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ABSTRACT
A series of sulfamide fragments has been synthesised and investigated for human carbonic anhydrase
inhibition. One of the fragments showing greater selectivity for cancer-related isoforms hCA IX and XII was
co-crystalized with hCA II showing significant potential for fragment periphery evolution via fragment
growth and linking. These opportunities will be identified in the future via the screening of this fragment
structure for co-operative carbonic anhydrase binding with other structurally diverse fragments.
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1. Introduction

The carbonic anhydrase (CA) family of Zn(II) metalloenzymes (EC
4.2.1.1) catalyses the reversible hydration of carbon dioxide to
bicarbonate anion, a fundamental reaction that controls physio-
logical processes requiring pH control as well as ion transport and
fluid secretion1. Hyperactivity of specific CA isoforms2 in various
disease states makes these enzymes potential (and sometimes
already validated) targets for therapeutic intervention with small
molecule carbonic anhydrase inhibitors (CAIs)3.

Clinically validated applications of CAIs currently include,
among other diseases, the treatment of glaucoma4, idiopathic
intracranial hypertension5, high-altitude sickness6, congestive heart
failure7, peptic ulcers8 and epilepsy9. Another important potential
application of CAIs (specifically, of related human (h) CA IX and XII
isoforms10) is in neoplastic therapy11. The current state of devel-
opment in this field is underscored by the hCA IX-selective drug
SLC-011112 which is undergoing phase 1 b clinical study for
tumours overexpressing hCA IX13 and non-selective inhibitor
E7070 (indisulam) developed by Eisai Co., Ltd. which successfully
completed phase II clinical study14. The highly promising applica-
tion of CAIs as antibacterials is based on the premise of selective
inhibition of microbial CAs (crucial for the survival of bacteria)
without affecting the CAs in the same concentration range15.
Thus, CA inhibition from such microorganisms as Vibrio cholerae16,
Burkholderia pseudomallei17, Mycobacterium tuberculosis18,

Salmonella enterica19, Helicobacter pylori20, Escherichia coli21 and
many others15.

Considering the plethora of validated and potential therapeutic
applications of CAIs, the discovery of new chemotypes endowed
with CA inhibitory activity will continue to be a significant aim. CA
contains a Zn2þ ion in its active site which mandates the zinc-
binding nature of active site targeting pharmacophoric groups
which can be employed in the design of new CAIs. Indeed, most
of the clinically investigated (SLC-0111 and E7070) and used (e.g.
acetazolamide, methazolamide, dorzolamide, brinzolamide and
zonisamide) are primary sulphonamides (CSO2NH2) in which the
sulphonamide group anchors to the prosthetic zinc ion and the
molecular periphery defines the potency and isoform selectivity of
these CAIs2 (Figure 1).

Many other zinc-binding motifs have been implicated as war-
heads in the CAI design22. Among them, sulfamides (NSO2NH2)
appears as an attractive alternative to the frequently studied sul-
phonamides. Indeed, sulphonamides are expected to have greater
polarity and solubility compared to sulphonamides, due to the
presence of an additional nitrogen atom. Moreover, primary sul-
phonamide group is found in such drugs as anticancer epacado-
stat23 and gastric ulcer medication famotidine24, both of which
(epacadostat25 and famotidine26) were also found to inhibit vari-
ous CA isoforms (Figure 2).

The discovery of novel sulfamide CAIs would traditionally entail
synthesis of structurally diverse libraries of compounds and their
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screening against an isoform panel of CAs. We have recently vali-
dated an approach27 to the discovery of new sulphonamide CAIs
based on the simultaneous screening of a diverse set of chemical
fragments (i.e. small, Mw <�250 and polar, cLopP< 3.028) along
with sulphonamide zink-binding wasread (in particular, benzene-
sulfonamide or BSA). This led not only to the discovery of over
100 fragment hits which potentiated the binding of BSA but also
to rediscovery of BSA-based CAIs with the molecular periphery
replicating the fragment co-binders. In our intent aimed at the
discovery of novel sulfamide CAIs, we decided to take a similar
approach. Realisation of such an approach would require synthesis
of a library of fragment-like sulfamides and profiling them against
a panel of human CAs (in this case, anti-glaucoma target hCA II,
two membrane-associated cancer-related targets hCA IX and XII
and the usual cytosolic off-target hCA I). In this work, we aimed at
the realisation of this approach and selection of a suitable sulfa-
mide zinc-binding warhead for fragment-based discovery of novel
sulfamide-type CAIs, a chemotype much less studied in the con-
text of CA inhibition compared to sulphonamides29. Moreover, in
this study, we were looking to identify: fragments that do not dis-
play apparently high intrinsic selectivity towards specific CA iso-
forms (mindful that such a selectivity will be gained in the future
from co-operative screening of specific “tail” fragments30) and yet
would show a tendency to inhibit cancer-related isoforms hCA IX
and XII over cytosolic hCA I and II. Of particular interest would be
fragments that do not display a pronounce potency against CA

isoforms of interest, ideally in the 10�7M range of Ki values (so
that the future contribution from co-operative fragment binding
would be more pronounced). Specific emphasis was put on con-
formationally constrained fragments which would be structurally
close to the classical BSA zinc-binding motif and would co-crystal-
lize with any of the isoforms (e.g. the most readily available hCA
II) to further guide further fragment evolution via growing, linking
and merging31. Herein, we report on the successful realisation of
this strategy.

