined in detail depending
on temperature, magnetic field and uniaxial single-ion anisotropy. It is noteworthy that
the homodinuclear nickel complex [Ni2(Medpt)2(µ-ox)(H2O)2](ClO4)2·2H2O (NAOC) [48]
serves as an experimental realization of the investigated spin-1 Heisenberg dimer. We
will also take advantage of the available magnetic data reported previously for the NAOC
complex [49,50] and theoretical analysis of the respective coupling constants [51,52] in
order to quantify a strength of the bipartite entanglement within this molecular-based
magnetic material. In particular, we will clarify on this specific molecular magnetic material
robustness of the thermal entanglement of the NAOC complex against temperature and
magnetic field.

This paper is organized as follows. In Section 2, we will introduce a spin-1 Heisenberg
model and obtain an exact solution for the negativity. In Section 3, we present typical
dependencies of the negativity as a function of temperature and magnetic field for a
few different values of uniaxial single-ion anisotropy. The implications for the thermal
entanglement of the NAOC complex are presented in Section 4. Finally, the conclusions
and summary of the most important findings are presented in Section 5. Some technical
details of the calculation procedure are presented in Appendices A and B.

2. Model and Method

Let us consider the spin-1 Heisenberg dimer defined through the Hamiltonian:

Ĥ = J[∆(Ŝx
1 Ŝx

2 + Ŝy
1 Ŝy

2) + Ŝz
1Ŝz

2] + D[(Ŝz
1)

2 + (Ŝz
2)

2]− h(Ŝz
1 + Ŝz

2), (1)

where Ŝα
j (α = x, y, z) are three spatial components of the spin-1 operator assigned

to two different magnetic ions numbered by the suffix j = 1 and 2. The coupling
constant J determines a size of the XXZ exchange interaction, the parameter ∆ stands
for the spatial anisotropy in this exchange interaction, and the parameter D is the uniaxial
single-ion anisotropy. Finally, the Zeeman’s term h = gµBB accounts for the effect of the
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external magnetic field B (µB is the Bohr magneton and g is the Landé g-factor). The energy
eigenvalues, eigenvectors and basic magnetic properties of the spin-1 Heisenberg dimer
given by the Hamiltonian (1) were exactly calculated and comprehensively discussed in
reference [51], to which readers interested in further details are referred to. For complete-
ness, the eigenvalues and eigenvectors of the Hamiltonian (1) are listed in Appendix A
together with the explicit form of the relevant partition function.

To quantify a degree of the bipartite entanglement, one may take advantage of several
entanglement measures [6], whereas the concurrence and negativity are eventually the
most common ones. The concurrence is usually used as a measure of the bipartite entangle-
ment for the spin-1/2 qubits, while the negativity is more general quantity that may be
straightforwardly used as a measure of the bipartite entanglement also for spin-1 qutrits.
According to the Peres–Horodecki separability criterion [33], the negativity becomes non-
zero just if the state is inseparable and hence, it may be indeed used as an indicator of the
bipartite entanglement. To calculate the negativity of the spin-1 Heisenberg dimer (1) one
has first to calculate a density operator using the relation:

ρ̂ =
1
Z exp(−βĤ) =

1
Z

9

∑
i=1

exp(−βEi)|ψi〉〈ψi|, (2)

where β = 1/(kBT), kB is Boltzmann’s constant, T is the absolute temperature, Ei and
|ψi〉 are the respective eigenenergies and eigenvectors of the Hamiltonian (1) obtained by
solving the relevant eigenvalue problem Ĥ|ψi〉 = Ei|ψi〉 and Z is the partition function
Z = ∑9

i=1 exp(−βEi). It is worthwhile to recall that the complete set of eigenenergies Ei
and eigenvectors |ψi〉was exactly calculated in our previous work [51], so we have decided
to quote in Appendix A just the relevant final results in order to make the present paper
self-contained. After taking into consideration the eigenvectors of the Hamiltonian (1)
explicitly listed in Appendix A, the density matrix ρij = 〈Sz

1
′, Sz

2
′|ρ̂|Sz

1, Sz
2〉 acquires in the

standard basis |Sz
1, Sz

2〉 spanned over the eigenfunctions of z-components of both spins the
following matrix representation:

ρij =

|1,1〉 |1,0〉 |1,−1〉 |0,1〉 |0,0〉 |0,−1〉 |−1,1〉 |−1,0〉 |−1,−1〉



〈1,1| ρ11 0 0 0 0 0 0 0 0
〈1,0| 0 ρ22 0 ρ24 0 0 0 0 0
〈1,−1| 0 0 ρ33 0 ρ35 0 ρ37 0 0
〈0,1| 0 ρ42 0 ρ44 0 0 0 0 0
〈0,0| 0 0 ρ53 0 ρ55 0 ρ57 0 0
〈0,−1| 0 0 0 0 0 ρ66 0 ρ68 0
〈−1,1| 0 0 ρ73 0 ρ75 0 ρ77 0 0
〈−1,0| 0 0 0 0 0 ρ86 0 ρ88 0
〈−1,−1| 0 0 0 0 0 0 0 0 ρ99

