
ll
OPEN ACCESS
Protocol
Protocol for using Ciclops to build models
trained on cross-platform transcriptome data
for clinical outcome prediction
Elysia Chou, Hanrui

Zhang, Yuanfang

Guan

gyuanfan@umich.edu

Highlights

Build robust clinical

outcome prediction

models using cross-

platform

transcriptome data

Applicable to

datasets from

different studies

measuring different

clinical outcomes

Perform key

preprocessing steps

of imputation and

cross-platform

quantile

normalization

Analyze feature

importance in
LightGBM, XGBoost,

and Random Forest

models with SHAP

Chou et al., STAR Protocols 3,

101583
Designing robust, generalizable models based on cross-platform data to predict clinical

outcomes remains challenging. Building explainable models is important because models may

perform differently depending on the conditions of the samples. Here, we describe the use of

Ciclops (cross-platform training in clinical outcome predictions), freely available software that can

build explainable models to deliver across cross-platform datasets for predicting clinical

outcomes. This protocol also utilizes SHAP, a post-training analysis allowing for assessing

potential biomarkers of the clinical outcome under study.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.
September 16, 2022 ª 2022

The Authors.

https://doi.org/10.1016/

j.xpro.2022.101583

mailto:gyuanfan@umich.edu
https://doi.org/10.1016/j.xpro.2022.101583
https://doi.org/10.1016/j.xpro.2022.101583
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101583&domain=pdf

Protocol

Protocol for using Ciclops to build models trained on
cross-platform transcriptome data for clinical outcome
prediction

Elysia Chou,1 Hanrui Zhang,1 and Yuanfang Guan1,2,3,4,*

1Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI
48109, USA

2Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA

3Technical contact

4Lead contact

*Correspondence: gyuanfan@umich.edu
https://doi.org/10.1016/j.xpro.2022.101583

SUMMARY

Designing robust, generalizable models based on cross-platform data to predict
clinical outcomes remains challenging. Building explainable models is important
because models may perform differently depending on the conditions of the
samples. Here, we describe the use of Ciclops (cross-platform training in clinical
outcome predictions), freely available software that can build explainable
models to deliver across cross-platform datasets for predicting clinical out-
comes. This protocol also utilizes SHAP, a post-training analysis allowing for as-
sessing potential biomarkers of the clinical outcome under study.
For complete details on the use and execution of this protocol, please refer to
Zhang et al. (2022).

BEFORE YOU BEGIN

Consistency and reproducibility are key to the generalizability of using transcriptomic data to predict

clinical outcomes. Datasets that differ with regards to experimental platforms, measurement targets,

geographic sampling sites, and timing of sample collection present practical challenges to building

transferable prediction models. Being able to leverage cross-platform datasets when building

clinical prediction models would not only allow for widespread applicability of the model, but

also increase our confidence in the robustness of the biomarkers that result from feature importance

analysis.

Studies analyzing the consistency of various microarray platforms have been conducted for as long

as microarrays have been in use (Guo et al., 2006; Fan et al., 2010), providing us with preprocessing

methods to consider before attempting to build cross-platform prediction models. Proper prepro-

cessing, cross-platform normalization, and appropriate selection of machine learning methods can

lead to novel scientific discoveries, even when integrating microarray and RNAseq data (Fauteux

et al., 2021). With the wealth of transcriptome data being produced every year, developing more

approaches to integrate various relevant datasets across platforms and across data collection

methods carries the potential to uncover new scientific insights.

Here, we present our protocol for using Ciclops (Cross-platform training In Clinical Outcome Predic-

tionS) to build predictivemodels trained on transcriptome data. Thesemodels are then evaluated on

external datasets the user provides. Our package is versatile, easy to install, and straightforward to

use with a one-line command in the terminal. Our package’s pipeline, which was central to winning

STAR Protocols 3, 101583, September 16, 2022 ª 2022 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:gyuanfan@umich.edu
https://doi.org/10.1016/j.xpro.2022.101583
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101583&domain=pdf
http://creativecommons.org/licenses/by/4.0/

the 2019 Malaria DREAM Challenge (Sage Bionetworks, 2018), performs imputation and quantile

normalization on the datasets beforemodel construction. Additionally, Ciclops allows users to inves-

tigate the top features contributing to model performance using SHAP analysis (Lundberg and Lee

2017). With SHAP, researchers can build explainable models and assess the significance of certain

biomarkers of the clinical outcome under study.

