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Abstract

Long-distance olfactory search behaviors depend on odor detection dynamics. Due to tur-

bulence, olfactory signals travel as bursts of variable concentration and spacing and are

characterized by long-tail distributions of odor/no-odor events, challenging the computing

capacities of olfactory systems. How animals encode complex olfactory scenes to track the

plume far from the source remains unclear. Here we focus on the coding of the plume tem-

poral dynamics in moths. We compare responses of olfactory receptor neurons (ORNs) and

antennal lobe projection neurons (PNs) to sequences of pheromone stimuli either with

white-noise patterns or with realistic turbulent temporal structures simulating a large range

of distances (8 to 64 m) from the odor source. For the first time, we analyze what information

is extracted by the olfactory system at large distances from the source. Neuronal responses

are analyzed using linear–nonlinear models fitted with white-noise stimuli and used for

predicting responses to turbulent stimuli. We found that neuronal firing rate is less cor-

related with the dynamic odor time course when distance to the source increases because

of improper coding during long odor and no-odor events that characterize large distances.

Rapid adaptation during long puffs does not preclude however the detection of puff transi-

tions in PNs. Individual PNs but not individual ORNs encode the onset and offset of odor

puffs for any temporal structure of stimuli. A higher spontaneous firing rate coupled to an

inhibition phase at the end of PN responses contributes to this coding property. This allows

PNs to decode the temporal structure of the odor plume at any distance to the source, an

essential piece of information moths can use in their tracking behavior.

Author summary

Long-distance olfactory search is a difficult task because atmospheric turbulence erases

global gradients and makes the plume discontinuous. The dynamics of odor detections is

the sole information about the position of the source. Male moths successfully track

female pheromone plumes at large distances. Here we show that the moth olfactory sys-

tem encodes olfactory scenes simulating variable distances from the odor source by char-

acterizing puff onsets and offsets. A single projection neuron is sufficient to provide an

accurate representation of the dynamic pheromone time course at any distance to the
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source while this information seems to be encoded at the population level in olfactory

receptor neurons.

Introduction

A primary goal of olfaction research is to understand how complex olfactory scenes that occur

in natural environment are processed by the olfactory system, in particular for orientation

behaviors to odor sources. However, until recently natural odor stimuli were not described

quantitatively. Hence, most studies of olfactory physiology are restricted to static and white-

noise stimuli, limiting our understanding of dynamic olfactory coding. Although realistic

olfactory input signals were used to analyze olfactory coding [1–3], they were uncontrolled, so

preventing to explore specific features of the olfactory signals and large distances to the odor

source. Only a recent paper generated naturalistic odor plumes and described how adaption

from olfactory receptor neurons (ORNs) to stimulus mean and variance contribute to encode

intermittent odor stimuli [4]. Here we pursue a novel approach to the study of olfactory

coding.

For most animals larger than a millimeter, odor cue transport is dominated by turbulence

[5–7]. Turbulence is thus a major key to understand animal orientation behavior from olfactory

coding to decision dynamics. It prevents formation of gradients pointing towards the source

and structures the plume in isolated odor patches that deform spatially as they are transported

by the wind. Thus, odor detection is discontinuous. In turbulent conditions, temporal dynamics

of odor/no-odor detection is dominated by long-tail statistics [8]. Furthermore, these statistics

change with the distance to the odor source. The probability distributions for the duration and

spacing in time of odor filaments become more heterogeneous with more short and long odor/

no odor events when the distance increases [8]. Therefore, in real environments statistics of

odor detection strongly differ from a white-noise pattern and are not characterized by a main

frequency. For example, far from the source (~100 m) a detection provides limited information

on the time and duration of the next detection.