. (3)

For the sake of brevity, all nonzero elements of the density matrix (3) are specifically
quoted in Appendix B. The negativity N can be consequently calculated from negative
eigenvalues λi < 0 of a partially transposed density matrix according to the formula
derived by Vidal and Werner [34]:

N = ∑
λi<0
|λi|. (4)

The partial transposition means that the states of one subsystem are kept, while
the states of other subsystem are interchanged. If the states of the first spin are kept
and a partial transposition is made with respect to the states of the second spin, then,
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one gets the following matrix representation of a partially transposed density matrix
ρT2 = 〈Sz

1
′, Sz

2
′|ρ̂|Sz

1, Sz
2〉T2 = 〈Sz

1
′, Sz

2|ρ̂|Sz
1, Sz

2
′〉:

ρT2 =





ρ11 0 0 0 ρ24 0 0 0 ρ37
0 ρ22 0 0 0 ρ35 0 0 0
0 0 ρ33 0 0 0 0 0 0
0 0 0 ρ44 0 0 0 ρ57 0

ρ24 0 0 0 ρ55 0 0 0 ρ68
0 ρ35 0 0 0 ρ66 0 0 0
0 0 0 0 0 0 ρ77 0 0
0 0 0 ρ57 0 0 0 ρ88 0

ρ37 0 0 0 ρ68 0 0 0 ρ99

. (5)

The block-diagonal form of the partially transposed density matrix ρT2 given by
Equation (5) allows a straightforward calculation of all its eigenvalues:

λ1 = ρ33,

λ2 = ρ77,

λ3 =
1
2

[
ρ22 + ρ66 +

√
(ρ22 − ρ66)2 + 4ρ2

35

]
,

λ4 =
1
2

[
ρ44 + ρ88 +

√
(ρ44 − ρ88)2 + 4ρ2

57

]
,

λ5 =
1
2

[
ρ22 + ρ66 −

√
(ρ22 − ρ66)2 + 4ρ2

35

]
,

λ6 =
1
2

[
ρ44 + ρ88 −

√
(ρ44 − ρ88)2 + 4ρ2

57

]
,

λn = − a
3
+ 2sgn(q) cos

[
φ + 2π(n− 7)

3

]
, n = 7, 8, 9.

(6)

The last three eigenvalues are expressed in terms of parameters p, q and φ:

p =
a2

9
− b

3
,

q = −
( a

3

)3
+

ab
6
− c

2
,

φ = arctan

(√
p3 − q2

q

)
, (7)

which follow from the solution of a characteristic cubic equation λ3 + aλ2 + bλ + c = 0
defined through the coefficients:

a = −(ρ11 + ρ55 + ρ99),

b = ρ11ρ55 + ρ55ρ99 + ρ11ρ99 − (ρ2
24 + ρ2

37 + ρ2
68),

c = ρ11ρ2
68 + ρ55ρ2

37 + ρ99ρ2
24 − ρ11ρ55ρ99 − 2ρ24ρ37ρ68. (8)

It is quite obvious that the eigenvalues λ1, λ2, λ3, λ4 are always positive and the
detailed numerical analysis reveals the same feature also for the eigenvalue λ9. The five
positive eigenvalues of the partially transposed density matrix (5) do not contribute to the
negativity (2), which is entirely determined by the remaining four eigenvalues that may
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become under certain conditions negative. The negativity of the spin-1 Heisenberg dimer
can be accordingly calculated from the formula:

N = ∑
λi<0
|λi| =

8

∑
i=5

|λi| − λi
2

. (9)

3. Theoretical Results and Discussion
Before proceeding to a detailed investigation of the negativity it is worthwhile to recall

that the antiferromagnetic spin-1 Heisenberg dimer has according to reference [51] three
different ground states denoted as the quantum antiferromagnetic phase |QAF〉:

|QAF〉 = 1
2

[
A+(|1,−1〉+ |−1, 1〉)−

√
2A−|0, 0〉

]
, A± =

√√√√√1±
1
2 −

D
J√

( 1
2 −

D
J )

2 + 2∆2
, (10)

the quantum ferrimagnetic phase |QFI〉:

|QFI〉 = 1√
2
(|1, 0〉 − |0, 1〉), (11)

and the classical ferromagnetic phase |FM〉:

|FM〉 = |1, 1〉. (12)

Zero-temperature density plot of the negativity, which is shown in Figure 1a in the
plane uniaxial single-ion anisotropy versus magnetic field for the particular case with
the isotropic exchange interaction ∆ = 1, is actually in a perfect agreement with the
ground-state phase diagram reported previously in reference [51]. It is evident that the
strongest quantum entanglement can be detected at low enough magnetic fields, where
the quantum antiferromagnetic state |QAF〉 constitutes the relevant ground state. It turns
out that the negativity acquires its highest possible value N = 1 within the |QAF〉 ground
state for the fully isotropic case with ∆ = 1 and D/J = 0, whereas the uniaxial single-ion
anisotropy of either easy-axis (D < 0) or easy-plane (D > 0) type suppresses a strength of
the quantum entanglement. The quantum ferrimagnetic phase |QFI〉 represents another
available ground state emergent at moderately high magnetic fields and specific values
of the uniaxial single-ion anisotropy D/J > −2/3, whereas the negativity equals to a half
of its maximal value N = 0.5 within this quantum ground state. Finally, the classical
ferromagnetic phase |FM〉 with zero negativity emerges as the last available ground state
at sufficiently high magnetic fields independently of the uniaxial single-ion anisotropy. It is
worthwhile to remark, moreover, that the negativity exhibits a discontinuous jump at any
phase boundary between the |QAF〉, |QFI〉, and |FM〉 ground states.

