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ABSTRACT
Background. In the ocean, the variability of environmental conditions found along
depth gradients exposes populations to contrasting levels of perturbation, which can
be reflected in the overall patterns of species genetic diversity. At shallow sites, resource
availability may structure large, persistent and well-connected populations with higher
levels of diversity. In contrast, the more extreme conditions, such as thermal stress
during heat waves, can lead to population bottlenecks and genetic erosion, inverting
the natural expectation. Here we examine how genetic diversity varies along depth for
a long-lived, important ecosystem-structuring species, the red gorgonian, Paramuricea
clavata.
Methods. We used five polymorphic microsatellite markers to infer differences in
genetic diversity and differentiation, and to detect bottleneck signs between shallow
and deeper populations across the Atlantic Ocean and the Mediterranean Sea. We
further explored the potential relationship between depth and environmental gradients
(temperature, ocean currents, productivity and slope) on the observed patterns of
diversity by means of generalized linear mixed models.
Results. An overall pattern of higher genetic diversity was found in the deeper sites
of the Atlantic Ocean and the Mediterranean Sea. This pattern was largely explained
by bottom temperatures, with a linear pattern of decreasing genetic diversity with
increasing thermal stress. Genetic differentiation patterns showed higher gene flow
within sites (i.e., shallow vs. deeper populations) than between sites. Recent genetic
bottlenecks were found in two populations of shallow depths.
Discussion. Our results highlight the role of deep refugial populations safeguarding
higher and unique genetic diversity for marine structuring species. Theoretical regres-
sion modelling demonstrated how thermal stress alone may reduce population sizes
and diversity levels of shallow water populations. In fact, the examination of time series
on a daily basis showed the upper water masses repeatedly reaching lethal temperatures
for P. clavata. Differentiation patterns showed that the deep richer populations are
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isolated. Gene flow was also inferred across different depths; however, not in sufficient
levels to offset the detrimental effects of surface environmental conditions on genetic
diversity. The identification of deep isolated areas with high conservation value for the
red gorgonian represents an important step in the face of ongoing and future climate
changes.

Subjects Biodiversity, Ecology, Genetics, Marine Biology, Climate Change Biology
Keywords Genetic diversity, Depth refugia, Mediterranean Sea, Atlantic Ocean, Paramuricea
clavata, Climate change

INTRODUCTION
Extreme environmental conditions may change the distribution of intra-specific
biodiversity (Provan & Bennett, 2008). However, responses may differ significantly between
environments and ecological groups. The trends in genetic diversity of mountain plants and
vertebrates along altitudinal gradients are a well-known example, varying from decreased
diversity with altitude due to drift and bottlenecks during vertical range expansion,
to increased diversity associated with selective pressures at higher altitudes (Giordano,
Ridenhour & Storfer, 2007; Ohsawa & Ide, 2008).

In the marine environment, environmental gradients are known to affect the genetic
diversity levels of the populations (e.g., Costantini et al., 2011; Costantini et al., 2016;
Johannesson & André, 2006). Particularly, the exposure to limiting niche conditions
may reduce population sizes, leading to genetic erosion through bottlenecks and drift
(Eckert, Samis & Lougheed, 2008). Conversely, where conditions are stable for long time,
populations may persist and retain ancient genetic diversity (i.e., climatic refugia; Maggs
et al., 2008; Provan & Bennett, 2008). Even small populations of species with reduced
dispersal potential may harbour distinct ancient genetic diversity if persisting in refugial
areas (e.g., Diekmann & Serrão, 2012; Assis et al., 2016).