Male moths tracking plumes of sex pheromone released by their conspecific females is a

paradigmatic example of olfactory searches [9, 10]. Successful searches are achieved with start-

ing points at tens to hundreds of meters from the source [11–13]. The statistics of intermittent

odor signals play a major role in the dynamics of moth and other insect tracking behaviors. It

allows insects to discriminate closely spaced pheromone compounds [14–16] or compounds

delivered with millisecond asynchrony [17–19]. Timing is also an important information for

the vertebrate olfactory system [20–25]. However, opposite to vertebrates the insect nose is

everted and can continuously monitor odor stimuli whose temporal structure is not distorted

by respiratory cycles [24–27] and differential sorption into the mucus layer of the olfactory epi-

thelium [28–31]. The rapid responses and rich dictionary of maneuvers of moths in turbulent

flows suggest efficient coding of olfactory plume dynamics [32]. In turbulent environments,

the flight is empirically described by two dynamical behavioral features: upwind surge, associ-

ated to pheromone perception, and zigzagging, a cast maneuver to retrieve odor plumes when

lost [33–35]. These features are correlated to odor detection dynamics. Artificial homogenous

pheromone clouds, thus unrealistic compared to real environment, lead to inefficient searches

[36–39]. Change in the temporal characteristic of odor encounters has immediate effects on

the searching dynamics [35, 38, 40–43] and can have more effect than a 1000-fold change in

pheromone concentration [44].

Olfactory coding in the turbulent realm
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Sensory systems efficiently process the stimuli encountered in their natural environment,

according to the efficient coding hypothesis [45]. Adaptation of neural coding to the statistics

of inputs [46–48] is essential for understanding evolutionary forces driving the properties of

nervous systems. Natural stimulations are frequently reported to have broadband distributions

with power-law statistics (e.g. for vision [49]). Olfactory signals involve the complex properties

of turbulence and their dynamics are characterized by their extreme heterogeneity, long-tail

statistics and thus multi-scale variability. In that sense, the olfactory dynamics encountered by

individual moths can be “far” from an average statistics induced by the environment. This cre-

ates significant challenges in order to properly code the signal. An optimal olfactory coding

should be able to reliably encode the plume temporal structure at all relevant distances from

the source. Essential characteristics of the puffs-blanks dynamics of the signal required to

reach an olfactory source remain unknown. Analyses from experimental trajectories [9, 50]

are often performed without knowing the precise olfactory signal (as it is inaccessible). As a

consequence, theoretical analyses of orientation strategies have to be performed without

knowing the computing capacities of insects.

In this work, we use the quantitative analysis of plume dynamics in turbulent conditions [8]

to study moths’ neuronal coding of olfactory plumes with realistic turbulent dynamics and

investigate for the first time what information is extracted at large distances from the source.

We focus on how ORNs and antennal lobe projection neurons (PNs) encode the temporal

characteristics of the pheromone plume in the Noctuid moth Agrotis ipsilon. We show that fir-

ing activities of ORNs and PNs are less correlated with the temporal structure of olfactory

scenes when they simulate increasing distances to the source. Individual PNs but not individ-

ual ORNs encode puff onsets and puff offsets at multiple temporal scales. Thus, PNs can recon-

struct the odor sequence at any distance from the source.

Results

Linear-nonlinear (L-N) model fits neuronal response to white-noise stimuli

In order to study the neuronal coding of dynamic pheromone stimuli in the moth olfactory

pathway, we recorded the firing rate of individual pheromone-sensitive ORNs and PNs in

whole-insect preparations while presenting time-varying binary sequences of pheromone sti-

muli. We show the spiking activity of an ORN (Fig 1A–1C) and a PN (Fig 1D–1F) in response

to a binary sequence of white-noise stimuli. We observed a good match between stimulus

puffs and spike trains. A total of 209 ORNs and 97 PNs were recorded while presenting long

duration (15 min and 5 min, respectively) white-noise sequences of pheromone stimuli.

In order to characterize the temporal properties of neural coding of olfactory stimuli we fit-

ted a L-N model to the firing activity of each neuron (Fig 1C and 1F) consisting of a linear filter

combined with a nonlinear function. First, we calculated the linear filters (or transfer func-

tions) between white-noise sequences and the instantaneous firing rate with Lasso regulariza-

tion on short- and long-term components. The linear filters were subdivided in two different

time scales: a short-term component (time window -0.5 to 2.5 s) prolonged by a long-term

component (2.5 to 320s) with exponential time sampling size. The long-term component takes

into account the decrease of evoked firing activity during the stimulation sequence (time con-

stant of the exponential decay is 89 s for ORNs and 15 s for PNs, Fig 2A). The neuronal respon-

siveness was restored after 3 minutes without stimuli both in ORNs (Fig 2B) and PNs (Fig 2C).