To bring a deeper insight into a concurrent effect of the exchange and uniaxial single-
ion anisotropy upon a quantum entanglement, zero-temperature dependencies of the nega-
tivity are depicted in Figure 1b as a function on the uniaxial single-ion anisotropy D/J for
zero magnetic field and three selected values of the exchange anisotropy ∆ = 0.5, 1.0 and 2.0.
Note that the quantum antiferromagnetic phase |QAF〉 given by the eigenvector (10) repre-
sents the unique ground state emergent at zero magnetic field and hence, zero-temperature
asymptotic value of the negativity follows from the density operator ρ̂ = |QAF〉〈QAF|
having character of the projection operator for the respective ground state:

NQAF =
1
4

1 +
1
2 −

D
J + 4∆√

( 1
2 −

D
J )

2 + 2∆2

. (13)
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Figure 1. (a) Zero-temperature density plot of the negativity in D/J—gµBB/J plane for the isotropic coupling constant with
∆ = 1; (b) The negativity as a function of the uniaxial single-ion anisotropy D/J for three different values of the exchange
anisotropy ∆ = 0.5, 1.0 and 2.0 at zero temperature and zero magnetic field.

It is evident from the formula (13) that the negativity is within the |QAF〉 ground state
independent of the magnetic field and its maximum valueN = 1 is reached just for special
combinations of the exchange and uniaxial single-ion anisotropies. While the easy-axis
exchange anisotropy ∆ < 1 (e.g., ∆ = 0.5) shifts the global maximum of the negativity
N = 1 towards the easy-plane single-ion anisotropy D/J > 0, the easy-plane exchange
anisotropy ∆ > 1 (e.g., ∆ = 2.0) contrarily shifts this maximum towards the easy-axis
single-ion anisotropy D/J < 0. It could be thus concluded that the antiferromagnetic spin-1
Heisenberg dimer exhibits the strongest quantum entanglement, i.e., the highest possible
value of the negativity N = 1, either for the fully isotropic case with ∆ = 1, D/J = 0 or
when the easy-axis exchange anisotropy compensates the effect of easy-plane single-ion
anisotropy or vice versa. Since the negativity displays qualitatively the same dependencies
regardless of the exchange anisotropy ∆, from here onward we will focus our further
attention to the most common particular case with the isotropic exchange interaction
∆ = 1.

Figure 2 displays the negativity of the spin-1 Heisenberg dimer as a function of the
external magnetic field for a few different temperatures and four selected values of the
uniaxial single-ion anisotropy. Interestingly, the plateaus in the magnetic-field dependence
of the negativity observable at low enough temperatures are quite reminiscent of the previ-
ously reported magnetization plateaus (confront Figure 2 with Figure 3 in reference [51]).
However, this comparison also reveals an inverse relation between a size of the magneti-
zation and negativity: the greater is the magnetization, the smaller is the negativity and
the reverse statement also holds true. Two nonzero plateaus of the negativity are evident
for the particular case without the single-ion anisotropy term D/J = 0 (see Figure 2): the
plateau at NQAF = 1 corresponds to the quantum antiferromagnetic phase |QAF〉 and
the other one at NQFI = 0.5 to the quantum ferrimagnetic phase |QFI〉 while a trivial zero
plateau NFM = 0 corresponds to the classical ferromagnetic phase |FM〉. The qualitatively
same trends can be also observed whenever the uniaxial single-ion anisotropy satisfies the
inequality D/J > − 2

3 (see Figure 2c,d) except that the asymptotic value of the negativity
at low magnetic fields is suppressed from its maximum value in accordance with the
formula (13) derived for the |QAF〉 ground state. Another interesting observation is that
the negativity exhibits a peculiar nonmonotonic magnetic-field dependence in a vicinity
of the transition field between the |QAF〉 and |QFI〉 ground states when it transiently
drops down to a local minimum before it tends back to zero-temperature asymptotic value
NQFI = 0.5 of the latter ground state, whereas the width of this local minimum gradually
diminishes upon lowering of the temperature. On the other hand, there exists just a sin-
gle nontrivial plateau of the negativity without any nonmonotonic dependence or local
minimum whenever one considers a sufficiently strong uniaxial single-ion anisotropy of
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easy-axis type D/J < − 2
3 , because the quantum antiferromagnetic ground state |QAF〉