2. Results and discussion

Seventeen non-symmetrically substituted primary sulfamides were
synthesised from inorganic sulfamide 1 via direct nucleophilic sub-
stitution at the sulphur atom, via the thermally promoted reaction
in dioxane with a four-fold excess of 1, conducted at 110 �C over
48 h32. The yields of the resulting compounds 2a–q were generally
modest to good (Scheme 1).

The same thermally promoted protocol, not unexpectedly, did
not work for less reactive (hetero)aromatic amines. Thus, an alter-
native approach was taken33. Instead of sulfamide, commercially
available chlorosulfonyl isocyanate 3 dissolved in dichloromethane
at 0 �C was reacted with 1 equiv of tert-butanol to give the Boc-
protected amino-sulfonyl-chloride (4), which was subsequently
added slowly to a solution of 1 equiv of the respective

Figure 1. CAIs in clinical development and clinical use.

Figure 2. Examples of clinically used sulfamide drugs.
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hetero(aromatic) amine in the presence of 2 equiv of triethylamine
in dichloromethane at 0 �C. In this case, again, the yields of
unsymmetrically substituted primary sulfamides 2r–w were mod-
est to good over two steps (Scheme 2).

From the physicochemical data summarised for fragments
2a–w in Table 1, one can appreciate their being distinctly frag-
ment-like (Mw¼ 165.2 … 257.4, cLogP¼�1.87 … 1.71).
Furthermore, the inhibitory data reveal the absence of apparent
isoform selectivity displayed by these fragments which is perfectly
in line with the limited size of the molecular periphery (typically
responsible for making additional contacts with the protein and
ensuring higher potency and isoform selectivity). With our initial
focus on the cancer-related, membrane-bound CA isoforms hCA IX
and XII compounds displaying greater selectivity towards these
isoforms against cytosolic hCA I and II (structural homologs of
each other 2r and 2v) received our priority attention.

After much experimentation, compound 2v was co-crystallized
with recombinant hCA II and its structure was resolved (Figure 3).

As one can see from the crystal structure of 2v with hCA II iso-
form, the small (Mw ¼ 198.2) N-(aminosulfonyl)indoline fragment

displayed two finding poses within the hCA II active site. In both
poses, the sulfonylamino groups are anchored to the prosthetic
zinc ion (displayed as a grey sphere). The validity of the two bind-
ing poses signifies the fact that the binding of 2v leaves a signifi-
cant room for the periphery growth around this fragment and
makes it a highly suitable candidate for co-operative screening
with other structurally diverse fragments in order to identify the
starting points for the structural evolution of this fragment.

3. Materials and methods

3.1. Chemical synthesis – general

NMR spectra were recorded on a Bruker Avance III 400 spectrom-
eter (1H: 400.13MHz; 13�: 100.61MHz; chemical shifts are reported
as parts per million (d, ppm); the residual solvent peaks were used
as internal standards: d 7.28 1H in CDCl3, d 77.02 ppm for 13C in
CDCl3; multiplicities are abbreviated as follows: s¼ singlet,
d¼doublet, t¼ triplet, q¼quartette, m¼multiplet, br¼broad;

Scheme 1. Synthesis of unsymmetrically substituted primary sulfamides 2a–q.
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coupling constants, J, are reported in Hz. Mass spectra were
recorded on a Bruker microTOF spectrometer (ESI ionization).

3.1.1. General procedure for the synthesis of compounds 2a–q
A mixture of corresponding amine (2mmol) and sulphuric diamide
(8mmol, 768mg) in dry 1.4-dioxane (4mL) was stirred at 110 oC
for 48 h. If amine was in the form of hydrochloride salt, an add-
itional equivalent of triethylamine was added. CH2Cl2 (5mL) was
added and the resulting precipitate was filtered off, washed with
ethyl acetate (5mL). The filtrate and the washings were combined
and solvent was evaporated under reduced pressure. The crude
product was purified by column chromatography on silica gel
using CH2Cl2:2-propanol 20:1–10:1 gradient as eluent (Rf values
are given for solvent system indicated).