The slow decrease of activity is thus a physiological process and did not result from a degrada-

tion of the quality of recordings or from a depletion of pheromone in the stimulus pipette.

Long-term filters weighted 10.4% for ORNs (median value; bootstrap confidence interval: 9.9

to 12%) and 8.9% for PNs (median value; bootstrap confidence interval: 7 to 10.1%) of the
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total linear filter. Predictions of firing rates using linear filters were frequently negative indicat-

ing discrepancies between the measured neuronal activities and their linear prediction. This

was expected since neurons are known to be nonlinear integrators of their inputs. Second, a

Fig 1. L-N model captures the responses of both ORNs and PNs to white-noise stimuli. (A) Moth

preparation for ORN recording. A tungsten electrode is inserted at the basis of a sensillum. (B) Response of

an ORN to white-noise odor stimuli (correlation time 50 ms). Top: stimulus sequence (puffs in grey). Middle:

action potential recordings (vertical bar 1 mV). Bottom: firing rate dynamic calculated with a Gaussian kernel

(black) and predicted with an L-N model (red). For this ORN, the coefficient of determination between model

and recorded firing rates is R2 = 0.81. (C) L-N model fitted to the response of the same neuron as in (B) to 15

min of white-noise stimuli. Left to right: short term linear filter, long term linear filter calculated on a log time

scale, static nonlinearity (grey dots: measured vs predicted values, red line: fitted Hill function). (D) Moth

preparation for PN recording. A glass electrode is inserted in the cumulus of an antennal lobe. (E-F) Same as

(B-C) but on a PN. White-noise correlation time is 50 ms and R2 = 0.84.

https://doi.org/10.1371/journal.pcbi.1005870.g001
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simple static nonlinearity was used to correct the linear prediction above. We estimated the

static nonlinearity with fitting a Hill function between linear prediction and measured activity

(sigmoid curve, Fig 1C and 1F). Measured and L-N model-predicted neuronal activities are

superimposed for the two example neurons (Fig 1B and 1E). Model predictions reproduced

most of the fluctuations of the measured firing rates.

We quantified the performance of the L-N model with the coefficient of determination R2

calculated between the L-N prediction and the measured firing rate. We tested different types

of white-noise sequences varying in the pheromone dose (only in ORNs) and in the correla-

tion time (in ORNs and PNs). In ORNs, R2 increased significantly with the pheromone dose

(ANOVA, p<0.001), revealing that the relationship between firing rate and stimuli is tighter at

high pheromone concentrations (Fig 3A). Furthermore, R2 was lower for the fastest white-

noise sequences (time step = 10 ms) both in ORNs (ANOVA, p<0.001; Fig 3A) and in PNs

(Wilcoxon’s rank sum test for independent recordings, p<0.01, n = 97; Wilcoxon’s signed

rank test for paired samples p<0.05, n = 15; Fig 3B and 3C). Finally, we observed that some

PNs did not encode well the temporal fluctuations of the white-noise. Some of these PNs

might have been damaged by the dissection and/or when introducing the recording electrode

in the antennal lobe. However, we previously described in A. ipsilon the heterogeneity in sensi-

tivity and delay of response across PNs from the cumulus [51]. In the honey bee, some PNs

respond faster than others, and the subpopulation of fast PNs may cause rapid odor discrimi-

nation at the mushroom body output [52]. Therefore, some PNs with low quality L-N predic-

tion may correspond to weakly sensitive neurons or to neurons that do not encode well the

temporal dynamics of stimuli and better encode other properties of the stimulus such as its

quality or quantity. In the following analysis of responses to turbulent stimuli we considered

only the PNs with R2> 0.3 (70 out of 97 cells) for white-noise sequences.

