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Abstract

In mountainous landscapes, soil moisture is highly dynamic due to the effects of topography

and the temporal variability imposed by seasonal precipitation, including rainfall and snow.

Soil moisture is known to affect ecosystem carbon exchange both aboveground and below-

ground, as well as the stable isotopic composition of exchanged CO2. In this study we used

an extensive suite of measurements to examine the effects of seasonal changes in soil

moisture on the isotopic composition of soil CO2 production at the landscape level. We

show that the seasonal decline in soil moisture (i.e., summer dry-down) appeared to impose

a trend in the δ13C of soil CO2 production (δP) with more negative δP early in the growing

season when soils were wet, and more positive δP as the growing season progressed and

soils dried out. This seemingly generalizable pattern for a snow-dominated watershed is

likely to represent the variability of recently assimilated C, tracked through the plant-soil sys-

tem and imprinted in the respired CO2. Thus, our observations suggest that, at least for

mountainous environments, seasonal changes in δP are largely mediated by soil moisture

and their spatial variability is partially organized by topography.

Introduction

The hydrological cycle plays a large role in the expression of terrestrial ecosystem processes.

Climate change is expected to intensify the hydrologic cycle in several ways, including by shift-

ing the timing of springtime snowmelt towards earlier in the year in snow-dominated regions

[1]. This phenomenon has been amply observed [2] and is expected to continue [3, 4] through-

out the western United States. The timing and magnitude of snowmelt is not only a function

of latitude, but is also strongly dependent on the physiographic characteristics of individual

catchments [5]. While peak streamflows may increase along riparian corridors early in the

growing season, high and steep areas of mountainous watersheds—which comprise the great-

est areal extension of mountainous ecosystems—will dry out faster [6].
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Reduction in water availability in sloping terrain can be problematic because it may trans-

late into changes in ecosystem function at multiple levels. For example, reduced soil moisture

in snow-dominated ecosystems is known to affect ecosystem carbon exchange both above-

ground [7, 8] and belowground [9, 10]. Quantifying such changes is especially challenging for

belowground processes, as factors driving changes in soil CO2 production and flux are com-

plex and often confounding [11, 12]. Stable carbon isotope analysis is a useful tool to examine

the response of soil CO2 production to changes in soil moisture and other environmental con-

ditions [13–16]. Isotopic discrimination in plants as a result of photosynthesis and post-photo-

synthetic transport is reflected in the stable carbon isotopic composition of soil [17]. Similarly,

the isotopic composition of soil CO2 is affected through the preferential diffusion of 12C-CO2

within the soil column as well as diffusion of atmospheric CO2 into the soil [18]. Thus, changes

in soil moisture affect both the physical and biological processes that mediate the stable carbon

isotopic composition of soil CO2 production (δP).

Given the highly dynamic nature of soil moisture across mountainous landscapes [19], and

considering further projections driven by climate change, we sought to evaluate the effects that

the seasonal variability in soil moisture impose on the δ13C of soil CO2 production (δP) at the

landscape level. Specifically, we focused on the summer dry-down that forested ecosystems

experience across the western U.S. In a related study, Liang et al. [20] reported that the spatial

variability of soil moisture was a strong predictor of the δ13C of soil CO2 production in a subal-

pine forest; however, this study focused on comparing differences in soil moisture imposed by

landscape position (riparian versus upslope), and did not examine the seasonal (i.e., temporal)

dynamics in δP due to soil dry-down. Nonetheless, the findings confirmed direct measure-

ments of the physiological response of plants to spatial differences in soil moisture as observed

in the foliar 13C composition [21] and tree growth rates [22, 23]. The limitations of this study,

however, were that the direct observations were conducted in a period of little temporal vari-

ability in soil moisture (i.e., late summer) and thus the effects of temporal effects of soil mois-

ture on the isotope content of soil CO2 were not observed. Here, we describe how temporal

changes in soil moisture may affect δP at the landscape level using extensive spatial coverage of