In the coastal zone, depth gradients are associated with increased environmental
variability due to the stratification of wind-induced turbulence, light attenuation, nutrient
availability, sedimentation and the presence of thermoclines and haloclines (Garrabou,
Ballesteros & Zabala, 2002; Assis et al., 2017). Together, they underpin well-structured
gradients of species occurrences, abundances and genetic diversity. While extreme
conditions experienced in shallow waters can be detrimental to genetic diversity, deep
waters are relatively more stable and can provide genetic refugia (e.g., Smith et al., 2014;
Assis et al., 2016). The hypothesis of deep populations harbouring higher and unique
genetic diversity is of great conservational, biogeographical and evolutionary relevance.
The loss of such genetically rich populations poses disproportionate risks for the species
as a whole, considering the loss of adaptive variation for selection (Hampe & Petit, 2005).
While there is increased evidence of deep populations not being directly affected by events
of extreme environmental conditions (e.g., Cerrano et al., 2005; Linares et al., 2005; Smith
et al., 2014), these are not immune to disturbances (Bavestrello et al., 2014; Frade et al.,
2018). Furthermore, the hypothesis that deeper reefs may be more fecund (Holstein et al.,
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2015), serving as a source of recruits for the recovery of shallower reefs is controversial
between species (Bongaerts et al., 2010; Bongaerts et al., 2017), but also within the same
species (Mokhtar-Jamaï et al., 2011; Van Oppen et al., 2011; Pilczynska et al., 2016).

The red gorgonian Paramuricea clavata (Risso) lives on shadowed rocky substrates
down to 120 m in the Mediterranean Sea (Salomidi et al., 2009; Bo et al., 2012) and to 100
m in the Atlantic Ocean (Boavida et al., 2016a). Shallow populations in the Mediterranean
have recently suffered massive mortality events caused by thermal stress (Perez et al., 2000;
Romano et al., 2000;Garrabou et al., 2009). Damage intensity has been reported to decrease
with depth, with communities dwelling below the thermocline of 25 to 30 m being less
affected (Cerrano et al., 2005; Linares et al., 2005). In the Atlantic Ocean, temperature-
driven mortality events are presumed to be less frequent as water masses are usually mixed
due to summer upwelling (Relvas et al., 2007). However, there are sporadic events of
upwelling relaxation, with raising temperatures persisting for several days, responsible for
the mortality of shallow water gastropod populations (Lima et al., 2006) and marine forests
(Araújo et al., 2016), which eventually may reach levels that could become limiting for the
red gorgonian. Here we investigate changes in the genetic diversity levels of P. clavata across
populations in different depth ranges from the Mediterranean Sea and the Atlantic Ocean.
Considering the different potential effect of temperature extremes between different depths,
we hypothesize that shallow populations have lower genetic diversity when compared to
deeper ones. We further explore the observed patterns of diversity using generalized linear
mixed models with environmental information (temperature, current velocity, primary
productivity and slope).

MATERIALS & METHODS
We sampled two populations at different depths (shallow vs. deeper) in three sites of the
Atlantic Ocean (Portuguese coast) and two sites of theMediterranean Sea (Italy coast; Fig. 1;
Table S1) bymeans of SCUBA diving. Atlantic samples were located between 12m and 60m
depth, while those in the Mediterranean were between 20 m and 30 m. At each population,
10 cm apical branches were collected haphazardly from well-separated colonies to avoid
clones, as the species can have asexual reproduction, though negligible (Coma, Zabala &
Gili, 1995; Pilczynska et al., 2017). The branch tip from each colony was stored individually
in plastic tube underwater and, after transportation to the lab, the samples were preserved
in 96% ethanol until DNA extraction. Sampling permissions for the Mediterranean sites
were authorised by Cinque Terre Marine Protected Area (Pilczynska et al., 2016). For the
Atlantic sites, permission was authorized by the Institution for Conservation of Nature
and Forest (ICNF, Portuguese governmental body responsible for the management of
Protected Areas).

Genomic DNA was extracted with a CTAB protocol (Winnepenninckx, Backeljau &
De Wachter, 1993), using proteinase K, with purification by standard chloroform:isoamyl
alcohol (24:1) followed byDNAprecipitation. Samples were genotyped at fivemicrosatellite
loci: Parcla 09, Parcla 10, Parcla 12, Parcla 14, Parcla 17 (Mokhtar-Jamaï et al., 2011). PCR
conditions were as described inMokhtar-Jamaï et al. (2011) with minor modifications (1.5
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Figure 1 Sampling sites of the red gorgonian (Paramuricea clavata) populations in the Atlantic Ocean
and theMediterranean Sea. The exact coordinates of each sampling site are available in the supplemen-
tary information (S3). Map source ‘‘ c©OpenStreetMap contributors’’, available under the Open Database
License. This figure is published under CC BY SA: https://www.openstreetmap.org/copyright.