Olfactory neurons display a family of linear filter shapes that can be

estimated with simple sets of parameters

The shape of a linear filter characterizes how a neuron integrates time-fluctuating stimuli. The

shape of individual linear filters is remarkably homogeneous for ORNs and more diverse for

PNs (Fig 4A and 4B). We analyzed the variability in shape of short-term filters with a principal

component analysis as performed by Geffen et al. [53]. For ORNs, the first principal compo-

nent (PC1) explains 79% of the filter variance (Fig 4C). It has a positive phase followed by a

negative one and its normalized integrated area is close to 0 (-0.07). Hence, it corresponds to

purely phasic responses to olfactory stimuli. The first two principal components (PC1 and

PC2) together explain 93.5% of the filter variance; PC2 has essentially one positive phase and a

normalized integrated area close to 1 (0.90). Thus, PC2 corresponds to tonic responses to

olfactory stimuli. As PC1 and PC2 account for a disproportionate amount of the filter variance,

each ORN linear filter can be considered as a linear combination of these two components.

Individual linear filters were normalized in amplitude so that each filter corresponds to one

dot lying on the n-sphere of radius 1 in the space of the n principal components. A projection

of this representation on the 2-D space of PC1 and PC2 is shown (Fig 4E). Most of the dots

lie close to the unit circle, indicating that the first two principal components are sufficient to

describe the filter shape with the exception of a few ORNs stimulated at the highest pheromone

concentration. The relative contribution of the first two principal components to the linear fil-

ter can be directly read as the angle φ on that circle. A filter with an angle φ = 0 means that

responses were purely phasic, φ> 0 means that responses were phasic-tonic, and φ< 0 ob-

served at high pheromone concentrations means that responses were phasic and then inhibi-

tory. Few cases were close to tonic excitatory responses (φ = π/2).
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For PNs the same principal component analysis was performed (Fig 4D and 4F). PC1

explains 79% of the variance and PC1+PC2 92%. PC1 has a positive phase followed by a nega-

tive one resulting in a slightly positive normalized area (0.23). PC2 has a negative phase fol-

lowed by a positive phase with a normalized area of 0.07. The contribution of the negative

phase of PC2 cancels the positive phase of PC1 and therefore delays the response from stimu-

lus onset. As a consequence the relative contribution of the first two components (angle θ on

Fig 2. A reversible long term adaptation to dynamical stimuli is only captured with a long-term filter. (A) ORN responses to long duration

white-noise stimuli and L-N model fits. Firing rate measured in cell population (left), predicted by L-N models without long-term filter (middle) and

predicted by the full L-N model used in the paper (right). Red and dotted red: exponential curve fitted to the data, blue: exponential curves fitted

to the model prediction. (B) The slow adaptation is reversible. Left: example of ORN response to two 3-min-long noise sequences (grey area)

interleaved by a 1-min-long pause. The initial response (maximal firing rate in the first 5 s) to the beginning of the second noise sequence is

smaller. Middle: example of ORN response to two 3-min-long noise sequences interleaved by a 3-min-long pause. The initial response to the

second noise sequence is similar to the initial response to the first sequence. Right: initial response changes in ORNs depend on the pause

duration (cell population = 11). (C) PN population response to 4 consecutive frozen noise sequences (n = 16 cells). The noise sequence (grey

areas) was 3-min long and its repetitions were interleaved by respectively 5, 3 and 1 min pauses. Right: initial response changes in PNs (n = 10).

https://doi.org/10.1371/journal.pcbi.1005870.g002
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the unit circle) can be considered as the temporal phase lag between the neuronal response

and the stimulation. Indeed as seen in Fig 4B, the position of the maximum of PN filters is

delayed in time with increasing θ. To confirm that the shape of PC2 in PNs reveals the variable

delays in the response, we time-shifted the filters according to their onset times and repeated

the PC analysis (S1 Fig). The PC2 now accounts for 6.6% of the filter variability and, as for

ORNs, consists in only one positive phase which contributes to the tonic component of the

response.

The individual long-term filters were distributed along a straight line on a log-log scale plot

(Fig 4G and 4H) both for ORNs and for PNs. We thus fitted a power-law function that revealed

that both ORNs and PNs had similar scaling exponents (-1.3 for ORNs and -1.1 for PNs).