the observations. We focus on observations collected over nine weeks in a subalpine watershed

of the northern Rocky Mountains. This is a considerable advancement from previous studies

because, to the best of our knowledge, this is the first study to examine the seasonal effects of

soil moisture on spatially-distributed measurements of δP, from the period immediately after

snowmelt through late summer. We hypothesize that the soil moisture dry-down introduces a

systematic change in δP and this can be observed at the landscape level. This study explicitly

tests the role of topography and variable soil moisture on the isotopic composition of soil CO2

production measured at the landscape scale. Information gained through this research will aid

in the interpretation of measurements from conventional eddy flux towers (which cannot

resolve the spatial variability of soil or ecosystem CO2 fluxes across different landscape posi-

tions e.g., [24]), and contribute toward an improved mechanistic representation of terrestrial

ecosystem carbon exchange in snow-dominated areas.

Methods

Site location

The study site was Stringer Creek, a subalpine watershed within the Tenderfoot Creek Exper-

imental Forest (TCEF) in the Little Belt Mountains of Central Montana, United States. The

U.S. Forest Service, Rocky Mountain Research Station (USFS-RMRS), which granted access

to the site for this particular project, operates TCEF. The greater TCEF has an area of 3,591

ha, an elevation range of 1,838 to 2,421 m (average is 2,206 m), and receives an average 890
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mm of precipitation annually, ranging from 595m at lower elevations to 1050mm at its

upper slopes [25]. Snow reaches its maximum rate of precipitation during the months of

December and January and accounts for over 70% of total annual precipitation [26]. Peak

streamflow is snowmelt-driven and is usually observed in early June [27]. Optimal soil water

content for soil CO2 efflux has been found between 40% and 60% following snowmelt [28],

with highest soil CO2 concentrations under 20 cm. The vegetation of this site consists of C3

plants, including lodgepole pine (Pinus contorta), Engelmann spruce (Picea eglemanni),

whitebark pine (Pinus albicaulis), subalpine fir (Abies lasiocarpa), and grouse whortleberry

(Vaccinium scoparium) in upland areas, and blue joint reed grass (Calamagrotis canadensis)
along riparian meadows. The most dominant soil groups are loamy, skeletal, mixed Typic

Cryochrepts in upland areas and highly organic, clayey, mixed Aquic Cryoboralfs in the

riparian areas [29]. Soil bulk density ranges from 0.962 g cm-3 in riparian meadows to 0.911

g cm-3 in uplands, with no significant differences in soil bulk density or root density reported

[30].

Field sampling

We report on measurements collected over nine weeks, from June 8 to August 9, 2013 at

thirty-two soil plots located in Stringer Creek, a sub-watershed of TCEF. Plots were distributed

throughout the 393-ha watershed with 23 of those in upland forests and 9 along riparian mead-

ows. Soil CO2 was collected from existing gas wells installed at depths of 5, 20, and 50 cm in

each plot and described in detail by a previous study [28]. The gas wells consisted of 15-cm

PVC sections of 5.25 inside diameter capped with rubber stoppers (size 11), inserted into

augered holes and open at the depth of interest to allow for gas equilibrium between the gas

well and the surrounding soil. PVC tubing (4.8mm inside diameter Nalgene 180 clear PVC,

Nalge Nunc International, Rochester, N.Y., USA) extended from the gas wells to the ground

surface. The PVC tubing was joined with connectors above the surface to prevent leaks from

the gas wells between measurements. A total of 96 gas wells were used in this study (i.e., 32

plots × 3 depths).

