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Current status of Radiomics for cancer management:
Challenges versus opportunities for clinical practice

1 | INTRODUCTION

Radiomics, the high‐throughput extraction and analysis of features

from medical images, is a promising field for characterizing tumor

phenotype and normal tissue injury post‐radiotherapy. Radiomics

provides unique opportunities to identify predictive and prognostic

imaging biomarkers in noninvasive imaging assays providing so‐
called digital biopsies that can be acquired throughout the whole

course of cancer treatment. Radiomics have been proved to be

associated with underlying gene expression and therapy response,

which is an area currently referred to as radiogenomics. Multi-

modality imaging biomarkers extracted from positron emission

tomography (PET), computed tomography (CT), magnetic resonance

imaging (MRI), and images in other medical modalities have been

shown to have discriminative power for cancer treatment outcome

prognosis and prediction. For example, F‐fluoro‐2‐deoxy‐D‐glucose
(FDG)‐PET images are the standard of care in tumor quantification

of head and neck radiation therapy (RT) and will likely remain so

for the foreseeable future. Metabolic tumor volume, defined as the

volume of tumor tissues with increase and heterogeneous FDG

uptakes, is an important prognostic factor in many malignancies.

The radiomics features can complement known first order imaging

biomarkers and provide further insights beyond those revealed to

naked eyes from medical images.

During the past years, there has been tremendous growth in the

radiomics field leading to improved performances in cancer diagnosis,

cancer staging, tumor classification, treatment outcome prediction,

patient survival, and other clinical practice, compared to other simple

clinical biomarkers such as tumor staging, tumor size, human papillo-

mavirus (HPV) status, etc. Clinical applications of radiomics have

been widely investigated as well.1,2 Radiomics yield great promise to

support clinical practice and achieve many promising results. There

are many publications and special issues dedicated to the usage of

radiomics to support clinical applications in combination with recent

spread of advanced machine learning methods.3,4 Yet questions

remain if the development of radiomics makes it ready for prospec-

tive clinical use. Herein, we brought in two medical physics experts

both of whom have extensive knowledge in clinical practice and

radiomics research. Dr. Hua Li is taking the proposition that “Radio-

mics poses more challenges than opportunities for clinical practice in

cancer management,” whereas Dr. Issam El Naqa argues against it.

Dr. Hua Li is currently a research associate professor in the

Department of Bioengineering at University of Illinois at Urbana‐
Champaign and a clinical medical physicist at Carle Cancer Center,

Carle Foundation Hospital, Urbana, IL. Before joining UIUC and

Carle, she was an associate professor in the Department of Radiation

Oncology at Washington University in Saint Louis. Dr. Li is certified

in Therapeutic, Diagnostic, and Nuclear medical physics by the

American Board of Radiology. She has conducted active research in

developing advanced machine learning, pattern recognition, and

image analysis techniques for applications in radiation therapy and

diagnostic imaging. Her current research projects include radiomics‐
based prognostic model of cervical cancer habitats, multimodal

biomarkers for personalized oropharyngeal cancer treatment, and

task‐based image quality assessment and optimization in radiation

therapy. Her research projects are funded by the National Institute

of Health (NIH).

Dr. EI Naqa worked as a Professor and associate member in

Applied Physics and the Michigan institute of data science. He

recently accepted the position of founding chair of the department

of Machine Learning at Moffitt Cancer Center, Tampa, Fl, where will

officially start later this summer. He is a certified Medical Physicist

by the American Board of Radiology. He is a recognized authority in

the fields of machine learning, data analytics, and oncology outcomes

modeling and has published extensively in these areas with more

than 180+ peer‐reviewed journal publications and four edited text-

books. He has been a senior member and fellow of several academic

and professional societies. His research has been funded by several

federal and private grants in Canada and the USA and served on

national and international study sections. He acts as a peer‐reviewer

and editorial board member for several leading international journals

in his areas of expertise.

2 | OPENING STATEMENTS

2.A | Hua Li, PhD

The usage of radiomics for reliably and efficiently supporting clini-

cal decision‐making in cancer therapy remains largely immature

with many impediments. An effective yet stable methodology

model able to select and learn from radiomics (or deep learn from

the related images) to support clinical practice of cancer
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diagnostics, treatment prognosis, and prediction is still desired.5,6

In this section, we highlight the main challenges with the hope to

guide the design and development of efficient and robust method-

ology to address these challenges and expedite the clinical applica-

tions of radiomics.

2.A.1 | Limitations of medical imaging systems

Imaging systems are imperfect and generally acquire indirect mea-

surements of an object property that is affected by multiple

sources of noise. Tomographic images reconstructed from such

measurements are additionally influenced by the choice of recon-

struction method and may contain artifacts. The spatial resolution

of imaging systems is limited by the imaging physics and the

instrument response. A fundamental question is whether a given

imaging system is capable of producing images that contain infor-

mation that is potentially useful for making predictions related to

treatment outcomes or other tasks. For example, high heterogene-

ity of radiomics exists among images of the same patient but

acquired from different imaging systems.7 Moreover, the lack of

harmonization and standardization for radiomics due to the limita-

tions of imaging systems is an intrinsic issue that needs to be

aware of.