Software prerequisites and data requirements

Ciclops can be run on Linux and Mac operating systems with Python 3. Before launching Ciclops,

ensure your versions of Python (>=3.8), LightGBM (>=3.3.2) and XGBoost (>=1.6.0) meet the min-

imum version requirements (see key resources table). It is also recommended that users have Conda

installed.

Users should also prepare the transcriptomic datasets they wish to analyze using Ciclops, as well

as the labels for the clinical outcomes they wish to study. While Ciclops can be applied to data-

sets from different studies measuring different clinical outcomes, here we illustrate how to use Ci-

clops using two datasets from GEO, which can be downloaded by using the script in https://

github.com/GuanLab/ciclops/tree/main/external_data. Both example datasets were used in our

previous analysis (Zhang et al., 2022) and contain binary labels for fast or slow clearance rate

of the parasite under study. While it is not necessary to download this data, it may be of interest

to test whether Ciclops works as expected in your local environment. While this example only

uses binary classification, Ciclops can also be used for multiclass classification or regression

analysis.

Create a virtual environment for your project (recommended)

Timing: 5 min

While this step is optional, it is recommended that users create a virtual environment to install and

run Ciclops to ensure following the protocol goes smoothly.

1. Create a new environment and specify a version of Python that Ciclops is compatible with:

where you can enter the name of your environment in the place of the square brackets. You can

also install Ciclops’ dependencies in this step, such as numpy and scikitlearn (see key resources

table).

2. When you are ready to use this protocol, activate the environment:

and use the command:

when you wish to deactivate this environment.

conda create --name [ENV_NAME] python=3.8

conda activate [ENV_NAME]

conda deactivate

ll
OPEN ACCESS

2 STAR Protocols 3, 101583, September 16, 2022

Protocol

https://github.com/GuanLab/ciclops/tree/main/external_data
https://github.com/GuanLab/ciclops/tree/main/external_data

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

A minimum of 16 GB local memory is recommended (see Table 1 for computational resources used

in this study). However, for larger datasets, you may want to run Ciclops on a computing cluster with

multiple cores and larger RAM to shorten the run time. Since Ciclops was developed on an Ubuntu

Linux systemwith Python 3 (>=3.8), it is recommended to run Ciclops on a Linux machine (Linux, Mac

OS, or Windows Subsystem for Linux).

STEP-BY-STEP METHOD DETAILS

Download Ciclops and install prerequisites

Timing: 5 min

Obtain the latest version of Ciclops, which can be found on PyPI or our GitHub (Figure 1).

1. Install Ciclops via pip:

or use the following command to clone the protocol directory from our GitHub repository to your

local directory:

CRITICAL: Refer to the key resources table to ensure your local environment is compatible

with all the package’s dependencies, in case installation errors occur (troubleshooting 1).

Optional: Once installed, you can run the following command to see if Ciclops was installed

properly:

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (>=3.8) Python Software
Foundation

https://www.python.org/downloads/
release/python-3812/

numpy (>=1.21.5) Harris et al. (2020) https://pypi.org/project/numpy/

pandas (>=1.4.1) McKinney (2010) https://pandas.pydata.org/

scikit-learn (>=1.0.2) Pedregosa et al. (2011) https://scikit-learn.org/stable/

scipy (>=1.8.0) Virtanen et al. (2020) https://scipy.org/

matplotlib (>=3.5.1) Hunter (2007) https://matplotlib.org/

matplotlib-venn (>=0.11.7) Konstantin Tretyakov https://pypi.org/project/matplotlib-venn/

lightgbm (>=3.3.2) Microsoft Corporation https://lightgbm.readthedocs.io/en/latest/

shap (>=0.40.0) Lundberg and Lee (2017) https://shap.readthedocs.io/en/latest/index.html

xgboost (>=1.6.0) Chen and Guestrin (2016) https://xgboost.readthedocs.io/en/stable/

GEOparse (>= 2.0.3) Rafal Gumienny https://geoparse.readthedocs.io/
en/latest/index.html

tqdm (>=4.63.0) da Costa-Luis (2022) https://github.com/tqdm/tqdm

Ciclops This paper https://pypi.org/project/ciclops/ or
https://github.com/GuanLab/ciclops
(https://doi.org/10.5281/zenodo.6686200)

pip install ciclops

git clone https://github.com/GuanLab/ciclops.git

ciclops --help

ll
OPEN ACCESS

STAR Protocols 3, 101583, September 16, 2022 3

Protocol

https://www.python.org/downloads/release/python-3812/
https://www.python.org/downloads/release/python-3812/
https://pypi.org/project/numpy/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://scipy.org/
https://matplotlib.org/
https://pypi.org/project/matplotlib-venn/
https://lightgbm.readthedocs.io/en/latest/
https://shap.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/stable/
https://geoparse.readthedocs.io/en/latest/index.html
https://geoparse.readthedocs.io/en/latest/index.html
https://github.com/tqdm/tqdm
https://pypi.org/project/ciclops/
https://github.com/GuanLab/ciclops
https://doi.org/10.5281/zenodo.6686200
https://github.com/GuanLab/ciclops.git