3.1.2. 4-Hydroxypiperidine-1-sulphonamide (2a)
Rf ¼ 0.30 (EtOAc); 1H NMR (400MHz, DMSO-d6) d¼ 6.66 (s, 2H),
4.69 (d, J¼ 3.9 Hz, 1H), 3.58 (dq, J¼ 7.8, 4.0 Hz, 1H), 3.22 (ddd,
J¼ 11.0, 6.5, 3.8 Hz, 2H), 2.74 (ddd, J¼ 12.0, 9.0, 3.3 Hz, 2H), 1.77
(ddt, J¼ 13.7, 7.2, 3.6 Hz, 2H), 1.46 (dtd, J¼ 12.5, 8.6, 3.7 Hz, 2H)
ppm; 13C NMR (101MHz, DMSO-d6, Dept) d¼ 65.049 (C-OH), 43.80
and 33.47 (2 CH2) ppm; HRMS (ESI) C5H11N2O3S

þ m/z: [M – H]�

179.0492 (calc 179.0485).

3.1.3. 4-Methylpiperazine-1-sulphonamide (2 b)
Rf ¼ 0.61 (MeOH); 1H NMR (400MHz, DMSO-d6) d¼ 6.76 (s, 2H),
2.95 (t, J¼ 4.9 Hz, 4H), 2.38 (t, J¼ 5.0 Hz, 4H), 2.19 (s, 3H) ppm; 13C
NMR (101MHz, DMSO-d6, DEPT) d¼ 54.08 (CH2), 46.14 (CH2), 45.89
(CH3) ppm; HRMS (ESI) C5H12N3O2Sþ m/z: [M � H]� 178.0644
(calc 178.0645).

3.1.4. N-(4-Fluorobenzyl)sulfamide (2c)
1H NMR (400MHz, DMSO-d6) d¼ 7.39 (dd, J¼ 8.5, 5.7 Hz, 2H), 7.15
(t, J¼ 8.9 Hz, 2H), 7.07 (t, J¼ 6.5 Hz, 1H), 6.63 (s, 2H), 4.07 (d,
J¼ 6.5 Hz, 2H) ppm; 13C NMR (101MHz, DMSO-d6, DEPT)
d¼ 161.70 (d, J¼ 242.2 Hz), 135.39 (d, J¼ 2.9 Hz), 130.05 (d,
J¼ 8.1 Hz, CH), 115.29 (d, J¼ 21.3 Hz, CH), 45.77 (s, CH2) ppm; 19 F
NMR (470MHz, DMSO-d6) d ¼ �116.15 ppm; HRMS (ESI)
C7H9FN2NaO2S

þ m/z: [MþNa]þ 227.0272 (calc 227.0261).

3.1.5. N-(1,2,3,4-Tetrahydronaphthalen-1-yl)sulfamide (2d)
Rf ¼ 0.80 (CH2Cl2-CH3OH 4:1); 1H NMR (400MHz, DMSO-d6)
d¼ 7.57� 7.50 (m, 1H), 7.19� 7.11 (m, 2H), 7.08� 7.02 (m, 1H),
6.96 (d, J¼ 8.9 Hz, 1H), 6.65 (s, 2H), 4.39 (td, J¼ 8.0, 5.2 Hz, 1H),
2.79� 2.57 (m, 2H), 2.11� 2.00 (m, 1H), 1.96� 1.80 (m, 2H),
1.74� 1.60 (m, 1H) ppm;

13C NMR (101MHz, DMSO-d6, DEPT) d¼ 138.15, 137.41, 129.43,
128.94, 127.07, 126.02, 51.32 (CH), 30.89, 29.23 and 20.39 (3CH2)
ppm; HRMS (ESI) C10H14N2NaOS

þ m/z: [MþNa]þ 249.0671
(calc 249.0668).

3.1.6. N-((tetrahydrofuran-2-yl)methyl)sulfamide (2e)
Rf ¼ 0.59 (DCM:i-PrOH ¼ 9:1); 1H NMR (400MHz, CDCl3) d¼ 4.94
(br. t, J¼ 6.0 Hz, 1H), 4.88 (br. s, 2H), 4.08 (ddt, J¼ 10.5, 7.3, 3.4 Hz,
1H), 3.88 (dt, J¼ 8.3, 6.7 Hz, 1H), 3.82� 3.73 (m, 1H), 3.28 (ddd,

Table 1. Calculated physicochemical properties and hCA I, II, IX and XII inhibi-
tory profile of compounds 2a–w.