The air space within each gas well was sampled at sub-weekly time intervals using a hand-

held carbon dioxide analyzer equipped with a pump (GM-70, Vaisala GM70, Woburn, MA),

connected in line with a sampling valve. During gas sampling, air was circulated and moni-

tored using the GM-70 to ensure that no sudden changes in CO2 concentration occurred

inside the gas well, an indication of leaks in the system. Soil gas samples were taken usually 3–4

days apart, allowing enough time for the soil gas atmosphere to equilibrate. From each gas

well, 120 ml of soil gas was extracted and injected into a 180-ml Tedlar sample bag (SKC Inc.,

Eighty Four, PA) that had been previously flushed with N2. Simultaneously, we measured volu-

metric water content of the soil at a depth of 0–12 cm (HydroSense, Campbell Scientific, UT),

soil temperature (12 cm soil thermometer, Reotemp Instrument Corporation, San Diego, CA),

and soil CO2 efflux (EGM-4 with SRC-1 respiration chamber, PP Systems, Amesbury, MA)

three times per plot. Within 4 hr of collection, Tedlar bags were connected to a Cavity Ring-

Down Spectroscopy (CRDS) analyzer (model Picarro G2101-i, Picarro Inc., Sunnyvale, Cali-

fornia) to measure the δ13C composition of soil CO2 in the Tedlar bag. Two standard gases

were used to calibrate the performance of the CRDS analyzer daily. Routine checks using these

standards, instrumentation, and sampling setup yielded a repeatability of the instrument better

than 0.2‰. All isotope values are reported using the delta notation and relative to the interna-

tional standard of Vienna Pee Dee Belemnite (VPDB). As most groups evaluated exhibited

non-normal distributions and unequal variances, we used Welch’s one-way ANOVA for

group comparison [31].
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Isotopic mixing relationships

Under steady state conditions, the δ13C of soil CO2 flux is equivalent to the δ13C of soil CO2

production [32]. We applied the Keeling plot method [33] using the measured CO2 concentra-

tion and its stable isotopic composition from each depth. Thus, a Keeling plot consisted of an

ordinary least-squares regression between the observed carbon isotopic compositions of the

four samples (i.e., 5, 20, and 50 cm plus above air) and the inverse CO2 concentrations (i.e., 1/

[CO2]) of the same four points. We used time- and site-specific measurements of above air (air

above each plot at the time of sample collection). δP was calculated by subtracting 4.4‰ (diffu-

sive depletion constant [18]) from the estimated intercept of each ordinary least-squares

regression. Any regression with a standard error of the intercept above 1‰ was discarded, so

only the most robust regressions were used for further analysis [24]. Recent studies have

shown that shallow soils are more prone to errors due to the proximity to the forest floor and

the potential for artificial mixing with forest air via advection [16]. This was confirmed by our

previous work, which showed that Keeling-plot derived δP is not overly sensitive to errors at

any particular depth given that it is a depth-averaged technique, and thus it provides greater

confidence in the isotopic composition of soil CO2 production, particularly for surface layers

[20]. We performed the Wilcoxon rank sum test to evaluate statistical differences in soil mois-

ture and δP across the growing season. SPSS 19 (IBM, Armonk, NY) was used to execute the

Welch’s ANOVA. All other statistical analyses and data processing were performed using

MATLAB R2017a (The MathWorks Inc., Natick, MA, USA).

Results

Weekly averages of soil moisture are shown in Fig 1, separated into upland and riparian soil

plots. Throughout the growing season, there was a clear decrease in soil water content across

the landscape, although such a decrease is more pronounced in uplands areas where soil mois-

ture ranges from ~25% on average in early June to less than 10% in early August. In contrast,

the soil moisture in riparian areas decreased much more slowly, only reaching below 30% in

the last three weeks. Given that our overarching goal was to evaluate the effects of seasonal

changes in soil moisture, we used the dynamics of measured soil moisture to divide the grow-

ing season into three distinct periods: a wet period (Weeks 1–3), characterized by a slow

decrease in soil moisture; a transition period (Weeks 4–6), characterized by the fastest rate of

decrease in soil moisture of the growing season; and a dry period (Weeks 7–9), characterized

by dry soils with little change in soil moisture. These periods and dynamics were especially evi-

dent across all upland plots (Fig 1), where these differences in soil moisture were significant

across the three periods (p<0.0001 in all cases). No significant differences were found for

riparian locations. Given that upland locations represent 98% of the watershed area for this

catchment [10], the analysis below refers to these three periods.