Linear filters were calculated for individual neurons in response to a sequence of white-

noise stimuli. Only if it quantifies a stable cell property over time can it be used to predict neu-

ronal response. We repeated up to 4 frozen sequences of white-noise in PNs interleaved by

pauses of 1 to 5 minutes duration. Pseudo-population response is shown in S2 Fig. The model

was fitted to each sequence independently and the model coefficients were remarkably similar

for the different responses of the same cell confirming the stability of linear filters (Fig 5). For

PNs, the cell-specific linear filter calculated from white-noise stimuli was used to predict

responses to turbulent stimuli in the same cell. However this was not possible for ORNs since

responses to white-noise and turbulent stimuli were recorded from different cells. Instead we

estimated individual linear filters with fitting three parameters: the angle φ of the short-term

filter, the scaling exponent of the long-term filter β and the relative weight of long- and short-

term filters α. The amplitude of the linear filter was not considered since the nonlinear func-

tion compensates for it.

Fig 3. Performances of L-N model predictions. (A) Distribution of coefficient of determination R2 between

model prediction and ORN responses to white-noise stimuli. Grey crosses: individual cells. The example ORN

from Fig 1B and 1C is shown with a red symbol. Black segment: median values. R2 depends both on noise

correlation time (ANOVA, p<10−10) and pheromone load (ANOVA, p<10-10). (B) Distribution of R2 between

model prediction and PN responses to noise stimuli, independent samples, n = 97 cells. Left: the distribution

histogram shows the heterogeneity of R2 values. **: p<0.01 Wilcoxon’s rank sum test. The example PN from

Fig 1D and 1E is shown with a red symbol. (C) R2 between model prediction and PN responses to noise stimuli,

paired samples. For this data set (n = 15 cells), two or three noise sequences with different correlation times

were tested for each cell. Line segments join the R2 calculated for the same cell. *: p<0.05 Wilcoxon’s signed

rank test. The values in response to the 50 ms correlation time are included in (B).

https://doi.org/10.1371/journal.pcbi.1005870.g003
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Fig 4. Parametrization of the shapes of linear filter sets. The diversity of short-term filters is analyzed as in

[53]. Analysis of the diversity of long-term filters is adapted from [54]. (A) Individual short-term linear filters for

209 ORNs sorted by decreasing parameter φ (see (E)). Same color code for the different pheromone loads in

the stimulation pipette as in (E). (B) Individual short term linear filters for 97 PNs, sorted by decreasing θ (see

(F)). (C) First (black) and second (grey) principal components of the ORN short-term filter set. Inset: percentage

of variance explained by the first 5 components. (D) First two principal components for the PN short-term filter

set. Same conventions as in (C). The time shift of principal components for PNs when compared to ORNs

reflects the difference of delay for the pheromone to reach the antennae with the odor delivery devices used for

ORN and PN recordings. (E) Projection of normalized ORN short-term filters on the subspace spanned by the

first two components. If a filter is solely described by the two components, then the corresponding dot lies on

the unit circle. Each short term filter can be parametrized by its angle φ. (F) Projection of normalized PN short-

Olfactory coding in the turbulent realm
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Olfactory coding performance depends on the temporal structure of the

pheromone plume

We stimulated the antenna with temporal sequences of pheromone stimuli having a temporal

structure characteristic of turbulent environments. Turbulent sequences were generated as

previously described [8] and consisted in binary sequences of pheromone stimuli with puffs of

pheromone and clean air (blanks) between puffs of various durations (Fig 6A). The distribu-

tion of the duration of puffs and blanks in these sequences varied with the simulated distance

from the odor source (Fig 6B). The distributions were more homogeneous at short distances

from the source (at 8 m, 0.1–99.9% quantiles ranged from 126 ms to 8 s for puffs and from 126

ms to 12 s for blanks) and were broader at long distances with both shorter and longer events

(at 64 m, 0.1–99.9% quantiles ranged from 16 ms to 22 s for puffs and from 16 ms to 89 s for

blanks). These were characteristic long-tail distributions. For comparison we also show the

distribution of the white-noise sequences used to fit the L-N model (Fig 6C). Durations of

puffs and blanks have an exponential distribution in white-noise stimuli that is more homoge-

neous (for a correlation time of 50 ms, 0.1–99.9% quantiles ranged from 50 to 550 ms both for

puffs and blanks) than the long-tail distributions in turbulent sequences.

term filters on the subspace spanned by the first two components. Each short term filter can be parametrized by

its angle θ. (G) Individual ORN long term filters plotted on a log-log scale. Occasional values above 0, mostly for

long delays, were not plotted. Green: median values. Red: power-law fit. (H) Individual PN long-term filters.