Compound Mw cLogPa

Ki (nM)b

hCA I hCA II hCA IX hCA XII

2a 180.2 �1.87 75.6 42.7 54.2 25.3
2b 179.2 �1.01 64.2 32.1 58.6 52.5
2c 204.2 0.42 126.2 70.5 30.7 51.7
2d 226.3 1.22 120.7 42.6 36.8 59.7
2e 180.2 �0.77 38.4 63.4 92.7 98.0
2f 208.2 �0.65 52.1 69.8 78.2 83.6
2g 193.3 �0.72 89.7 52.1 63.2 38.4
2h 240.3 1.57 359.5 120.4 58.2 96.7
2i 257.4 0.53 28.4 39.8 65.1 19.7
2j 187.2 �0.98 98.5 90.2 29.5 16.5
2k 192.3 0.15 22.6 48.2 73.2 66.8
2l 209.3 �0.12 59.6 92.3 126.5 72.5
2m 236.3 0.11 62.8 42.8 58.1 25.9
2n 247.4 0.43 497.3 99.3 72.5 35.1
2o 166.2 �1.05 59.2 66.9 82.1 100.9
2p 207.3 �1.39 88.2 59.4 46.2 40.2
2q 165.2 �1.60 68.9 52.9 78.2 100.2
2r 212.3 1.12 867.9 315.7 94.7 116.2
2s 174.2 �1.27 29.6 59.4 68.0 39.3
2t 212.3 1.31 231.4 89.5 34.2 114.2
2u 222.3 1.71 160.1 56.7 25.4 72.3
2v 198.2 0.79 723.5 472.2 102.5 95.7
2w 208.2 0.81 45.7 76.3 38.5 224.0
Acetazolamide 250 125 25 5.7
aCaclculated using Molinspiration Chemoinformatics [34].
bMean from three different assays, by a stopped flow technique (errors were in
the range of ± 5–10% of the reported values).

Scheme 2. Synthesis of unsymmetrically (hetero)aromatic amine-substituted sulfamides 2r–w.
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J¼ 13.3, 6.4, 3.2 Hz, 1H), 3.14 (ddd, J¼ 13.4, 7.8, 5.8 Hz, 1H),
2.05� 1.85 (m, 3H), 1.68� 1.58 (m, 1H) ppm; 13C NMR (101MHz,
CDCl3, DEPT) d¼ 77.65 (CH), 68.21, 47.52, 28.61 and 25.76 (4 CH2)
ppm; HRMS (ESI) C5H12N2NaO3Sþ m/z: [MþNa]þ 203.0464
(calc 203.0461).

3.1.7. Methyl sulfamoylprolinate (2f)
Rf ¼ 0.75 (EtOAc); 1H NMR (400MHz, DMSO-d6) ¼ 6.82 (s, 2H),
4.18 (dd, J¼ 8.9, 4.1 Hz, 1H), 3.27 (dq, J¼ 6.2, 3.5, 2.9 Hz, 2H),
2.18� 2.07 (m, 1H), 1.92� 1.80 (m, 3H) ppm; 13C NMR (101MHz,
DMSO-d6, DEPT) d¼ 173.24, 60.47 and 52.28 (CH and CH3), 49.11,
31.06 and 24.92 (3 CH2) ppm; HRMS (ESI) C6H13N2O4S

þm/z:
[MþH]þ 209.0599 (calc 209.0591).

3.1.8. (1-Methylpiperidin-4-yl)sulfamide (2g)
Rf ¼ 0,13 (MeOH); 1H NMR (400MHz, DMSO-d6) d¼ 6.47 (s, 3H),
3.01 (tt, J¼ 10.6, 4.2 Hz, 1H), 2.68 (d, J¼ 11.9 Hz, 2H), 2.12 (s, 3H),
1.85 (qd, 11.9, 2.0 Hz, 4H), 1.42 (qd, J¼ 12.5, 4.2 Hz, 2H) ppm; 13C
NMR (101MHz, DMSO-d6) d¼ 54.78, 50.36, 46.41, 32.86 ppm; HRMS
(ESI) C6H16N3O2Sþ m/z: [MþH]þ 194.0955 (calc 194.0958).

3.1.9. 4-Phenylpiperidine-1-sulphonamide (2 h)
Rf ¼ 0.86 (EtOAc); 1H NMR (400MHz, DMSO-d6) d¼ 7.34� 7.25 (m,
4H), 7.21 (td, J¼ 6.8, 1.7 Hz, 1H), 6.75 (br.s, 2H), 3.59 (br.d,
J¼ 12.1Hz, 2H), 2.63 (td, J¼ 12.2, 2.7 Hz, 2H), 2.59� 2.53 (m, 1H),
1.86 (br.d, J¼ 12.2 Hz, 2H), 1.69 (qd, J¼ 12.5, 4.0 Hz, 2H) ppm;13C
NMR (101MHz, DMSO-d6, DEPT) d¼ 145.97, 128.84 (CArH), 127.20
(CArH), 126.67 (CArH), 46.96 (CH2), 41.45 (CH), 32.45 (CH2) ppm;
HRMS (ESI) C11H16N2NaO2S

þ m/z: [MþNa]þ 263.0830
(calc 263.0825).