directly changes to the classical ferromagnetic one |FM〉 upon increasing of the magnetic
field (see Figure 2b). The magnetic fields, at which all abrupt changes of the negativity
are detected at low enough temperatures, are all consistent with the ground-state phase
diagram and transition fields reported in our previous study [51] (see also Figure 1a). It is
also noteworthy that rising temperature evidently makes sharp stepwise dependencies of
the negativity observable at low enough temperatures smoother, because the negativity
gradually smears out due to higher thermal population of excited states within the relevant
mixed states of the spin-1 Heisenberg dimer. Last but not least, it should be pointed out
that the saturation field to the classical ferromagnetic phase |FM〉monotonically increases
upon strengthening of the uniaxial single-ion anisotropy, which thus reinforces a resistance
of the bipartite entanglement against the magnetic field.
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Figure 2. The negativity of the spin-1 Heisenberg dimer as a function of the magnetic field for the particular case with
the isotropic exchange coupling ∆ = 1, a few selected values of temperature (see legend) and four different values of the
uniaxial single-ion anisotropy: (a) D/J = 0.0; (b) D/J = −2.0; (c) D/J = 0.5; (d) D/J = 1.0.

Furthermore, typical temperature dependencies of the negativity of the spin-1 Hei-
senberg dimer are plotted in Figure 3 for a few selected values of the external magnetic
field and four different values of the uniaxial single-ion anisotropy. As could be expected,
the negativity mostly monotonically decreases upon increasing of temperature until it
completely vanishes at a threshold temperature even though one may occasionally detect a
more striking nonmonotonic temperature dependencies of the negativity. It is also worth
mentioning that zero-temperature asymptotic values of the negativity are in accordance
with the specific valuesNQFI = 0.5 andNQAF given by Equation (13), which were previously
ascribed to the quantum ferrimagnetic phase |QFI〉 and the quantum antiferromagnetic
phase |QAF〉, respectively. If the magnetic field is selected slightly above the saturation
value, the negativity starts from zero in agreement with the classical character of the fully
polarized ferromagnetic phase |FM〉, then it steadily rises to a local maximum before it
finally tends to zero at some threshold temperature. To bring insight into how robust is the
quantum entanglement with respect to temperature within the quantum antiferromagnetic
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|QAF〉 and ferrimagnetic |QFI〉 phases, the inset of Figure 3a shows an energy gap between
the ground state and first excited state. It is quite obvious that an energy gap above
the |QAF〉 ground state is the highest at zero magnetic field and so it is also the thermal
dependence of the negativity. Similarly, the highest energy gap above the |QFI〉 ground
state coincides with the magnetic field gµBB/J = 1.5, at which the most robust thermal
dependence of the negativity with the starting asymptotic value N = 0.5 can be found.
It could be thus concluded that the thermal stability of the quantum entanglement is
proportional to an energy gap between the ground and first excited state.
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Figure 3. Temperature variations of the negativity of the spin-1 Heisenberg dimer for the particular case with the isotropic
exchange coupling ∆ = 1, a few selected values of the magnetic field (see legend) and four different values of the uniaxial
single-ion anisotropy: (a) D/J = 0.0; (b) D/J = −2.0; (c) D/J = 0.5; (d) D/J = 1.0.

By inspection we have found that the negativity is composed from three terms:
N1 = |λ7|+ |λ8|, N2 = |λ5|, and N3 = |λ6|, which relate to four eigenvalues (6) of the
partially transposed density matrix (5) that may become under certain circumstances negative.
It is noteworthy that the first term N1 = |λ7|+ |λ8| is the sum of two possibly negative
eigenvalues of the partially transposed density matrix (5), which come from the solution of the
characteristic cubic equation, whereas the eigenvalue λ8 represents the analytical continuation
of the eigenvalue λ7 at higher temperatures. The individual contributions to the overall
negativity of the antiferromagnetic spin-1 Heisenberg dimer are plotted in Figure 4 for two
different values of the uniaxial single-ion anisotropy of the easy-axis type D/J = −2.0 and
−4.0. It is found that the sum of eigenvaluesN1 = |λ7|+ |λ8| provides the most dominant
contribution to the negativity at sufficiently low temperatures, but this contribution simul-
taneously shows a steeper decline upon increasing of temperature in comparison with two
negative eigenvalues N2,3 = |λ5| = |λ6| contributing equally to the negativity. As a result,
the negativity exhibits a remarkable kink at the specific temperature (e.g., kBT/J ≈ 1.08 for
D/J = −2.0), which relates to a gradual breakdown of the first contributionN1 = |λ7|+ |λ8|
and the first derivative of the negativity consequently displays discontinuity at the respective
kink. Note furthermore that the negativity displays this striking kink even if one considers
moderate values of the magnetic field gµBB/J = 0.5 (see Figure 4b), which gradually disap-
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pears from a thermal dependence of the negativity only at sufficiently high magnetic fields. It
is worth mentioning that the kink is detectable in the thermal dependence of the negativity
just for the uniaxial single-ion anisotropy of the easy-axis type as exemplified in Figure 4 on
two particular cases with D/J = −2.0 and −4.0.
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Figure 4. (a,b) Temperature dependencies of the overall negativity N and its three individual contributions N1, N2, and N3

for the spin-1 Heisenberg dimer with the isotropic exchange coupling ∆ = 1, the uniaxial single-ion anisotropy D/J = −2.0
and two different magnetic fields: (a) B = 0; (b) gµBB/J = 0.5; (c,d) The same as in the panel (a,b) just for the uniaxial
single-ion anisotropy D/J = −4.0. The insets show a kink of the negativity in an enhanced scale.