2.A.2 | Radiomic features yield high redundancy

Conventionally, radiomics is a method in which a large number of

features are extracted from images for the purpose of making a sta-

tistical inference related to a disease. Given interesting regions (ie,

tumor), complementary and quantitative radiomic features, including

semantic features (tumor shape, size, locations, etc.), histogram‐
based features (mean, median, maximum, entropy, skewness, etc.),

textural features, wavelets, and others, can be extracted. However,

only a small portion of these extracted features have been proven

to be useful. Designing efficient way to determine those informative

ones from a large number of extracted features can be a very chal-

lenging task.

2.A.3 | Radiomic features yield high heterogeneity

Radiomic features, extracted from multimodality images and individ-

ual patients, yield high heterogeneity due to varied imaging system

principles, numerous imaging protocols and parameters, and intrinsic

differences among images from different modalities. The high

heterogeneity of radiomics brings additional challenges to determine

stable and informative features and properly fuse them to support

clinical applications of radiomics.

2.A.4 | Radiomic features yield high uncertainty

Uncertainties and variations in delineated tumor shapes and sizes

cause high uncertainty of extracted radiomics from images in differ-

ent imaging modalities and exhibited in individual patients, mainly

due to variations among manual, semi‐automatic, or automatic tumor

delineation methods.

2.A.5 | Uncertainty in clinical outcomes

Due to their partially subjective determination based on physician

experience, the Response Evaluation Criteria in Solid Tumor (RECIST)

version 1.1, biopsy results, and/or after‐treatment medical images,

clinical outcomes yield uncertainty. In another words, partial subjec-

tivity exists and is unavoidable in determining cancer treatment out-

comes and other clinical diagnosis and treatment endpoints among

patient samples. The outcome uncertainty brings additional chal-

lenges of using radiomics for cancer diagnosis and treatment out-

come prognosis.

2.A.6 | Challenges of small number and imbalanced
(skewed) training dataset

Relatively small training patient numbers in comparison to the high‐
dimensional radiomic feature space can potentially cause unstable

performance of the trained model on unseen cases. In addition,

imbalanced (skewed) training patient samples, due to the very differ-

ent class label rates, significantly affect the model performance as

well. Numerous clinical studies demonstrated that the outcome rates

for majority cancers are imbalanced. The prediction model trained by

unbalanced samples yields high false negative prediction rates on

unseen data samples in minority classes. Minority class samples

require rebalancing in order to reduce the difficulties in learning

them, improve the stability of the selected optimal features, and

decrease the predictive error rates on minority classes.

2.A.7 | Challenges of using deep learning
approaches

Unlike traditional machine learning‐based methods, more and more

advanced deep learning‐based radiomics (DLRs) have been adapted

to extract deep radiomics for RT applications8. In deep learning‐
based methods, medical images are directly employed as the input

without separating regions‐of‐interest delineation and radiomics

extraction from the following classification. The deep learning‐based
methods can be treated as a simple end‐to‐end process. For exam-

ple, CNN or autoencoder architectures, which combine both linear

and nonlinear functions, are employed to explore deep features

from images and feed to the following deep net for decision‐mak-

ing. The delineation of tumor or other organs‐of‐interest can be

skipped, which reduces the burden to clinicians and the effect of

tumor contour uncertainty on the performance of the radiomics‐
based applications. However, deep learning networks normally need

to be trained with a larger amount of training data in order to meet

its learning task and achieve stable performance. Collecting a large

amount of proper training dataset in the medical field is a very

challenging issue. In addition, selecting and evaluating optimal DL

network architectures for clinical applications still requires
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thoughtful understanding of DL networks considering the intrinsic

differences of medical imaging systems compared to other imaging.

Therefore, medical image‐specific network design, training, valida-

tion, and testing are required for the safe use of DLRs to guide

clinical practice.

In summary, imaging system limitations, data redundancy, hetero-

geneity, uncertainty, and imbalance of the large number of candidate

radiomics features, and existing small training sets are the challenges

that need to be aware of. A critical barrier hampering the wide-

spread and stable use of imaging biomarkers in clinical practice is

the lack of robust tools for identifying prognostic biomarkers from

high‐dimensional features that work across patient population. The

employment of traditional machine learning and advanced deep

learning methods in medical imaging fields also requires some special

considerations.

2.B | Issam El Naqa, PhD

Despite the aforementioned challenges, there is light at the end of

the tunnel. Moreover, delaying the adoption of radiomics until all

these challenges are resolved is impractical and will miss the current

existing opportunities for employing radiomics to support clinical

decision‐making. The mere presence of noninvasive nature of medi-

cal images and possibility of high spatial and temporal resolution

provide major benefits over using simplistic metrics that would over-

look the wealth of useful information on tumor’s shape, growth/

shrinking over time, heterogeneity that radiomics can provide as dis-

cussed below.