3.1.10. Benzyl (2-(dimethylamino)ethyl)sulfamide (2i)
Rf ¼ 0.58 (MeOH); 1H NMR (400MHz, DMSO-d6) d¼ 7.40� 7.33 (m,
4H), 7.31� 7.26 (m, 1H), 6.91 (s, 2H), 4.26 (s, 2H), 3.09 (t, J¼ 6.8 Hz,
2H), 2.30 (t, J¼ 6.8 Hz, 2H), 2.07 (s, 6H) ppm; 13C NMR (101MHz,
DMSO-d6, DEPT) d¼ 138.06, 128.76, 128.56 and 127.74 (3 CArH),
57.05, 51.41 and 45.72 (3 CH2), 45.52 (CH3) ppm; HRMS (ESI)
C11H20N3O2S

þ m/z: [MþH]þ 258.1276 (calc 258.1271).

3.1.11. (Pyridin-3-ylmethyl)sulfamide (2j)
Rf ¼ 0.90 (MeOH); 1H NMR (400MHz, CD3CN) d¼ 8.55 (d,
J¼ 2.2 Hz, 1H), 8.48 (dd, J¼ 4.8, 1.6 Hz, 1H), 7.76 (dt, J¼ 7.9, 1.9 Hz,
1H), 7.33 (dd, J¼ 7.8, 4.8 Hz, 1H), 5.62 (br. s, 1H), 5.31 (br. s, 2H),
4.20 (d, J¼ 6.3 Hz, 2H) ppm; 13C NMR (101MHz, CD3CN)
d¼ 149.23, 148.59, 135.72, 133.71, 123.46, 44.32 ppm; HRMS (ESI)
C6H9N3NaO2S

þ m/z: [MþNa]þ 210.0308 (calc 210.0308).

3.1.12. (Thiophen-2-ylmethyl) sulfamide (2k)
Rf ¼ 0.49 (DCM:i-PrOH ¼ 20:1); 1H NMR (400MHz, Acetone-d6) ¼
7.37 (dd, J¼ 5.2, 1.2 Hz, 1H), 7.07 (dq, J¼ 3.3, 1.1 Hz, 1H), 6.97 (dd,
J¼ 5.1, 3.5 Hz, 1H), 6.20 (s, 1H), 5.99 (s, 2H), 4.45 (dd, J¼ 6.4,
1.0 Hz, 2H) ppm; 13C NMR (101MHz, Acetone-d6, DEPT) d¼ 141.21
(>C¼), 126.62, 125.80, and 125.08 (3 CArH), 41.97 (CH2) ppm;
HRMS (ESI) C5H8N2NaO2S2

þ m/z: [MþNa]þ 214.9919 and 216.9877
(calc 214.9919 and 216.9878).

3.1.13. (2-(Diethylamino)ethyl)(methyl)sulfamide (2 l)
Rf ¼ 0.58 (MeOH); 1H NMR (400MHz, DMSO-d6) ¼ 6.73 (s, 2H),
3.05 (t, J¼ 6.8 Hz, 2H), 2.68 (s, 2H), 2.55 (t, J¼ 6.8 Hz, 2H), 2.49 (q,
J¼ 7.1 Hz, 4H), 0.96 (t, J¼ 7.1 Hz, 6H) ppm; 13C NMR (101MHz,
DMSO-d6, DEPT) d¼ 50.53, 48.57 and 46.95(3 CH2), 35.57 and
12.01 (2 CH3) ppm; HRMS (ESI) C7H20N3O2S

þ m/z: [MþH]þ

210.1274 (calc 210.1271).

Figure 3. Co-crystal structure of fragment sulfamide 2v with hCA II (PDB code 7QSI).
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3.1.14. Ethyl 1-sulfamoylpiperidine-4-carboxylate (2m)
Rf ¼ 0.81 (EtOAc); 1H NMR (400MHz, DMSO-d6) d¼ 6.71 (s, 2H),
4.07 (q, J¼ 7.1 Hz, 2H), 3.36 (dt, J¼ 12.3, 3.8 Hz, 2H), 2.62 (td,
J¼ 11.6, 2.8 Hz, 2H), 2.42 (tt, J¼ 10.7, 4.0 Hz, 1H), 1.90 (br. dd,
J¼ 13.5, 3.8 Hz, 2H), 1.60 (qd, J¼ 11.1, 3.8 Hz, 2H), 1.18 (t,
J¼ 7.1 Hz, 3H) ppm; 13C NMR (101MHz, DMSO-d6) d¼ 174.25,
60.44, 45.55, 27.47, 14.54 ppm; HRMS (ESI) C8H16N2NaO4S

þ m/z:
[MþNa]þ 259.0722 (calc 259.0723).