If any errors or warnings occur due to clashing package versions, see troubleshooting 2.

Additionally, if you are cloning the GitHub repository, you can download the example data from

GEO using the Python script in the external_data/ directory:

This script obtains two transcriptomic datasets: 1) in vitro data of P. falciparum (GEO: GSE151189)

(Mok et al., 2021), used as the training set in our example; and 2) ex vivo data of P. falciparum from a

different study (GEO: GSE59098) (Mok et al., 2015), used as the test set in our example. In this pro-

tocol, these data are used only for illustrative purposes.

Prepare data

Timing: 10 min

In this step, format the data so that it will be suitable for use with Ciclops (Table 2). The data should

be in csv format.

2. Select datasets and preprocess the data.

a. Select at least two transcriptomic datasets that you wish to build a predictive model with: one

training set and at least one test/validation set.

b. Ensure the labels are somewhat consistent between the training and test set based on the bio-

logical context of the problem you are trying to solve.

Figure 1. Model installation using pip or git and the

main dependencies

python3 getGEO.py

Table 1. Computational resources used in this study

Operating system Version

Ubuntu 20.04.3 LTS (Focal Fossa)

CPU Information Value

RAM 16 GB

Cores 6

Processor speed 1.1 GHz

ll
OPEN ACCESS

4 STAR Protocols 3, 101583, September 16, 2022

Protocol

Note: As an example, in our original study, the training set’s labels were fast or slow clearance

rate of the parasite after introduction of the drug in question and the test set’s labels were the

drug’s IC50. Since lower IC50 should correspond to faster clearance rate, ‘fast’ was labeled as

0, and ‘slow’ was labeled as 1.

3. Format both datasets such that the features and labels are arranged correctly (Table 2).

a. Ensure the columns are gene expression levels for each gene and that the rows are samples.

b. Put the sample names or numbers in the first column.

i. If the datasets being used do not contain sample numbers, put a column of numbers in the

first column as a placeholder.

c. Put the labels in the last column.

CRITICAL: 1.) All datasets used with Ciclops should follow the format above, as Ciclops

assumes the first and last column are sample numbers and labels respectively. 2.) While

these datasets can be collected from different platforms and/or use different clinical

outcome metrics (e.g., the training set and test set are transcriptome profiles measured

using different platforms; or the labels are different metrics for measuring a similar clinical

outcome), they must share a set of common genes in order to build a model (trouble-

shooting 3).

Optional: 1.) If the datasets you have selected still contain raw data, preprocess both training

and test data, following standard protocol according to their respective platforms. For tran-

scriptomic datasets, this often involves feature extraction, QC, and some form of normaliza-

tion, among other preprocessing steps. For example, while we use the processed data from

GEO as our example files, we could have also elected to use the raw data the authors provided

instead. In that case, we would have preprocessed the datasets individually as described in

the methods of our original study (Zhang et al., 2022). Subsequently, Ciclops will perform

imputation and cross-platform quantile normalization to normalize the training and test

data with respect to each other. 2.) In the case of missing values in the datasets, it is recom-

mended that researchers enter ‘NaN’ in those positions rather than leaving them blank. 3.)

At this stage, imputing missing values is not necessary, as Ciclops performs gene-wise impu-

tation before training the models, i.e., a sample’s missing value is replaced with the relevant

gene’s average expression level. Users can perform different imputation methods in this step

if they so wish.

Train models, evaluate results, and visualize top contributing features

Timing: � 0.5 h (depending on data size and model)

With a one-line command, Ciclops allows the user to preprocess the data (imputation and quantile

normalization), perform ten-fold cross-validation on the training set, and perform the transfer

learning on the test set (Figure 2). Additionally, if specified, Ciclops will carry out SHAP analysis

with a visualization report of top contributing features for both training and test sets.