Full-size DOI: 10.7717/peerj.6794/fig-1

mMMgCl2, cycle: 95 ◦C 3min, 94 ◦C 20 s, 45 ◦C 20 s, 72 ◦C 20 s for 40 cycles, final extension
72 ◦C 10 min). PCR products were analysed on an ABI 3730XL Genetic Analyser using
an internal size standard (GeneScan 600 LIZ; Applied Biosystems). STRand version 2.2.30
was used to score alleles (Locke, Baack & Toonen, 2000) and the R package MsatAllel_1.02
(Alberto, 2009) allowed to visualise, track and reanalyse putative scoring errors.

Additional genetic data for the same microsatellite loci were compiled from Mokhtar-
Jamaï et al. (2011). Extra sites were chosen when comprising two populations at different
depths (shallow vs. deeper). The new data (five sites) were located in the Spanish and
French Mediterranean coasts, between 15 m and 40 m depth (Fig. 1; Table S1).

The shallow and deeper populations sampled in the Atlantic and Mediterranean do not
coincide with the same exact depths, as vertical distribution limits varied between sites.
Thus, comparisons of genetic diversity levels between shallow and deeper populations were
made at the site scale, and not between sites. Allelic richness, number of private alleles
and gene diversity (expected heterozygosity) per population (shallow and deeper) were
standardized to the smallest sample size found within sites using 104 randomizations.
Significant differences in mean diversity levels within each site were tested using a non-
parametric Wilcoxon signed-rank test with 104 randomizations (Assis et al., 2018).

To infer the drivers shaping genetic variation among sites, genetic diversity estimates
were standardized to the smallest size of all samples using 104 randomizations. The estimates
of diversity were modelled with linear regression against depth (null model) and a set of
important environmental predictors affecting the physiology of P. clavata (Maximum
bottom temperature; Boavida et al., 2016b) and proxies of essential resources (minimum
bottom productivity, minimum bottom current velocity and slope, for food intake;
(Boavida et al., 2016b). Other important predictors were not considered since (1) they did
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not vary between sampling sites (e.g., salinity) or (2) were correlated with productivity
(e.g., inorganic nutrients such as nitrates and phosphates). The predictors were developed
with three-dimensional profiles of monthly data compiled from the Global Ocean Physics
Reanalysis (ORAP; http://www.marine.copernicus.eu/) and the Biogeochemistry Non-
Assimilative Hindcast Simulation (PISCES; http://www.marine.copernicus.eu/). Bottom
environmental data for each population was obtained using trilinear interpolation (Assis
et al., 2017) weighting location (longitude and latitude) and depth. Long-term minimum
(productivity and currents) and maximum (temperature) extremes were averaged for
the years 2000–2014. Slope was computed using the ‘‘terrain’’ function of the R package
‘‘raster’’ (3.5.2 version; R Core Team, 2018) in bathymetry.

Given the sampling design (no precise coincidence of depths between sites) we adopted
the Generalized Linear Mixed Models (GLMM; Bolker et al., 2009) framework. This is
suitable for modelling unbalanced designs (Zhang & Chen, 2013) and complex spatial and
temporal correlation structures since it accounts for dependencies within hierarchical
groups by introducing random effects (Bolker et al., 2009). While these effects generally
comprise the blocking in experimental treatments, they can be used to encompass variation
among geographical regions (Dormann et al., 2007). Accordingly, ‘‘site’’ was included in the
models as a random effect term (Zuur, Ieno & Smith, 2007; Ludwig et al., 2012). The best-
fit selection between the null and the environmental models followed the relative Akaike
Information Criterion (AIC), while goodness-of-fit was inferred with the R2GLMM
algorithm from Edwards et al. (2008). Partial dependence plots were also produced to
illustrate the effect of predictors on the response of models, by accounting for the mean
effect of all other predictors (Elith, Leathwick & Hastie, 2008). All models were performed
in the R environment (3.5.2 version; R Core Team, 2018).

To infer larval dispersal potential, pairwise genetic differentiation was estimated between
and within sampled populations (i.e., shallow vs. deeper populations) using FST estimator
and an analysis ofmolecular variance (AMOVA) based on allele frequencies, computedwith
Genodive (Meirmans & Van Tienderen, 2004) under 104 randomizations (Assis et al., 2013).