Same conventions as in (G).

https://doi.org/10.1371/journal.pcbi.1005870.g004

Fig 5. Stability of L-N model prediction for PNs. (A) Zoom on 4 consecutive responses from a PN to a frozen white-noise. Top:

stimulation sequence. Middle: action potential recordings. Bottom: recorded firing rates. (B) Superimposed linear filters calculated

independently for the same PN as in (A). (C) Distribution of the coefficient of determination and short-term filter phase for the 4

consecutive sequences. Same neuron values are joined by line segments. There was no significant change for any parameter (cell

number = 18).

https://doi.org/10.1371/journal.pcbi.1005870.g005
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L-N models obtained from binary white-noise stimuli were used to predict the response of

ORNs and PNs to the turbulent stimuli. To correct statistical errors induced by nonlinearities

[55], the non-linear part of the filter was re-estimated for the turbulent stimuli. Examples of re-

sponses and L-N predictions are shown in Fig 7A and 7D for two ORNs and one PN. We cal-

culated the coefficients of determination R2 between model predictions and measured responses.

In PNs the model fitted with the white-noise sequence predicts the response to turbulent stimuli

(median R2 = 0.57; bootstrap confidence interval: 0.52 to 0.62). Removing any component of the

model significantly decreased its performance in predicting responses (Table 1). These observa-

tions confirm the accuracy of the model and the critical role of the PC1/PC2 ratio.

Due to turbulence, variations of distances from the source during a moth olfactory search

not only lead to complex changes in the whiff time dynamics, it also results in large and intri-

cate fluctuations of pheromone concentrations within whiffs, i.e. peak concentration within

whiffs does not decrease regularly with the distance to the source, so the highest concentra-

tions are not necessarily all close to the source [8, 56]. Hence, to understand olfactory coding,

we varied both the concentration and statistics of temporal dynamics for simulating different

distances.

For ORNs, we tested turbulent stimuli simulating 4 different distances at pheromone con-

centrations over a large range encompassing 7 orders of magnitudes. The performance of the

model clearly depended on pheromone concentration (ANOVA, p< 10−10, n = 192 cells) but

did not depend on the simulated distance (ANOVA, p>0.3). More specifically, R2 increased

linearly from 10−6 ng to 10−1 ng but for the highest concentration (1 ng) decreased back to the

level of 10−2 ng (Fig 7C). This effect suggests that the range of concentrations we explored

encompasses the physiological range. We represented this space with a phase diagram showing

the dependence of olfactory coding performance (R2) on pheromone concentration (dose

tested) and simulated distance (Fig 7B).

Fig 6. Turbulent stimuli have more events with extreme duration at long simulated distances. (A)

Example of a binary turbulent stimulation sequence. Puffs and blanks were defined as the presence and

absence of pheromone displayed to the antenna. (B) Normal Probability Plot of the duration of puffs and

blanks of turbulent stimuli. Colors code for the distance to the source. In Normal Probability Plots, any

Gaussian distribution would appear as a straight line as shown (dotted line). In comparison turbulent stimuli

have characteristic shape of long tail distributions with an excess of large and small values, and the excess

increases with the distance from the source. (C) Normal Probability Plot for binary white-noises with different

correlation time (dark grey, 10 ms; black, 50 ms; light grey, 100 ms). Duration of puffs and blanks have the

same exponential distribution in white-noise, which by definition is not long-tail either.

https://doi.org/10.1371/journal.pcbi.1005870.g006
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Fig 7. L-N model performance varies with the simulated distance during turbulent stimuli. (A)

Response of two ORNs to turbulent stimuli simulating distances of 16 m (top, R2 = 0.63) and 64 m (bottom,

R2 = 0.65). Same conventions as in Fig 1B. (B) Heatmap of the median coefficient of determination (R2)
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For each PN we tested up to 4 sequences of stimuli simulating different distances and pre-

sented in random order. To benefit from the paired structure of the data, we used specific sta-

tistics for testing the dependence of model performance on the temporal sequence. The

coefficient of determination R2 was negatively correlated with the logarithm of the simulated

distance (permutation test applied on linear regression ramp, p<10−5, n = 39 cells; Fig 7E).