Table 2. Example data format for both training and test sets

Sample Gene 1 Gene 2 . Gene p Label

1 0.15 0.39 . -2.05 0

2 0.01 -0.47 . -1.14 1

.

N 0.53 -1.12 . 0.29 0

Note that the label can be categorical or continuous.

ll
OPEN ACCESS

STAR Protocols 3, 101583, September 16, 2022 5

Protocol

4. Run Ciclops using the following command:

The arguments are defined as follows:

a. --train_path [TRAIN_PATH]: the path to the csv file containing the training data pre-

pared in the previous steps. For example, if using the example data, enter the path to the

file in_vitro_GSE151189.csv.

b. --valid_path [VALID_PATH]: the path to the csv file containing the transfer validation or

test data prepared in the previous steps. For example, if using the example data, enter the

path to the file ex_vivo_GSE59098.csv.

c. -m [MODEL_TYPE]: the machine learning model to use. The default is LightGBM; however,

the user can specify that one of the following models be used instead, using the specified

argument:

i. lgb: LightGBM.

ii. xgb: XGBoost.

iii. rf: Random Forest.

iv. gpr: Gaussian Process Regression.

v. lr: Linear Regression.

d. --no_quantile: if this argument is used, Ciclops will not perform quantile normalization on

the training and test data. The user should exclude this argument if they wish to perform quan-

tile normalization on the data.

e. --shap: if this argument is specified, Ciclops will perform SHAP analysis on the training and

test data.

ciclops --train_path [TRAIN_PATH] --valid_path [VALID_PATH] -m [MODEL_TYPE] --no_quantile

--shap -n [TOP_GENES]

Figure 2. Workflow

Using a one-line command, Ciclops first preprocesses both training and testing datasets by performing gene-wise imputation and quantile

normalization. The program then trains the specified machine learning model using ten-fold cross-validation. Finally, it evaluates these models on the

provided test set. This workflow does not include SHAP analysis.

ll
OPEN ACCESS

6 STAR Protocols 3, 101583, September 16, 2022

Protocol

f. -n [TOP_GENES]: if using the --shap argument, users can set the number of top-contrib-

uting genes to compare between the training and test set with the -n flag. The default is 20.

Note: 1.) When deliberating what model type to use, LightGBM would generally be a good

place to start since it performs well in our experience and is very efficient for training large

datasets such as transcriptomic data that Ciclops is intended for (Ke et al., 2017). While

XGBoost is not as fast in that regard (Ke et al., 2017), comparing your LightGBM model

to models trained by XGBoost and Random Forest can give you insight into the perfor-

mance of tree-based learners versus kernel-based algorithms such as GPR and linear regres-

sion, which have more straightforward interpretability. 2.) If testing Ciclops with the example

data, which is relatively small, running the command in step 4 should take no more than five

minutes. Since we anticipate Ciclops being used for much larger datasets, as was done in

our original study, the timing estimate given above is based on our original study. As

mentioned in the materials and equipment section, running Ciclops on a computing cluster

with multiple cores and larger RAM will shorten the runtime. 3.) Unless both datasets have

been jointly normalized during your preprocessing step, it is recommended to exclude the

--no_quantile argument, as quantile normalization played a key role in building a suc-

cessful prediction model in our original publication. 4.) In Ciclops, SHAP can only be

used with tree-based models (i.e., LightGBM, Random Forest, XGBoost) as that is mainly

what SHAP is designed for. It is infeasible to perform SHAP analysis on regression models

with the thousands of features that transcriptome data usually comes with. 5.) At the time

of writing, the shap package utilizes the IPython.core.display module for creating interactive

plots. Since storing SHAP values and generating SHAP summary plots was sufficient in our

original study, Ciclops only makes use of the non-interactive plot functions of the shap pack-

age. Therefore, if applicable, users can ignore the warning, "IPython could not be loaded!"

and do not need to have IPython installed.

CRITICAL: 1.) In order for Ciclops to run, ensure the paths to both training and test data

files are correct. 2.) Unless you intend on using a tree-based model (e.g., LightGBM,

Random Forest, XGBoost), exclude or minimize the number of features that are categor-

ical, as most models implemented in Ciclops were designed to operate on ordinal, numeric

values. If you wish to include categorical features, encode them as ordinal, numeric values

before training. 3.) While the parameters of the five models implemented in Ciclops

worked for our original study and allowed us to win the 2019 DreamMalaria challenge (Ta-

ble 3), we encourage users to tune the hyperparameters in order to obtain the best model

fit for their datasets (see troubleshooting 4). 4.) While both example datasets use binary

labels, Ciclops can also build models where the labels of one or both datasets are contin-

uous values. Use evaluation metrics that are suitable to assess the outcomes you are trying

to predict with your model (see quantification and statistical analysis).