Evidence of genetic bottlenecks were inferred by testing for heterozygosity excess (Piry,
Luikart & Cornuet, 1999). This is rooted on the assumption that populations that have
recently experienced a bottleneck event are predicted to temporarily reduce allelic diversity
at a faster rate than heterozygosity. Such an excess in heterozygosity rate was tested
for each population with the software Bottleneck (Piry, Luikart & Cornuet, 1999) using
104 simulations. We used the suggested and more appropriate (realistic) parameters for
microsatellites: the Two-Phase Model (TPM) (Luikart & Cornuet, 1998; Piry, Luikart &
Cornuet, 1999) with a step in mutations of 0.9 (ps) and a variance in mutations of 12 (Piry,
Luikart & Cornuet, 1999; Busch, Waser & DeWoody, 2007). Because the genetic dataset has
less than 20 loci, we used the Wilcoxon test to address the null hypothesis of no heterozy-
gosity excess (on average) across loci (Cornuet & Luikart, 1996; Luikart & Cornuet, 1998).

RESULTS
Genetic diversity as allelic richness (A) and number of private alleles (PA) was consistently
higher in deeper populations, with the exception of only one site (Petit Congloue; Figs. 2A,
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Figure 2 Genetic diversity (mean± SD) as (A) allelic richness, (B) private alleles and (C) expected heterozygosity of Paramuricea clavata in
shallow (light grey) and deeper (dark grey) populations. Asterisks indicate significant differences in diversity levels (P < 0.05). Sampling site name,
depth (m) and number of samples (n) are described for each population.

Full-size DOI: 10.7717/peerj.6794/fig-2

2B). The greatest difference in A and PA between shallow and deeper populations was
observed in Pharillions and Sagres (A: 2.7 and 2.07; PA: 13.52 and 10.33, respectively),
while the smallest was observed in Livorno (A: 0.09 and PA: 0.43). The variation in expected
heterozygosity (He) did not follow a clear pattern, with only one sampling site (Grotte
Peres) having a higher He in its deeper population (Fig. 2C).

The null linear regression models using depth alone were outperformed by the models
using environmental predictors (environmental models showed lower AIC and higher
R2; Table 1). Both approaches found significant relationships while fitting the predictors
against standardized allelic richness and number of private alleles (Table 1), however,
they failed to explain the variability in expected heterozygosity. The environmental models
showing better fitting were mostly explained by temperature alone (Table 1). This predictor
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Table 1 Summary of linear regressionmodels testing genetic diversity indices against depth and a set of environmental predictors. Akaike In-
formation Criterion, R-squared and p-value scores are shown for each model. Bold represents higher values when comparisons were made.

Allelic richness Private alleles Expected heterozygosity

Model type Predictors AIC R2 p-value AIC R2 p-value AIC R2 p-value

Null Depth 71.05 0.22 0.01 92.84 0.60 0.01 −35.26 0.01 0.77
Environmental Model effect 46.83 0.63 74.31 0.62 −39.33 0.43

Min. current velocity 0.98 0.45 0.29
Min. productivity 0.99 0.95 0.81
Slope 0.72 0.56 0.13
Max. temperature 0.01 0.01 0.53

Figure 3 Partial dependence functions depicting the effect of bottom temperature on (A) allelic richness, (B) private alleles and (C) expected
heterozygosity.

Full-size DOI: 10.7717/peerj.6794/fig-3

produced a negative response on the models, with lower allelic richness and private alleles
with increasing bottom temperatures (Fig. 3).

Genetic differentiation (FST) was higher between than within sampling sites, with two
exceptions for Sagres and Riou Sud (Fig. 4). The former site (i.e., Sagres) showed the highest
differentiation of all pairwise comparisons at the site scale (i.e., shallow vs. deeper sample;
FST ≈ 0.4; Table S2). No significant differentiation was found within 7 Mediterranean sites
(Punta Mesco, Livorno, Pota Del Llop, Grotte Peres and Petit Congloue; Table S2) and
between the two populations of Grotte Peres and the deeper population of Petit Congloue
(Table S2), which are approximately 2 km far apart.