3.1.15. [1,4’-Bipiperidine]-1’-sulphonamide (2n)
Rf ¼ 0.24 (MeOH); 1H NMR (400MHz, DMSO-d6) d¼ 6.68 (br.s, 2H),
3.48 (br.d, J¼ 12.4 Hz, 2H), 2.53� 2.41 (m, 3H), 2.44 (t, J¼ 5.1 Hz,
3H), 2.24 (tt, J¼ 11.3, 3.6 Hz, 1H), 1.76 (br.d, J¼ 11.7 Hz, 2H),
1.52� 1.43 (m, 6H), 1.38 (q, J¼ 5.9 Hz, 2H) ppm; 13C NMR
(101MHz, DMSO-d6, DEPT) d¼ 61.56, 50.16, 46.22, 27.21, 26.52,
25.01; HRMS (ESI) C10H22N3O2S

þ m/z: [MþH]þ 248.1431
(calc 248.1428).

3.1.16. Morpholine-4-sulphonamide (2o)
Rf ¼ 0.56 (EtOAc); 1H NMR (400MHz, DMSO-d6) d¼ 6.82 (s, 2H),
3.86� 3.50 (m, 4H), 3.02� 2.77 (m, 4H) ppm; 13C NMR (101MHz,
DMSO-d6) d¼ 65.73, 46.43 ppm; HRMS (ESI) C4H9N2O3S

þ m/z: [M �
H]� 165.0326 (calc 165.0339)

3.1.17. 1-Sulfamoylpiperidine-4-carboxamide (2p)
Rf ¼ 0.61 (EtOAc:MeOH 3:1); 1H NMR (400MHz, DMSO-d6) d¼ 7.27
(s, 1H), 6.82 (s, 1H), 6.79� 6.44 (m, 2H), 3.52� 3.39 (m, 2H),
2.21� 2.05 (m, 1H), 1.78 (d, J¼ 13.1 Hz, 2H), 1.57 (t, J¼ 12.7Hz,
2H) ppm; 13C NMR (101MHz, DMSO-d6) d¼ 176.30, 45.96, 41.12,
28.07 ppm; HRMS (ESI) C6H13N3NaO3S

þ m/z: [MþNa]þ 230.0565
(calc 230.0570)

3.1.18. Piperazine-1-sulphonamide hydrochloride (2q)
1H NMR (400MHz, DMSO-d6) d¼ 9.60 (s, 2H), 7.08 (s, 2H), 3.21 (dd,
J¼ 7.1, 3.6 Hz, 4H), 3.14 (dd, J¼ 7.0, 3.7 Hz, 4H) ppm; 13C NMR
(101MHz, DMSO-d6) d¼ 43.27, 42.37 ppm; HRMS (ESI)
C4H12N3O2S

þ m/z: [MþH]� 166.0649 (calc 166.0645).

3.1.19. 2-Methylindoline-1-sulphonamide (2r)
Rf ¼ 0.81 (n-Hexane:EtOAc 1:1); 1H NMR (400MHz, CDCl3) ¼ 7.40
(d, J¼ 8.2 Hz, 1H), 7.19 (dt, J¼ 7.7, 3.7 Hz, 2H), 7.04 (t, J¼ 7.4 Hz,
1H), 4.46 (s br., 1H), 4.07 (s br., 2H), 3.52� 3.43 (m, 2H), 2.67 (dd,
J¼ 15.9, 3.5 Hz, 1H), 1.43 (d, J¼ 6.1 Hz, 3H) ppm; 13C NMR
(101MHz, CDCl3) d¼ 141.32, 131.15, 127.79, 125.40, 124.10, 115.77,
59.19, 36.64, 22.63 ppm; HRMS (ESI) C9H12N2NaO2S

þ m/z:
[MþNa]þ 235.0515 (calc 235.0512).

3.1.20. N-(Pyrimidin-2-yl)sulfamide (2s)
1H NMR (400MHz, DMSO-d6) ¼ 8.56 (d, J¼ 4.8 Hz, 4H), 7.06 (t,
J¼ 4.9 Hz, 2H) ppm; 13C NMR (101MHz, DMSO-d6) d¼ 158.73,
158.26, 115.28 ppm; HRMS (ESI) C4H6N4NaO2S

þ m/z: [MþNa]þ

197.1668 (calc 197.1672)

3.1.21. 3,4-Dihydroquinoline-1(2H)-sulphonamide (2t)
Rf ¼ 0.55 (n-Hexane:EtOAc 3:1); 1H NMR (400MHz, CDCl3) d¼ 7.67
(d, J¼ 8.2 Hz, 1H), 7.17 (t, J¼ 7.6 Hz, 1H), 7.14� 7.02 (m, 2H), 4.56
(s, 2H), 3.87� 3.53 (m, 2H), 2.86 (t, J¼ 6.6 Hz, 2H), 2.06 (p,