EXPECTED OUTCOMES

After running Ciclops using the command in step 4, the results can be found in the following newly-

created subdirectories.

The first directory listed will be the training directory. This directory contains the train and test

splits for each fold of the ten-fold cross-validation performed on the training dataset. As for the pre-

dicted labels for each sample in the test dataset, they are in the directory called validation. Next,

the models generated from the ten-fold cross-validation are saved in the params directory. These

savedmodels, named fold_*_model.sav, can be reloaded using pickle, a standardmodule in Py-

thon. The fourth directory, called performance, contains the models’ evaluation results from each

cross-validation fold for both training and test sets, as well as the results with a 95% confidence in-

terval obtained by bootstrapping.

ll
OPEN ACCESS

STAR Protocols 3, 101583, September 16, 2022 7

Protocol

Finally, if the –shap argument is specified, the results from the SHAP analysis will be stored in the

SHAP directory. In this directory, the training and validation subdirectories contain figures

with the top contributing genes and their SHAP values (SHAP_importance_*.pdf) (Figure 3A)

as well as csv files containing all genes and their SHAP values, for each cross-validation fold. The

figure named intersection_venn_top_*_genes.pdf displays a Venn diagram of the top

contributing genes in the training and test/validation datasets, and shows how many of these genes

overlap (Figure 3B). The last file you will find will be named intersection_list_top_*_ge-

nes.txt. It lists the top contributing genes that overlap between the SHAP analysis done on the

training set and the SHAP analysis done on the test/validation set.

When reviewing these results, verify that the performance results make sense; for example, the cor-

relation coefficients are not NaN or the AUROC is higher than 0.5 (troubleshooting 5).

QUANTIFICATION AND STATISTICAL ANALYSIS

Ciclops reports four metrics to evaluate model performance: AUROC, AUPRC, Pearson’s r, and

Spearman’s r. They each have their own applications. For binary classification problems, you can

look at the following:

� AUROC (Area Under the Receiver Operating Characteristic curve): The AUROC is a measure of the

model’s ability to differentiate between classes, generally ranging in value from 0.5 (random clas-

sifier) to 1.0 (perfect classifier). In statistics terms, AUROC is the area under the ROC curve, which

plots the true positive rate (TPR) against the false positive rate (FPR) across different decision

thresholds:

TPR =
TP

TP + FN
;

FPR =
FP

FP +TN
TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative.

Table 3. Parameters used in the different machine learning models

Parameter Value Description

LightGBM

boosting_type ‘gbdt’ The gradient boosting method to use.

objective ‘regression’ The learning task (regression, binary classification, etc.).

num_leaves 5 The maximum number of leaves in a tree.

learning_rate 0.05 The learning rate for the gradient boosting model.

Verbose 0 The level of verbosity, mainly for debugging.

n_estimators 800 The number of boosted trees to build in order to improve the fit.

reg_alpha 2.0 The L1 regularization term for combatting overfitting.

XGBoost

N/A Default N/A

Random Forest

max_depth 2 The maximum tree depth.

n_estimators 100 The number of trees to use in the model.

Gaussian Process Regression (GPR)

Kernel DotProduct() +
WhiteKernel()

Defines a Gaussian process by describing the covariance of the
Gaussian process random variables. To explore the kernels that can
be used with GPR, please refer to the scikit-learn documentation.

Linear Regression

N/A Default N/A

ll
OPEN ACCESS

8 STAR Protocols 3, 101583, September 16, 2022

Protocol

In Ciclops, the AUROC is computed using the sklearn.metrics module in Python.

� AUPRC (Area Under the Precision-Recall Curve): The AUPRC is generally used when dealing with

highly imbalanced datasets. The baseline AUPRC is given by the proportion of true positive sam-

ples in the dataset and an AUPRC closer to 1.0 (correlating with high precision and high recall) is

preferred. The AUPRCmeasures the area under the PR curve, which plots the precision against the

recall (equivalent to TPR) across different decision thresholds:

In Ciclops, the AUPRC is computed using the sklearn.metrics module in Python.