2.B.1 | New standards and metrology for radiomics
are evolving

Many organizations are leading the way to standards for quantitative

imaging and its utilization as biomarkers including the RSNA and

AAPM, among others. These initiatives and others have led to useful

recommendations for repeatability and reproducibility such as the

Quantitative Imaging Biomarkers Alliance (QIBA) in MRI and other

modalities, for instance.9 In addition, consortium such as The Image

Biomarker Standardization Initiative (IBSI) specifically designated for

standardizing radiomics for high‐throughput image‐based phenotyp-

ing.10

2.B.2 | Multimodality imaging is underutilized

The use of imaging in RT is progressing at a rapid pace. The simplis-

tic use of this existing wealth of imaging modalities is a typical case

of information waste that is missing tremendous opportunities that

radiomics can bring to bear beyond simple intensity or volumetric

metrics that currently dominate the radiological lexicon. This is cur-

rently a major deficiency in imaging biomarkers. Radiomics can com-

plement and improve the diagnostic values for systems such as BI‐
RADS (breast imaging) or PI‐RADS (prostate imaging). The situation

is worse in case of therapeutic studies such as radiation oncology,

where such systems are missing and radiomics can fill in this vac-

uum.

2.B.3 | Radiomics can add value to existing clinical
or other biomarkers

Current metrics used to support clinical decision‐making fall short of

achieving the desired thresholds for fulfilling the clinical need.

Hence, the integration or combination with other informative

biomarkers can better support the advisable, where radiomics would

complement these features and add further value. For example, tis-

sue biopsy is widely employed for detecting and investigating

cancerous cells and yielding unreplaceable benefits. However, its reli-

ability is limited by the fact that tumors are spatially and temporally

heterogeneous. They cannot capture all the necessary information

for an inclusive decision. Additionally, most biopsies are invasive and

require very restricted procedure. In addition, biopsies are not viable

solution because of the high risk of complications for certain

patients. Although biopsy remains the gold standard for cancer diag-

nosis, combining it with radiomics can better capture hidden intratu-

moral heterogeneity. Radiomics may be used to facilitate biopsies by

detecting more suspicious locations, and can provide complementary

information for cancer diagnosis, outcome prognosis, and prediction.

In addition, the integration of radiomics and other biomarkers, such

as genomics, clinical, and demographic biomarker, and electronic

health record (EHR), can bring more opportunities and promising

applications in supporting RT clinical practice. Multimodal biomarkers

including radiomics can better support clinical practice.

2.B.4 | Advances in data science are benefiting
radiomics

Though radiomics have its own issues like redundancy, uncertainty,

and instability like any other type of ‘omics (genomics, transcrip-

tomics, and proteomics), which did not limit their utilization and

should not limit radiomics as well. Indeed, dealing with large number

of variables is major challenge in statistical modeling and machine

learning. However, advances in machine learning and deep learning

specifically opened the door for complementing feature‐based meth-

ods with featureless (machine learnt) methods that are rapidly

advancing and would make the future of radiomics even brighter.

In short, radiomics has its own share of challenges but these

should not be a hindrance to its cautious use, given the facts that

radiomics benefits far outweigh its risks and the missed opportuni-

ties that it can offer.

3 | CONCLUSION /AGREEMENT
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In spite of those abovementioned challenges, there are promising

opportunities of continuously employing radiomics to support clinical

decision‐making considering the unique image characteristics such as
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the noninvasive nature of medical images, the high spatial and tem-

poral resolution, and the promising development of advanced imag-

ing techniques. For example, tissue biopsy cannot capture all the

necessary information (ie, spatial and temporal heterogeneity) of the

tumor characteristics for an inclusive decision although it is widely

employed for detecting and investigating cancerous cells. Radiomics

can facilitate biopsies by detecting more suspicious locations by pro-

viding complementary information for cancer diagnosis, outcome

prognosis, and prediction. The integration or combination of radio-

mics with other informative biomarkers can better support the clini-

cal decision‐making.

Though the path is promising there may be some bumps along

the way to fulfill the full promise of radiomics in clinical practice

including accounting for intrinsic imaging properties and recognition

of machine/deep learning technique limitations. The example of sup-

plementing clinical biopsies with a digital one is a low hanging fruit

case that radiomics can be effectively demonstrated. Other promis-

ing areas include clinical decision support systems with other ‘omics,

which are evolving at a rapid pace and prospective clinical trial

design, which is yet to be developed and can be of great potential.11

Being aware of the intrinsic properties of imaging systems and

radiomics, the advantages and disadvantages of the traditional

machine learning techniques and advanced deep learning techniques,

it is expected that the aforementioned promising opportunities will

lead to more applications of radiomics to support clinical practice in

RT and improve its outcomes. Integrating information carried by

radiomics into personalized treatment is likely to keep growing given

the increased role of images in medical practice. Imaging biomarkers

will keep playing a critical role in supporting personalized cancer

diagnosis and treatment in the near future and radiomics will be an

indispensable tool to make best use of these images.
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