To gain an overall insight, 3D plot of the negativity is depicted in Figure 5 as a
function of temperature and magnetic field for four different values of the uniaxial single-
ion anisotropy. The displayed plots nicely demonstrate all general features discussed
previously and moreover, they also clearly allocate the parameter space with nonzero
thermal entanglement. It is quite apparent from the relevant 3D plots that the rising
temperature and magnetic field mostly suppress the negativity in accordance with common
expectations, however, the negativity may also display an outstanding contraintuitive rise
in a restricted range of temperatures and magnetic fields being sufficiently close to phase
boundaries between two different ground states. Moreover, it turns out that the threshold
temperature, above which the thermal entanglement (negativity) vanishes, is independent
of the magnetic field for selected values of the exchange and uniaxial single-ion anisotropy.
Last but not least, it also follows from Figure 5 that a weak thermal entanglement can
be thermally induced above the classical |FM〉 ground state, which is surprisingly stable
against thermal attenuation regardless of its negligible magnitude.
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Figure 5. 3D plots of the negativity of the spin-1 Heisenberg dimer with the isotropic exchange interaction ∆ = 1 as a
function of temperature and magnetic field for four different values of the uniaxial single-ion anisotropy: (a) D/J = 0.0;
(b) D/J = −2.0; (c) D/J = 0.5; (d) D/J = 1.0.

4. Entanglement in the Dinuclear Nickel Complex NAOC

In this part we will investigate in detail a bipartite entanglement between two
exchange-coupled spin-1 Ni2+ magnetic ions of the homodinuclear coordination com-
pound [Ni2(Medpt)2(µ-ox)(H2O)2](ClO4)2·2H2O (ox = oxalate and Medpt = 3,3′-diamino-
N-methyl-dipropylamine) [48] referred to as the NAOC complex. Before doing so, a few
comments are in order concerning with magneto-correlations of the NAOC complex whose
crystal structure is displayed in Figure 6. First of all, it should be pointed out that the
NAOC complex represents an excellent experimental realization of a spin-1 Heisenberg
dimer, because two spin-1 Ni2+ magnetic ions are strongly coupled through superexchange
pathways mediated by the bridging oxalate group and rather bulky tridentate blocking
ligand Medpt makes intermolecular interactions negligible with respect to this dominant
magnetic interaction. Besides, the highly distorted octahedral arrangements of ligands
around each central Ni2+ magnetic ion indicates a substantial single-ion anisotropy. As a
matter of fact, two amine groups of the tridentate ligand Medpt from axial positions of an
octahedral coordination sphere are much closer to the central Ni2+ magnetic ion than other
four ligands from its equatorial plane [48].

High-field magnetization data measured along two principal crystallographic c∗-
and a-axes of a single-crystal sample of the NAOC complex [49,50] actually verify highly
anisotropic magnetization process: the saturation magnetization is reached at much lower
magnetic field if the external magnetic field is applied along the easy magnetization axis
identified with the crystallographic c∗-axis in comparison with the hard magnetization
axis identified with the crystallographic a-axis [49,50]. The magnetization curve of the
NAOC complex along the crystallographic c∗-axis, which can be regarded as the principal
quantization z-axis in a spin space, can be satisfactorily modeled by the spin-1 Heisenberg
dimer (1) with the isotropic coupling constant J/kB = 30.66 K and ∆ = 1, the easy-axis uni-
axial single-ion anisotropy Dc∗/kB = −12.48 K and the gyromagnetic factor gc∗ = 2.28 [51].
On the other hand, the theoretical modeling of the magnetization curve of the NAOC com-
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plex along the crystallographic a-axis is much more complex due to off-diagonal character
of the applied (transverse) magnetic field [52]. However, the spin-1 Heisenberg dimer (1)
with the same coupling constant J/kB = 30.66 K and ∆ = 1, the hard-axis uniaxial single-
ion anisotropy Da/kB = 4.91 K and the gyromagnetic factor ga = 2.24 [51] provides
relatively plausible fit of the experimental data in spite of the fact the crystallographic
a-axis is not true quantization axis. For completeness, it is worth noticing that the NAOC
complex has a small biaxial single-ion anisotropy originating from the heterogeneity of
ligands in an equatorial plane of the octahedral coordination sphere of the central spin-1
Ni2+ magnetic ions, which will be neglected for simplicity [52].

Ni

O

N

C

Cl

Figure 6. A crystal structure of the dinuclear nickel complex [Ni2(Medpt)2(µ-ox)(H2O)2](ClO4)2·2H2O
abbreviated as NAOC (ox = oxalate and Medpt = 3,3′-diamino-N-methyl-dipropylamine) adapted
according to crystallographic data reported in reference [48]. A color scheme for the atom labeling is
shown in the legend, whereas hydrogen atoms are not shown for clarity.