Regarding soil CO2 concentrations, we found no significant differences between the CO2

concentrations between upland and riparian plots at the beginning of the growing season,

although such differences did emerge as the season progressed as a result of CO2 concentra-

tions systematically increasing in riparian plots and decreasing in upland plots (Fig 2A). On

the other hand, soil CO2 flux was consistently higher in riparian plots than uplands, having its

highest fluxes during the transition period (i.e., weeks 4–6) across all sites (Fig 2B).

Across both landscape positions, δP was more negative during the wet period and became

progressively more positive toward the transition and dry period (Fig 3). It is worth noting

that these differences were statistically significant between the wet period and each of the sub-

sequent two periods, but the differences were not statistically significant between the transition

and dry periods (Fig 3), likely as a result of the increased variability among measured plots.
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Compared to the measured volumetric water content, the measured δP showed variable

dynamics in upland plots vs. riparian plots at different times of the growing season (Fig 4). Soil

moisture was a significant predictor of the variability of δP across riparian (R2 = 0.18, p<0.05)

and upland plots (R2 = 0.23, p<0.0001) combined, and only during the wet period for upland

plots (R2 = 0.21, p<0.05), likely as a result of a narrower range in soil moisture during the

other periods (i.e., transition and dry periods). In the uplands, the range of δP (minimum –

maximum value) was around ~2‰ early in the growing season when soils were wetter,

whereas the same range increases to over 5‰ when soils were drier. In riparian areas these dif-

ferences were not as clear.

Discussion

Our experimental design took advantage of the long and pronounced summer dry-down fol-

lowing snowmelt at a site where snow contributes most of the water for these mountainous

ecosystems [27], and of the monotonic decline in soil moisture throughout the growing sea-

son, especially evident in sloping areas (Fig 1). Of particular note in our results was: 1) soil

CO2 concentrations increased in riparian plots as the growing season progressed, whereas the

same concentrations systematically decreased in uplands; 2) the peak in soil CO2 flux occurred

toward the middle of the growing season for both riparian and upland plots; and 3) the sea-

sonal decline in soil moisture (i.e., summer dry-down) appeared to impose a trend in δP with

more depleted δP early in the growing season when soils were wet, and more positive δP as the

growing season progressed and soils dried out.

Fig 1. Seasonal soil moisture. Weekly averaged soil moisture in upland and riparian soil plots during the 2013

growing season.

https://doi.org/10.1371/journal.pone.0197471.g001
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Plot-level observations showed that soil moisture in well-drained upland areas was signifi-

cantly lower than soil moisture in riparian areas (Fig 1; one-way ANOVA, p<0.01), which can

be attributed to the higher topographical position combined with the shallow, coarser soil tex-

ture relative to the poorly drained soil found in riparian plots. Across all locations, soil mois-

ture was strongly, inversely correlated with plot elevation (r = -0.33; p<0.0001), a variable that

is known to integrate important topographic characteristics such as porosity, hydraulic con-

ductivity, aspect, clay content, specific contributing area, wetness index, curvature, and soil

Fig 2. Soil CO2 concentrations and flux. Comparison of mean CO2 concentrations across three depths and flux

between and within upland (n = 23) and riparian (n = 9) plots during wet (Weeks 1–3), transition (Weeks 4–6), and

dry (Weeks 7–9) periods of the 2013 growing season. Asterisks (�) indicate significant differences between groups

(p<0.05, Welch’s ANOVA). Bars indicate standard errors of the mean.

https://doi.org/10.1371/journal.pone.0197471.g002
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depth [34, 35]. And while the seasonal dry-down in soil moisture is evident across an entire

growing season, it is not as evident within single 3-week periods, likely because not all sites dry

down equally and the local microtopography can play a big role in the short-term dynamics or

soil moisture at the site level [36]. In addition, previous studies at this same research site have

shown that wet landscape positions have higher fine root biomass and lower carbon-to-nitro-

gen (C:N) ratios than dry landscape positions, likely as a result of differences in vegetative

cover (grasses vs. trees) [10]. Low C:N ratios are known to contribute to rapid litter decompo-

sition rates [37], whereas high root biomass can contribute to high generation and flux of soil