J¼ 6.5 Hz, 2H) ppm; 13C NMR (400MHz, CDCl3, DEPT) d¼ 137.20,
129.92, 129.53, 126.60, 124.65 and 123.61 (4 CArH), 47.28, 26.94
and 21.87 (3 CH2) ppm; HRMS (ESI) C9H12N2NaO2S

þ m/z:
[MþNa]þ 235.05110 (calc 235.0511)

3.1.22. N-(Naphthalen-1-yl)sulfamide (2 u)
Rf ¼ 0.44 (n-Hexane:EtOAc 1:1); 1H NMR (400MHz, DMSO-d6)
d¼ 9.27 (s, 1H), 8.35� 8.25 (m, 1H), 7.96� 7.87 (m, 1H), 7.75 (d,
J¼ 8.1 Hz, 1H), 7.59 (dd, J¼ 7.6, 1.2 Hz, 1H), 7.55� 7.47 (m, 3H),
7.00 (s, 2H) ppm; 13C NMR (101MHz, DMSO-d6, Dept) d¼ 134.74,
134.36, 129.17, 128.26, 126.43, 126.10, 125.49, 124.10, 121.57 ppm;
HRMS (ESI) C10H10N2NaO2S

þ m/z: [MþNa]þ 245.0359
(calc 245.0356)

3.1.23. Indoline-1-sulphonamide (2v)
Rf ¼ 0.77 (EtOAc); 1H NMR (400MHz, DMSO-d6) ¼ 7.28 (d,
J¼ 8.0 Hz, 1H), 7.25� 7.20 (m, 1H), 7.23 (s, 2H), 7.16 (t, J¼ 7.7 Hz,
1H), 6.96 (t, J¼ 7.4 Hz, 1H), 3.80 (t, J¼ 8.4 Hz, 2H), 3.05 (t,
J¼ 8.4 Hz, 2H) ppm; 13C NMR (101MHz, DMSO-d6, DEPT)
d¼ 143.51 and 131.99 (2 >CAr¼), 127.63, 125.40, 122.83 and
114.21 (4 CArH), 50.39 (CH2), 27.76 (CH2) ppm; HRMS (ESI)
C8H10N2NaO2Sþ m/z: [MþNa]þ 221.0357 (calc 221.0355)

3.1.24. N-(2,4-Difluorophenyl)sulfamide (2w)
1H NMR (400MHz, CDCl3) d¼ 7.40 (d, J¼ 8.2 Hz, 1H), 7.19 (dt,
J¼ 7.7, 3.7 Hz, 2H), 7.04 (t, J¼ 7.4 Hz, 1H), 4.46 (s br., 1H), 4.07 (s
br., 2H), 3.52� 3.43 (m, 2H), 2.67 (dd, J¼ 15.9, 3.5 Hz, 1H), 1.43 (d,
J¼ 6.1 Hz, 3H) ppm; 13C NMR (101MHz, CDCl3) d¼ 160.29 (dd,
J¼ 248.7, 11.3 Hz), 154.88 (dd, J¼ 247.7, 12.1 Hz), 125.60 (dd,
J¼ 9.6, 1.4 Hz, CArH), 121.02 (dd, J¼ 12.5, 3.7 Hz), 111.97 (dd,
J¼ 22.3, 3.8 Hz), 104.40 (dd, J¼ 26.7, 23.7 Hz) ppm; 19 F NMR
(376MHz, CDCl3) d ¼ �111.98, �123.53 ppm; HRMS (ESI)
C6H6F2N2NaO2Sþ m/z: [MþNa]þ 231.0010 (calc 231.0011)

3.2. Carbonic anhydrase inhibition testing

An Applied Photophysics stopped-flow instrument has been used
for assaying the CA catalysed CO2 hydration activity35. Phenol red
(at a concentration of 0.2mM) has been used as indicator, working
at the absorbance maximum of 557 nm, with 20mM Hepes (pH
7.5) as buffer, and 20mM Na2SO4 (for maintaining constant the
ionic strength), following the initial rates of the CA-catalysed CO2

hydration reaction for a period of 10–100 s. The CO2 concentra-
tions ranged from 1.7 to 17mM for the determination of the kin-
etic parameters and inhibition constants. For each inhibitor at
least six traces of the initial 5–10% of the reaction have been
used for determining the initial velocity. The uncatalyzed rates
were determined in the same manner and subtracted from the
total observed rates. Stock solutions of inhibitor (0.1mM) were
prepared in distilled deionised water and dilutions up to 0.01 nM
were done thereafter with the assay buffer. Inhibitor and enzyme
solutions were preincubated together for 15min at room tempera-
ture prior to assay, in order to allow for the formation of the EI
complex. The inhibition constants were subsequently obtained by
nonlinear least-squares methods using PRISM 3 and the
ChengPrusoff equation, as reported earlier, and represent the
mean from at least three different determinations. All CA isoforms
were recombinant ones obtained in-house as reported earlier36–39.
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3.3. Co-crystallization and X-ray data collection