Now, let us adapt both reported fitting sets of the interaction parameters for the
magnetization data measured along the crystallographic c∗- and a-axes in order to clarify
the effect of magnetic field and temperature upon a thermal entanglement between two
exchange-coupled spin-1 Ni2+ magnetic ions forming the dinuclear core of the NAOC com-
plex. Figure 7a shows how the negativity of the NAOC complex depends on the external
magnetic field oriented along the crystallographic c∗-axis being the easy magnetization
axis. At zero temperature the negativity almost equals to its maximum value NQAF ≈ 1
from zero field up to approximately 23 T due to presence of the quantum antiferromagnetic
phase |QAF〉, then it exhibits a rather narrow plateau exactly at a half of its maximum
value NQFI = 0.5 due to the quantum ferrimagnetic phase |QFI〉 emergent in the field
range from 23 T up to 34 T before it finally jumps to zero at the saturation field 34 T
due to presence of the classical ferromagnetic phase |FM〉. The stepwise changes of the
negativity are of course gradually smeared out upon increasing of temperature, whereas
strict jumps of the negativity appearing at zero temperature are replaced with a steep but
continuous changes at small enough temperatures. However, the distinct profile of the
negativity with two marked plateaus can be still clearly distinguished at small enough tem-
peratures as for instance T = 1.3 K used in the previous magnetization experiments [49,50].
Moreover, the field-driven phase transition between the |QAF〉 and |QFI〉 ground states is
also clearly manifested at low enough temperature T = 1.3 K as a pronounced minimum
of the negativity observable close to the first critical field B ≈ 23 T, which is subsequently
followed by an anomalous rise of the negativity until the external magnetic field nearly
reaches a midpoint of the intermediate plateau NQFI = 0.5 attributable to the quantum
ferrimagnetic phase |QFI〉. To complete the physical understanding, Figure 7b shows the
negativity as a function of temperature for a few different values of the magnetic field
applied along the crystallographic c∗-axis by assuming the same set of the interaction
parameters. It is quite clear that zero-temperature asymptotic limits of the negativity are
fully consistent with aforedescribed field dependencies. Besides, the inset of Figure 7b
displays an energy gap between a ground state and a first excited state as a function of
the magnetic field, which in turn offers a simple explanation why the negativity of size
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NQAF ≈ 1 and NQFI = 0.5 are most robust against rising temperature at the magnetic
field B = 0 T and 28 T, respectively. As a matter of fact, the largest energy gap of the
quantum antiferromagnetic ground state |QAF〉 is at zero field and the one of the quantum
ferrimagnetic ground state |QFI〉 is roughly around 28 T. Finally, it is worth mentioning that
the negativity may show a peculiar temperature-induced rise when the external magnetic
field exceeds the saturation field (see for instance the dependence for B = 35 T). Under this
condition, the negativity starts from zero due to presence of the classical ferromagnetic
ground state |FM〉 at zero temperature, but a thermal population of a few low-lying excited
quantum states may give rise to a relatively weak thermal entanglement.
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Figure 7. (a,b) The negativity of the NAOC complex when the external magnetic field is applied along the crystallographic
c∗-axis. Magnetic-field [panel (a)] and temperature [panel (b)] dependencies of the negativity are based on the spin-1
Heisenberg dimer (1) with the isotropic coupling constant J/kB = 30.66 K and ∆ = 1, the uniaxial single-ion anisotropy
Dc∗/kB = −12.48 K and the gyromagnetic factor gc∗ = 2.28; (c,d) The negativity of the NAOC complex when the
external magnetic field is applied along the crystallographic a-axis. Magnetic-field [panel (c)] and temperature [panel
(d)] dependencies of the negativity are based on the spin-1 Heisenberg dimer (1) with the isotropic coupling constant
J/kB = 30.66 K and ∆ = 1, the uniaxial single-ion anisotropy Da/kB = 4.91 K and the gyromagnetic factor ga = 2.24.

Next, let us turn our attention to the most essential features of the negativity of the
NAOC complex when the external magnetic field is applied along the crystallographic
a-axis. To this end, Figure 7c,d involve analogous magnetic-field and temperature de-
pendencies of the negativity, which were calculated for the spin-1 Heisenberg dimer
unambiguously characterized by the second reported fitting set of the parameters inherent
to this specific field orientation. Figure 7c shows the negativity as a function of the magnetic
field for a few different temperatures and Figure 7d shows the negativity as a function of
temperature for a few different values of the magnetic field. Although qualitatively the
same patterns in the respective field and temperature dependencies can be recognized
as in Figure 7a,b, there is an enormous quantitative difference in a size of the field range
corresponding to an intermediate plateau of the negativity NQFI = 0.5. This value can
be naturally ascribed to the quantum ferrimagnetic phase |QFI〉, which appears in much
wider magnetic-field range from B = 20 T until B = 44 T. It is quite obvious that the
quantum ferrimagnetic phase |QFI〉 is crucially stabilized by the easy-plane single-ion
anisotropy Da/kB = 4.91 K, which simultaneously makes the crystallographic a-axis a hard
magnetization axis. From a detailed analysis of the energy gap, which is shown in the inset
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of Figure 7d, one may conclude that the initial value of the negativity NQFI = 0.5 ascribed
to the quantum ferrimagnetic phase |QFI〉 is the most robust against rising temperature at
the particular value of the magnetic field B ≈ 32 T that coincides with the largest energy
gap. The largest resistance of the negativity NQAF ≈ 1 pertinent to the quantum antiferro-
magnetic phase |QAF〉 against temperature-driven decline can be repeatedly observed at
zero magnetic field in agreement with the largest energy gap of the |QAF〉 ground state.