Fig 3. Seasonal evolution of δP across upland and riparian soil plots. Squares denote means across upland (n = 23)

and riparian (n = 9) sites, whereas error bars denote standard deviations. Asterisks denote statistical differences

between different sampling periods (p<0.05, Wilcoxon rank sum test).

https://doi.org/10.1371/journal.pone.0197471.g003

Fig 4. Volumetric water content and the δ13C of soil CO2 production (δP). Volumetric water content was a

significant predictor of the variability of δP across upland (R2 = 0.23, p<0.0001) and riparian plots (R2 = 0.18, p<0.05).

Note x-axis range is different in each panel.

https://doi.org/10.1371/journal.pone.0197471.g004
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CO2 [38]. Both models and experimental studies have shown that soil moisture generally

enhances both soil CO2 concentration and CO2 flux, although at very high soil moisture levels

both gas diffusivity and production are inhibited [39–42]. Our results also suggest that for this

mountainous ecosystem, soil CO2 flux is both diffusion-limited and production-limited (Fig

2). Early in the growing season during the wet period (Weeks 1–3), soil CO2 flux appeared to

be diffusion-limited despite soil CO2 concentrations being slightly above 3000 ppm on average

(Fig 2). Later, during the dry period (Weeks 7–9), soil CO2 flux was only slightly higher than

during the wet period but significantly lower than during the transition period (Weeks 4–6) in

response to soil CO2 concentrations that have increased to near 5000 ppm in riparian areas

and decreased to around 2000 ppm in the uplands. In addition, it appeared that even by late

summer, riparian plots remained diffusion-limited whereas upland plots were production-lim-

ited (Fig 2). These low-high-low patterns in soil CO2 flux (Fig 2B) have been previously attrib-

uted to the stimulation by soil moisture of heterotrophic and autotrophic soil CO2 production

[39, 43], combined with the limitation that soil moisture imposes on soil gas transport [44, 45].

Our results appear to suggest the emergence and spatial manifestation of this well-established

parabolic relationship across the landscape.

A previous study using three soil plots in a maritime pine forest [46] showed that the δ13C

of soil CO2 flux signal became relatively more positive as the growing season progressed, coin-

ciding with the maximum rates of soil CO2 flux. However, the same study showed greater

variability after summer rainfall arrived, which was attributed to differences in the isotopic sig-

natures of heterotrophic and autotrophic respirations and changes in their relative contribu-

tion. Separating the contribution of δ13C from heterotrophic respiration versus autotrophic

respiration is notoriously difficult. Hanson et al. [47] reviewed over 50 published studies that

used a variety of methods to partition heterotrophic versus autotrophic respiration and found

that on average, root respiration contributed to 48% of total soil respiration, with this value

slightly higher for forest soils. As for the heterotrophic respiration, studies show a positive rela-

tionship between increasing soil moisture and heterotrophic respiration rates [48], and since

fractionation is assumed to be negligible during respiration [49] heterotrophic respired δ13C

will have a similar signature to plant-derived tissue. Thus, while we recognize that heterotro-

phic respired δ13C may be an important and un-accounted source of CO2 to the total CO2 flux

pool, the systematic increase in δP derived from analysis of 23 upland and 9 riparian plots,

appears to be a generalizable pattern for this snow-dominated watershed (~4 km2 in area;

Fig 3).