For regression problems, you can use the following of the reported metrics:

� Pearson’s r (Pearson correlation coefficient): the Pearson correlation coefficient measures the

linear correlation between the predicted values and the actual values. The correlation coefficient

is the ratio between the covariance and the product of the respective standard deviations:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Figure 3. Results from SHAP analysis after running Ciclops on the example data

(A) Beeswarm plot of the top 20 genes contributing to the model, with their respective SHAP values.

(B) Venn diagram of the top 20 genes resulting from the SHAP analysis on both the training set and test/validation set, showing how many overlap.

r =

Pðxi � xÞðyi � yÞffiP ðxi � xÞ2ðyi � yÞ2
q ;

xi: predicted value of sample i;

x: mean of the prediction values;

yi: actual value of sample i;

y: mean of the actual values.

ll
OPEN ACCESS

STAR Protocols 3, 101583, September 16, 2022 9

Protocol

The Pearson correlation coefficient varies in range from -1 to 1. Both extremes indicate a strong

linear correlation, while 0 indicates no correlation. In Ciclops, Pearson’s r is computed using the sci-

py.stats module in Python.

� Spearman’s r (Spearman rank-order correlation coefficient): The Spearman rank-order correlation

coefficient is a nonparametric assessment of how well the predicted values and actual values can

be described using a monotonic function:

Like Pearson’s r, Spearman’s r varies between -1 to 1. Both extremes indicate a perfect monotonic

relationship, while 0 implies no correlation. In Ciclops, Spearman’s r is calculated using the scipy.-

stats module in Python.

Users can also implement customized evaluation metrics relevant to their research questions using

the results from running Ciclops.

LIMITATIONS

When using Ciclops for cross-platform model building, the model performance will vary based on

the training dataset, the test dataset, and the machine learning method being applied. Users may

even see model performance vary across different test sets generated in the same study, but un-

der different conditions. These disparities in model performance may be due to the nature of the

data collection methods, environmental factors drastically impacting gene expression and/or clin-

ical outcomes, or large biological variability which the model fails to explain. Therefore, users must

be critical and careful in their research design before considering the strategy implemented in

Ciclops.

Another limitation is that because SHAP analysis works best and fastest with tree-based models, it is

not implemented for use with the regression models that can be used in Ciclops (namely, Gaussian

Process Regression and Linear Regression). Since transcriptomic data typically contain thousands of

genes’ expression levels, it would be too computationally expensive to use SHAP with these regres-

sion models. Users are recommended to explore alternative methods of feature importance analysis

for these models if they deem it necessary.

Finally, users are also limited in their choice of machine learning algorithms. While the algorithms

implemented in Ciclops have been popular in recent years for their top performance, users may

wish to implement a different machine learning algorithm of their choice. In this case, users can

modify the source code to fit their needs.

TROUBLESHOOTING

Problem 1

Ciclops failed to install due to uninstalled dependencies (step 1).

Potential solution

Refer to the key resources table to manually install the packages, paying attention to the minimum

version requirement.

r = 1� 6
P

d2
i

nðn2 � 1Þ;
di: the difference between the ranks of predicted value i and actual value i;

n: number of observations.

ll
OPEN ACCESS

10 STAR Protocols 3, 101583, September 16, 2022

Protocol

Problem 2

Ciclops fails to run due to clashing dependencies or deprecation warnings (step 1).

Potential solution

Some of Ciclops’ dependencies have dependencies of their own, which may have differing version

requirements.

� If you get a deprecation warning on the command line after calling Ciclops, consult the key re-

sources table to upgrade all of Ciclops’ dependencies to their most recent version, despite the

minimum version requirement being lower.

� If you get an error because other packages in your local environment have version require-

ments of certain dependencies that clash with that of Ciclops, consult the documentation of

the packages with clashing dependencies. If you can reinstall a version of the clashing depen-

dency that satisfies both Ciclops and the other package’s version requirements, do so using

the command:

If there is no version overlap between Ciclops and the other package, consider creating a new virtual

environment for your project by using conda or virtualenv for Python 3 and installing all of Ciclops’

dependencies listed in the key resources table in this virtual environment before installing Ciclops.

Problem 3

Ciclops does not produce the expected results because the program cannot find common genes be-

tween the training and test set (step 2a, expected outcomes). Youmay have noticed this because the

csv files containing the train/test splits in the ./training directory only have two columns: sample

names and labels, missing any gene expression columns; or your output after running Ciclops resem-

bles that of Figure 4.

Potential solution

� If your datasets have genes in common, but have different naming schemes, ensure the gene

names are consistent between the training and test sets before running Ciclops.

� If your datasets do not have genes in common, select different datasets that have genes in com-

mon in order to build a predictive model.