Finally, 3D plots of the negativity of the NAOC complex versus temperature and
magnetic field are shown in Figure 8 for two different spatial orientations of the magnetic
field applied either along the crystallographic c∗- or a-axis. The relevant 3D plots can
be regarded as a certain type of the phase diagram, which allocates the parameter space
with or without thermal entanglement. It is worthwhile to remark that the strong enough
thermal entanglement of the NAOC complex persists up to T ≈ 40 K irrespective of a
spatial orientation of the external magnetic field. On the other hand, the persistence of the
thermal entanglement against the external magnetic field strongly depends on its spatial
orientation due to a substantial size of the uniaxial single-ion anisotropy. If the magnetic
field is applied along the easy magnetization axis identified with the crystallographic
c∗-axis, the sizable thermal entanglement survives nearly up to a relatively high magnetic
field B ≈ 34 T comparable with a size of the exchange-coupling constant. Contrary to this,
the magnetic field applied along the crystallographic a-axis being the hard magnetization
axis for the NAOC complex has much more gentle effect upon suppression of the thermal
entanglement, which is accordingly maintained up to much stronger magnetic fields
B ≈ 44 T. Bearing all this in mind, it could be concluded that the NAOC compound shows
sufficiently strong thermal entanglement up to relatively high magnetic fields, which can
be additionally enhanced or lowered by a proper choice of the spatial orientation of the
applied magnetic field. On the other hand, the persistence of the thermal entanglement of
the NAOC complex against rising temperature holds up to T ≈ 40 K and is not affected
anyhow by a spatial orientation of the magnetic field.
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Figure 8. The negativity of the NAOC complex in the form of 3D plot versus temperature and
magnetic field. The relevant theoretical predictions are based on the spin-1 Heisenberg dimer
(1) with the isotropic coupling constant J/kB = 30.66 K and ∆ = 1 by considering two different
spatial orientations of the magnetic field applied either along to the crystallographic c∗- or a-axis:
(a) Dc∗/kB = −12.48 K, gc∗ = 2.28; (b) Da/kB = 4.91 K, ga = 2.24.

5. Conclusions

In the present paper, we have exactly calculated the negativity within pure and
mixed states of a spin-1 Heisenberg dimer with the uniaxial single-ion and exchange
anisotropies in a presence of the external magnetic field. The negativity, which may serve
as a measure of bipartite entanglement at zero as well as nonzero temperatures, was
rigorously calculated from negative eigenvalues of a partially transposed density matrix
according to the definition put forward by Vidal and Werner [34]. In particular, we have
examined in detail the negativity as a function of temperature and magnetic field for
specific choices of the exchange and uniaxial single-ion anisotropies. It has been shown that
the negativity shows at absolute zero temperature a stepwise dependence on the magnetic
field with two sizable discontinuous jumps and intermediate plateaus at NQAF ≈ 1 and
NQFI = 0.5 ascribed to the quantum antiferromagnetic phase |QAF〉 and the quantum
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ferrimagnetic phase |QFI〉, respectively. The discontinuous zero-temperature changes
of the negativity are also clearly manifested at sufficiently low temperatures as steep
but continuous magnetic-field variations of the negativity, whereas rising temperature
gradually smears out the marked field dependence of the negativity. The magnetic-field-
driven phase transition between the |QAF〉 and |QFI〉 ground states gives rise at low
enough temperatures to a pronounced local minimum, which is subsequently followed by
a peculiar field-induced rise of the negativity observable in a range of moderately strong
magnetic fields. Another outstanding finding concerns with a theoretical prediction of a
singular point-kink, which emerges in the temperature dependence of the negativity when
considering the uniaxial single-ion anisotropy of easy-axis type. This peculiar phenomenon
was explained in terms of a temperature-driven sign change of one eigenvalue of a partially
transposed density matrix, which contributes to the negativity just below temperature
corresponding to this singular point. Moreover, it has been verified that the persistence
of the thermal entanglement against rising temperature strongly relates to an energy gap
between a ground state and a first excited state. The negativity NQAF ≈ 1 ascribed to the
quantum antiferromagnetic phase |QAF〉 is thus retained over the widest temperature range
at zero magnetic field, while the value NQFI = 0.5 pertinent to the quantum ferrimagnetic
phase |QFI〉 is kept constant in the widest temperature interval for the specific value of the
magnetic field that nearly coincides with a midpoint of the relevant plateau.