In water-limited ecosystems, studies have demonstrated that δ13C of whole ecosystem respi-

ration tends to become more positive as soil moisture decreases throughout a season [24, 50]

or across sites ranging in annual precipitation inputs [51, 52]. The reason is that soil moisture

influences photosynthetic discrimination by C3 plants through stomatal conductance, as pro-

posed by Farquhar et al. [53, 54]: as plants experience water limitation and stomatal conduc-

tance decreases, less discrimination against 13C by Rubisco results in more positive δ13C in the

recently fixed assimilations. These enriched assimilates are then transported to other parts of

the plant, where this carbon source can be used for respiration. Studies have shown that

because these recently fixed sugars are transferred to the roots, δ13C of root respiration can

reflect δ13C of photosynthates over relatively short time periods [13, 55]. In our study, the

increase in δP with decreasing soil moisture across the growing season (Fig 4) follows this line

of reasoning. Because C transport in the plant itself is not assumed to fractionate against 13C

[56], it is likely that the observed seasonal pattern is the result of the effects of soil moisture on

recently assimilated C, tracked through the plant-soil system and imprinted in the respired

CO2.
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Previous studies have tracked the δ13C of soil respired CO2 in C3 plants in response to day-

to-day variation in the photosynthetic carbon isotope fractionation [13, 57–60], suggesting

that half or more of the biological activity in the soil is driven by recent tree photosynthate.

Atmospheric vapor pressure and precipitation have been reported as drivers of the δ13C of eco-

system respired CO2 [15, 51]. More recent studies, however, have found that relationships

with atmospheric vapor pressure and precipitation are not consistent across the growing sea-

son at the ecosystem [24, 61] or even the soil level [46], making it not possible to directly relate

the δ13C to plant assimilated carbon to potential variations in stomatal conductance. On the

other hand, soil moisture exerts a direct control on the resulting δ13C of soil- or ecosystem-

respired CO2 [20, 62–65], but summer-long patterns have been difficult to identify [24, 46], in

part because the confounding effects of the multiple variables that regulate both soil moisture

and leaf carbon exchange. To the best of our knowledge, this is the first study to report a gener-

alizable pattern in the δ13C of soil CO2 production (δP) as a result of the summer dry-down of

soil moisture using multiple locations in a mountainous watershed.

Soil moisture is an important factor in ecosystem CO2 exchange through its influence on

physiological and soil physical processes. Our study suggests that in mountainous environments

with high to medium soil water content, the summer soil moisture dry-down modulates the

δ13C of soil CO2 production. We showed that the seasonal decline in soil moisture (i.e., summer

dry-down) appeared to impose a trend in the δ13C of soil CO2 production (δP) with more nega-

tive δP early in the growing season when soils were wet, and more positive δP as the growing

season progressed and soils dried out. This seemingly generalizable pattern for a snow-domi-

nated watershed is likely to represent the variability of recently assimilated C in the plant-soil-

atmosphere continuum. Our observations suggest that, at least for mountainous environments,

seasonal changes in δP are largely mediated by soil moisture and their spatial variability is par-

tially organized by topography. Additional research is needed to further establish the role of sto-

chastic precipitation on masking this relationship, as well as the role of variable soil moisture on

the separate isotopic contributions from heterotrophic and autotrophic respiration.

Isotopic mass balance at the ecosystem level is currently unachievable because of large gaps

in our understanding of several processes, including the dynamics of leaf, plant, and soil pro-

cesses in response to environmental conditions [66]. Climate models project an increasing

probability of water stress on soil and plant communities throughout the western United States

due to reduction of snow accumulation. Changes in water availability at the landscape level

would not only affect the rate of soil carbon turnover, but it would also affect the isotopic com-

position of soil CO2 production and presumably whole ecosystem respiration. Our study pro-

vides evidence to suggest that the parameterization of soil moisture heterogeneity in space and

time is a required component of realistic representations carbon isotope exchange in moun-

tainous regions.

Supporting information

S1 Table. Dataset used in this manuscript. Sites T1W1, T1W2, T1E1, T1E2, T2W1, T2W2,

T2E1, and T2E2 are located in riparian areas. Sites T1W3, T1W4, T1E3, T1E4, NW-, and SW-

are located in upland areas.

(XLSX)
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