Problem 4

Users wish to use different hyperparameters for the machine learning models implemented in

Ciclops.

Potential solution

We encourage users to tune the hyperparameters of the models they wish to use if they are trying to

improve model performance. The hyperparameter settings in Ciclops are listed in Table 3, and can

be modified by editing the model.py script in the source code. For more detailed information on

parameter options and ranges, please refer to the documentation of the machine learning model

you wish to tune.

� As an example, if you are trying to tune the hyperparameters of a LightGBM model, you may

experiment with smaller values for ‘num_leaves’ and ‘n_estimators’ if your model is overfitting.

Alternatively, you may wish to speed up the training process by increasing the ‘learning_rate’ hy-

perparameter, or try to achieve higher prediction accuracy by lowering the learning rate.

pip install [dependency]==[version]

ll
OPEN ACCESS

STAR Protocols 3, 101583, September 16, 2022 11

Protocol

� Note that the optimal hyperparameters for your model may depend on the characteristics of the

datasets you are using; for example, the number of features or samples in your datasets.

Problem 5

Ciclops does not produce the expected results (expected outcomes). Your results may resemble the

output presented in Figure 4, or your results seem too extreme in the statistical sense (for example,

confidence intervals spanning [0, 1] for AUPRC, or NaN values for any of the evaluation metrics).

Potential solution

� Consult the potential solution to problem 3 if you used datasets that did not have any genes in

common.

� If your results don’t make sense, examine the datasets to make sure they are not empty.

� Examine your datasets for any outliers, and do some sanity checks on all your features and labels.

� Tune the hyperparameters to obtain a better fit (see problem 4) and try different models that can

be used with Ciclops.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Yuanfang Guan (gyuanfan@umich.edu).

Materials availability

This study did not generate any new unique reagents.

Data and code availability

The script to obtain the example datasets from GEO and the code generated in this study are pub-

licly available at https://github.com/GuanLab/ciclops. All original code has been deposited at Zen-

odo and is publicly available as of the date of publication. The DOI is listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

ACKNOWLEDGMENTS

This work is supported by NIH R35GM133346, NSF#1452656, and T32GM141746. Two of the data-

sets used in our original analyses and adapted here as example data were obtained fromGEO (GEO:

GSE151189 and GEO: GSE59098).

AUTHOR CONTRIBUTIONS

E.C. packaged the code and wrote the manuscript. H.Z. edited the manuscript and wrote the code

for the analyses. Y.G. designed and implemented the algorithm that was the basis for this package.

All authors read and agreed with this final manuscript.

Figure 4. Troubleshooting example

Some of the output of Ciclops if the datasets provided to the program do not share any genes.

ll
OPEN ACCESS

12 STAR Protocols 3, 101583, September 16, 2022

Protocol

mailto:gyuanfan@umich.edu
https://github.com/GuanLab/ciclops

DECLARATION OF INTERESTS

Y.G. serves as scientific advisor and receives payment from Genentech Inc, Eli Lilly and Company,

Merck & Co; serves as chief scientist at Ann Arbor Algorithms Inc.; and serves as editor and receives

payment from Elsevier (iScience).

REFERENCES

Chen, T., and Guestrin, C. (2016). XGBoost: A
Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.San
Francisco, California, USA: Association for
Computing Machinery.

da Costa-Luis, C., et al. (2022). tqdm: A fast,
extensible progress bar for Python and CLI.
Zenodo. https://doi.org/10.5281/zenodo.4531988.

Fan, X., Lobenhofer, E.K., Chen,M., Shi, W., Huang,
J., Luo, J., Zhang, J., Walker, S.J., Chu, T.M., Li, L.,
et al. (2010). Consistency of predictive signature
genes and classifiers generated using different
microarray platforms. Pharmacogenomics J. 10,
247–257.

Fauteux, F., Surendra, A., McComb, S., Pan, Y., and
Hill, J.J. (2021). Identification of transcriptional
subtypes in lung adenocarcinoma and squamous
cell carcinoma through integrative analysis of
microarray and RNA sequencing data. Sci. Rep. 11,
8709.

Guo, L., Lobenhofer, E.K., Wang, C., Shippy, R.,
Harris, S.C., Zhang, L., Mei, N., Chen, T., Herman, D.,
Goodsaid, F.M., et al. (2006). Rat toxicogenomic
study revealsanalytical consistencyacrossmicroarray
platforms. Nat. Biotechnol. 24, 1162–1169.