Last but not least, the concept of negativity elaborated in the present work for the
spin-1 Heisenberg dimer was also specifically adapted to the homodinuclear nickel coordi-
nation compound NAOC [48]. To bring insight into the thermal entanglement between
two exchange-coupled spin-1 Ni2+ magnetic ions we took advantage of the fitting set of
parameters reported for the NAOC complex in our previous work dealing with its mag-
netic properties (in particular magnetization and susceptibility) [51]. It turns out that the
resistance of the bipartite entanglement of the NAOC complex against the magnetic field
depends basically on a spatial orientation of the magnetic field due to a sizable uniaxial
single-ion anisotropy. On the contrary, the robustness of the bipartite entanglement of the
NAOC complex against rising temperature is not magnetic-field-orientation dependent
when it persists up to nearly the same temperature T ≈ 40 K regardless of a spatial orien-
tation of the external magnetic field. The technological applications in modern quantum
computation and quantum processing of information would however require persistence
of the thermal entanglement up to much higher temperatures.

Among the large family of homodinuclear nickel complexes bridged through the
oxalate group, the coordination nickel compound [Ni2(cyclam)2ox](NO3)2 (ox = oxalate
and cyclam = 1,4,8,11-tetraazacyclotetradecan) [53] represents most promising candidate
for a stabilization of the thermal entanglement to higher temperatures, because the rele-
vant coupling constant J/kB = 56 K is sufficiently high in order to stabilize the thermal
entanglement approximately up to T ≈ 70 K. A greater stabilization of the thermal en-
tanglement could be reached by substituting the bridging oxalate group through azido
bridges, because the azido bridges may transmit superexchange coupling much more effec-
tively in comparison with the oxalate group. Indeed, the homodinuclear nickel complex
[Ni(dl-cth)(µ1,3-N3)]2(ClO4)2 (dl-cth = 5,5,7,12,12,14-hexamethyltetraazacyclotetradecan)
[54] has a much stronger value of the coupling constant J/kB = 161 K, which indicates
the existence of nonnegligible thermal entanglement up to relatively high temperatures
T ≈ 200 K.
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Appendix A

Explicit form of eigenvectors and eigenvalues of Hamiltonian 1 are as follows:

|ψ1〉 =
1
2
[A+(|1,−1〉+ |−1, 1〉)−

√
2A−|0, 0〉], E1 = −1

2
J + D− R

|ψ2〉 =
1√
2
(|1,−1〉 − |−1, 1〉), E2 = −J + 2D

|ψ3〉 =
1√
2
(|1, 0〉 − |0, 1〉), E3 = −J∆ + D− h

|ψ4〉 =
1√
2
(|−1, 0〉 − |0,−1〉), E4 = −J∆ + D + h

|ψ5〉 =
1
2
[A−(|1,−1〉+ |−1, 1〉) +

√
2A+|0, 0〉], E5 = −1

2
J + D + R

|ψ6〉 =
1√
2
(|1, 0〉+ |0, 1〉), E6 = J∆ + D− h

|ψ7〉 =
1√
2
(|−1, 0〉+ |0,−1〉), E7 = J∆ + D + h

|ψ8〉 = |1, 1〉, E8 = J + 2D− 2h

|ψ9〉 = |−1,−1〉, E9 = J + 2D + 2h

in which R, A+ and A− are defined as:

R =

√(
J
2
− D

)2
+ 2(J∆)2, A± =

√
R± ( J

2 − D)

R
.

The partition function is given by:

Z =
9

∑
i=1

exp(−βEi) = exp[β(J − 2D)] + 2 exp[−β(J + 2D)] cosh(2βh)

+4 exp(−βD) cosh(βh) cosh(βJ∆) + 2 exp
[

β

(
J
2
− D

)]
cosh(βR).
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Appendix B

Explicit form of nonzero elements of the density matrix are as follows:

ρ11 =
1
Z

exp[−β(J + 2D− 2h)]

ρ22 =
1
Z

exp[−β(D− h)] cosh(βJ∆)

ρ33 = ρ77 =
1

2Z
exp

[
−β

(
D− J

2

)]{
cosh(βR) +

J
2 − D

R
sinh(βR) + exp

[
−β

(
D− J

2

)]}

ρ44 =
1
Z

exp[−β(D− h)] cosh(βJ∆)

ρ55 =
1
Z

exp
[
−β

(
D− J

2

)]{
cosh(βR)−

J
2 − D

R
sinh(βR)

}

ρ66 =
1
Z

exp[−β(D + h) cosh(βJ∆)]

ρ88 =
1
Z

exp[−β(D + h)] cosh(βJ∆)

ρ99 =
1
Z

exp[−β(J + 2D + 2h)]

ρ24 = ρ42 = − 1
Z

exp[−β(D− h)] sinh(βJ∆)

ρ35 = ρ53 = ρ57 = ρ75 = − 1√
2Z

√√√√1−
(

D− J
2

R

)2

exp
[
−β

(
D− J

2

)]
sinh(βR)

ρ37 = ρ73 =
1

2Z
exp

[
−β

(
D− J

2

)]{
cosh(βR) +

J
2 − D

R
sinh(βR)− exp

[
−β

(
D− J

2

)]}

ρ68 = ρ86 = − 1
Z

exp[−β(D + h)] sinh(βJ∆)
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