Bottleneck events (heterozygosity excess) were detected in the shallow populations
of Berlengas and Punta Mesco (Table 1; S3). All remaining populations showed no
heterozygosity excess (on average) across loci (Table 1; S3).
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Figure 4 Pairwise genetic differentiation F ST (mean± SD) within sampling site (i.e., shallow vs. deeper populations; light grey) and between
sampling sites (dark grey). Asterisks indicate significant differences in genetic differentiation levels (P < 0.05).

Full-size DOI: 10.7717/peerj.6794/fig-4

DISCUSSION
The distribution of genetic diversity corroborated the expectations associating extreme
environmental changes with the reduction of effective population sizes and genetic diversity
levels (Garrabou et al., 2009). Our model species P. clavata consistently showed less allelic
richness, a smaller number of private alleles and bottleneck signs (for two sites) in shallow
waters populations. This pattern found across the Atlantic Ocean and Mediterranean Sea
was explained by the negative relationship between thermal stress and depth, and not
by the used proxies of essential resources (i.e., productivity, current velocity and slope).
In fact, the examination of daily time series of bottom temperatures for each site and
depth range (S4) shows shallow water masses recurrently surpassing the physiological
threshold of 24–25 ◦C from which mortality occurs (Previati et al., 2010; Pairaud et al.,
2014; Boavida et al., 2016b), particularly in the Mediterranean Sea. This is in line with
previous studies linking mass-mortality events of P. clavata with marine heatwaves, which
reported increased mortality in more shallow environments (Cerrano et al., 2005; Linares
et al., 2005). Still, the observed differences in genetic diversity may have resulted from
additional factors beyond temperature changes, not considered in our study. For instance,
the scarcity of favourable rocky bottoms may strongly reduce population sizes of P. clavata
(Linares et al., 2008; Boavida et al., 2016b). This could be a plausible explanation for the
one exception found in the diversity levels of deep populations. The lower diversity in the
deeper population of Petite Congloue may result from a smaller and patchier distribution
of individuals, if the availability of rocky bottoms is limited. In a particular survey, Gori
et al., 2011 found the density of P. clavata decreasing with depth, as populations were
highly dependent on the presence of rocky vertical walls in shallower waters. In our study,
the availability of rocky bottoms was not considered, although slope may be considered
as a proxy for such environmental factor at biogeographical scales (e.g., Boavida et al.,
2016b), it might not have reflected site scale habitat changes between our sampling depths.
Further, competition with other species, such as photosynthetic algae (Zabala & Ballesteros,
1989), together with higher hydrodynamics regimes and human induced disturbances (e.g.,
anchoring, scuba diving), may further help explaining the overall pattern found, restricting
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large, continuous and richer populations to deeper sites (Harmelin & Marinopoulos, 1994;
Cúrdia et al., 2013).

Contrarily to allelic richness and number of private alleles, gene diversity (i.e., expected
heterozygosity) did not correlated with depth, nor with the additional predictors considered
in regression analyses. Gene diversity is not as sensitive as allelic richness to detecting
historical population changes (Leberg, 1992; Petit, El Mousadik & Pons, 1998; Spencer,
Neigel & Leberg, 2000) since drift resulting from population size reductions theoretically
affects more the rare alleles than the frequent ones (Nei, Maruyama & Chakraborty, 1975).
Accordingly, the diversity pattern found in deeper populations implies persistence without
significant population reduction, raising the hypothesis of deep refugia for P. clavata. These
cryptic populations may play an important role in buffering the loss of diversity in shallow
waters, as reported for other corals (Bongaerts et al., 2010; Bongaerts et al., 2017; Smith et
al., 2014). Similar to terrestrial elevational refugia, the stability of deep environments may
be an important mechanism safeguarding regional genetic diversity for the species as a
whole (Epps et al., 2006; Assis et al., 2016; Lourenço et al., 2016).

While diversity levels of P. clavata followed the patterns of thermal stress, the bottleneck
tests did not provide a strong empirical support of recent bottlenecks in shallow populations
(exceptions for Berlengas e Punta Mesco). Although recent environmental changes may
account for genetic diversity losses, the fluctuations of past climate changes may further
shape the genetic structure of marine species, both latitudinally and along depth gradients
(Maggs et al., 2008; Provan, 2013; Assis et al., 2014; Assis et al., 2016; Assis et al., 2018; Neiva
et al., 2016). The lower diversity found in shallow populations could have resulted from
past climate extremes, an historical effect that cannot be detected with tests based on
heterozygosity excess (Peery et al., 2012). Also, one cannot discard the limited statistical
power of these tests when using small sample sizes, as in our case (small number of
individuals and loci; (Piry, Luikart & Cornuet, 1999; Peery et al., 2012). Our approach
could have overlooked actual population declines. For instance, previous studies on P.
clavata, with similar sample sizes, drew unambiguous conclusions by failing to detect
bottlenecks in populations that actually suffered mass-mortality events (Pilczynska et al.,
2016; Padrón et al., 2018).