Crystals of hCA II complexed with compound 2v were obtained
using the sitting drop vapour diffusion method. An equal volume
of 0.8mM solution of hCA II in Tris pH ¼ 8.0 and 1.6mM of the
inhibitors in Hepes 20mM pH ¼ 7.4 was mixed and incubated for
15min. 2mL of the complex solution were mixed with 2mL of a
solution of 1.6M sodium citrate, 50mM Tris pH 8.0 and were equi-
librated against the same solution at 296 K. Crystals of the com-
plex grew in a few days. The crystals were flash-frozen at 100 K
using a solution obtained by adding 25% (v/v) glycerol to the
mother liquor solution as cryoprotectant. A data set on a crystal
of the complex with the inhibitor 2v was collected at the Centro
di Cristallografia Strutturale (CRIST) in Florence using an Oxford
Diffraction instrument equipped with a sealed tube Enhance Ultra
(Cu) and a Onyx CCD detector. Data were integrated and scaled
using the program XDS.24 Data processing statistics are showed
in Table 2.

3.4. Structure determination

The crystal structure of hCA II (PDB accession code: 7QSI) without
solvent molecules and other heteroatoms was used to obtain ini-
tial phases of the structures using Refmac540. 5% of the unique
reflections were selected randomly and excluded from the refine-
ment data set for the purpose of Rfree calculations. The initial jFo ̶
Fcj difference electron density maps unambiguously showed the
inhibitor molecules. An electron density, which could be inter-
preted as a second molecule of inhibitor 2v, was present near the
N-terminus of the protein. Thus, a second 2v molecule was intro-
duced in the model with 0.75 occupancy. Atomic model for the
inhibitor was calculated and energy minimised using the program
JLigand 1.0.39. Refinements proceeded using normal protocols of
positional, isotropic atomic displacement parameters alternating
with manual building of the models using COOT41. Solvent mole-
cules were introduced automatically using the program ARP42.
The quality of the final model was assessed with COOT and

Rampage43. Crystal parameters and refinement data are summar-
ised in Table 2. Atomic coordinates were deposited in the Protein
Data Bank (PDB accession code: 7QSI). Graphical representations
were generated with Chimaera44.

4. Conclusions

We have described the synthesis and testing against a panel of
human carbonic anhydrases (hCA I, II, IX and XII) of a series of
hydrophilic, fragment sulfamides intended for fragment-based
drug discovery of isoform-selective carbonic anhydrase inhibitors
via cooperative screening with other, non-zinc-binding fragments.
As expected from the minimal-periphery zinc-binding moieties,
these fragment sulfamides demonstrated little selectivity across
the panel of hCAs. However, for one of the fragment inhibitors
(2v) which showed higher selectivity towards the cancer-related
hCA isoforms (IX and CII), we obtained a crystal structure with the
most abundant cytosolic isoform hCA II which showed two pos-
sible binding modes and thus significant room for cooperative
fragment biding and subsequent periphery evolution.

Supplementary materials

Copies of 1H and 13C NMR spectra of compounds 2a–w.
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Table 2. Summary of data collection and atomic model refinement statistics
for hCAII.a

hCAII þ 2v

PDB ID 7QSI
Wavelength (Å) 0.999900
Space Group P21
Unit cell (a, b, c, a, b, c) (Å,�) 42.363, 41.557, 72.068 90.000, 104.495, 90.000
Limiting resolution (Å) 41.02–1.30 (1.34–1.30)
Unique reflections 52,866 (2056)
Rmerge (%) 6.4 (73.2)
Rmeas (%) 7.0 (84.4)
Redundancy 6.11 (3.98)
Completeness overall (%) 88.9 (46.7)
<I/r(I)> 19.54 (2.1)
CC (1/2) 99.9 (63.8)
Refinement statistics
Resolution range (Å) 41.02–1.30
Rfactor (%) 16.27
Rfree(%) 18.45
r.m.s.d. bonds(Å) 0.0135
r.m.s.d. angles (�) 1.8542
Ramachandran statistics (%)
Most favoured 96.9
additionally allowed 3.1
outlier regions 0.0
Average B factor (Å2)
All atoms 15.116
inhibitors 11.348
Solvent 24.123
aValues in parentheses are for the highest resolution shell.
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