Harris, C.R., Millman, K.J., Van Der Walt, S.J.,
Gommers, R., Virtanen, P., Cournapeau, D.,Wieser,
E., Taylor, J., Berg, S., Smith, N.J., and Kern, R.

(2020). Array programming with NumPy. Nature,
357–362. https://doi.org/10.1038/s41586-020-
2649-2.

Hunter, J.D. (2007). Matplotlib: a 2D graphics
environment. Comput. Sci. Eng. 9, 90–95.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W.,
Ma, W., Ye, Q., and Liu, T.Y. (2017). Lightgbm: a
highly efficient gradient boosting decision tree. In
Advances in Neural Information Processing
Systems, 30, I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, eds. (CurranAssociates, Inc.), pp. 3146–
3154.

Lundberg, S.M., and Lee, S.-I. (2017). A unified
approach to interpreting model predictions. In
Advances in Neural Information Processing
Systems, 30, I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, eds. (Curran Associates, Inc.)), pp. 4765–
4774.

McKinney, W. (2010). Data structures for statistical
computing in Python. In In proceedings of the 9th
Python in Science Conference, Stéfan Van der Walt
and Jarrod Millman, eds. (Austin, Texas: Presented
at the Python in Science Conference, SciPy),
pp. 56–61. https://doi.org/10.25080/
majora-92bf1922-00a.

Mok, S., Ashley, E.A., Ferreira, P.E., Zhu, L., Lin, Z.,
Yeo, T., Chotivanich, K., Imwong, M.,

Pukrittayakamee, S., Dhorda, M., et al. (2015). Drug
resistance. Population transcriptomics of human
malaria parasites reveals the mechanism of
artemisinin resistance. Science 347, 431–435.

Mok, S., Stokes, B.H., Gnädig, N.F., Ross, L.S., Yeo,
T., Amaratunga, C., Allman, E., Solyakov, L., Bottrill,
A.R., Tripathi, J., et al. (2021). Artemisinin-resistant
K13 mutations rewire Plasmodium falciparum’s
intra-erythrocytic metabolic program to enhance
survival. Nat. Commun. 12, 530.

Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., and
Vanderplas, J. (2011). Scikit-learn: machine
learning in Python. J. Machine Learn. Res. 12,
2825–2830.

Sage, Bionetworks.. Malaria DREAM Challenge.
https://www.synapse.org/#!Synapse:syn16924919/
wiki/583955.

Virtanen, P., Gommers, R., Oliphant, T.E.,
Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
et al. (2020). SciPy 1.0: fundamental algorithms for
scientific computing in Python. Nat. Methods 17,
261–272.

Zhang, H., Guo, J., Li, H., and Guan, Y. (2022).
Machine learning for artemisinin resistance in
malaria treatment across in vivo-in vitro platforms.
iScience 25, 103910.

ll
OPEN ACCESS

STAR Protocols 3, 101583, September 16, 2022 13

Protocol

http://refhub.elsevier.com/S2666-1667(22)00463-4/sref16
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref16
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref16
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref16
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref16
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref16
https://doi.org/10.5281/zenodo.4531988
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref1
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref1
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref1
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref1
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref1
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref1
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref3
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref3
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref3
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref3
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref3
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref5
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref5
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref6
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref7
https://doi.org/10.25080/majora-92bf1922-00a
https://doi.org/10.25080/majora-92bf1922-00a
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref9
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref9
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref9
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref9
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref9
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref9
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref10
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref10
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref10
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref10
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref10
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref10
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref11
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref11
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref11
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref11
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref11
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref11
https://www.synapse.org/#!Synapse:syn16924919/wiki/583955
https://www.synapse.org/#!Synapse:syn16924919/wiki/583955
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref14
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref14
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref14
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref14
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref14
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref14
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref15
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref15
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref15
http://refhub.elsevier.com/S2666-1667(22)00463-4/sref15

	XPRO101583_proof_v3i3.pdf
	Protocol for using Ciclops to build models trained on cross-platform transcriptome data for clinical outcome prediction
	Before you begin
	Software prerequisites and data requirements
	Create a virtual environment for your project (recommended)

	Key resources table
	Materials and equipment
	Step-by-step method details
	Download Ciclops and install prerequisites
	Prepare data
	Train models, evaluate results, and visualize top contributing features

	Expected outcomes
	Quantification and statistical analysis
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