Population differentiation was found higher between than within sampled sites. This
is in line with the low dispersal potential of the species, posing highly structured gene
pools throughout the Atlantic Ocean and the Mediterranean Sea (Linares et al., 2007;
Mokhtar-Jamaï et al., 2011; Pilczynska et al., 2016; Padrón et al., 2018). At the site scale, the
non-significant differentiation levels (Punta Mesco, Livorno, Pota Del Llop, Grotte Peres
and Petit Congloue) suggest that gene flow and admixture occurs along depth ranges.
While summer thermoclines were thought to be a major force structuring genetic diversity
of gorgonian species (Costantini et al., 2011; Costantini et al., 2016), our results do not
support such hypothesis. The shallow populations of P. clavata harbouring lower diversity
levels are not in complete isolation from those in deep richer areas, as previously suggested
for the species (Cerrano & Bavestrello, 2008). However, contrasting patterns of coral gene
flow can occur across different environments (e.g., Van Oppen et al., 2011;Mokhtar-Jamaï
et al., 2011; Pilczynska et al., 2016). For instance, the higher within site differentiation in
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Sagres can result from the alongshore coastal circulation regime in the Gulf of Cadiz that
extends to the Sagres region (Garel et al., 2016), promoting high connectivity levels along
deep neighbouring populations, or from the fact that the shallow population of Sagres
was located within a cave, possibly, further hindering connectivity. This was an exception
though, as the overall connectivity pattern found is one of restricted connectivity between
deeper populations. Thus, their diversity levels may have resulted from persistence alone,
and not by admixture processes, as also suggested by the number of private alleles. The
differentiation pattern further allows concluding that connectivity along depth ranges
(within site) does not seem to completely offset the more detrimental effects occurring in
shallow water populations, reducing genetic diversity of P. clavata, as observed.

Our findings of deep isolated richer populations have significant conservation value for
the species as a whole. Future environmental changes are predicted to produce a major
redistribution of marine biodiversity in the Atlantic Ocean and the Mediterranean Sea
(Albouy et al., 2013; Assis, Araújo & Serrão, 2017), particularly in the business as usual
climate scenario (RCP8.5; Assis, Araújo & Serrão, 2017; Assis et al., 2017). The reduction of
biodiversity through the loss of rich and distinct gene pools found in deep populations
may contribute to the loss of genes responsible for the species adaptation and evolution
(Hughes & Stachowicz, 2004; Hampe & Petit, 2005; Reusch et al., 2005). The identified
genetically rich populations of P. clavata represent an important baseline for Climate
Change Integrated Conservation Strategies for phylogeographic lineages (Hannah, Midgley
& Millar, 2002).

CONCLUSIONS
This study demonstrates that deeper marine populations can consistently harbour higher
genetic diversity than those in shallower environments. Theoretical regression modelling
using environmental data showed that such genetic pattern may arise from thermal stress
alone, reducing population sizes and diversity levels. These findings raised the hypothesis
of deep refugia for P. clavata, with deeper populations in more stable environments
safeguarding the species biodiversity across the Mediterranean and Atlantic populations.
In fact, the analyses of temperature time-series showed shallow populations exposed to
temperatures surpassing the species thermal tolerance, often for as long as over 2 months,
while deep populations were almost never exposed to such conditions. The patterns of
population differentiation revealed that gene flow occurs between shallow and deeper
populations, although not in sufficient levels to homogenise depth differences in diversity
levels. Empirical evidence is provided for deep persistent populations of gorgonians with
the potential to safeguard richer and unique gene pools. While additional genetic data
could better support the major findings, particularly by increasing the power of bottleneck
tests (more molecular markers and sampling sites), this study represents a timely baseline
to conserve populations with higher conservation value in risk of disappearing.
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