Olfactory coding performance in PNs depended on the temporal structure of the turbulent

pheromone plume.

Source of the divergence between modelled and measured firing rate

during turbulent stimuli

We hypothesized that the lower ability of neurons to encode the olfactory signal when the dis-

tance is increased may reflect a difference in coding of the long puffs and blanks that are char-

acteristic of large distances. To test this hypothesis we subdivided the responses to turbulent

stimuli into different sub-regions of time that we categorized as: (a) onset of puffs (first 0.5 s),

(b) tails of puffs (after 2 s from the beginning of puffs), (c) offset of puffs (first 0.5 s following

the end of puffs lasting at least 0.1 s) and (d) tails of blanks (after 2 s from the end of puffs) (Fig

8A). As expected, ORN firing rate was the highest at the onset of puffs (median firing rate 19.8

Hz) and reached a steady state after prolonged exposure due to adaptation (7.3 Hz) (Fig 8B). A

very low firing rate was observed in the absence of pheromone, both at the offset of puffs (0.02

Hz) and during tails of blanks (0.5 Hz). PN firing rate was the highest at the onset of puffs

(median firing rate 21.2 Hz) and decreased during long puffs down to 18.5 Hz (Fig 8C). On

average a transient inhibitory phase followed the end of puffs (1.9 Hz) and the firing rate rose

up back to a higher level after a prolonged absence of pheromone (7.8 Hz).

To test how neurons encode the different time sub-regions, we repeated twice a frozen

sequence of stimuli simulating a distance of 16 m on PNs (13 cells, 31 pairs of sequences, Fig

8D). We evaluated the correlation coefficient ρ between the measured responses to the first

and second presentation of the stimulation sequence. ρ was calculated for all the time sub-

regions then averaged for each category. It was larger at the onset (median ρ = 0.91) and offset

between L-N model prediction and measured ORN responses, plotted as a function of pheromone load and

distance. Note that at high pheromone load, R2 is higher for short distances, but this is not true anymore for

low pheromone loads. (C) Cell distribution of R2 between L-N prediction and measured ORN responses. Grey

dots are R2 for individual cells, black segments show the median values. For each pheromone load value, the

distance of the odorant source is 8, 16, 32 and 64 m from left to right. (D) Response of a PN to turbulent stimuli

simulating distances of 16 m (top, R2 = 0.69) and 64 m (bottom, R2 = 0.66). Same conventions as in Fig 1B.

(E) R2 between L-N prediction and measured PN response decreases with distance. One cell is represented

by up to 4 dots joined by a grey line. Black line, median value. The example PNs from (D) are shown with red

symbols. R2 decreased linearly with the log of the distance (**: p<0.01, permutation test applied on linear

regression ramp).

https://doi.org/10.1371/journal.pcbi.1005870.g007

Table 1. Coefficients of determination R2 between predictions and measured firing rates for the L-N model used in this work and several modified

L-N models. All modification of the model significantly decreased its performance in predicting firing rates (Wilcoxon’s signed rank tests).

Complete and modified

L-N model

Median R2 Bootstrap

confidence interval

Wilcoxon’s signed rank test

Complete L-N model 0.57 0.52–0.62

Short-term filters removed 0 0–0.013 p<10−10

Long-term filters removed 0.52 0.47–0.59 p<10−10

Non-linearities removed 0.46 0.41–0.56 p<10−10

Short-term filters fixed to PC1 0.028 0.023 to 0.034 p<10−10

Short-term filters fixed to mean short-term filter 0.085 0.068–0.099 p<10−10

https://doi.org/10.1371/journal.pcbi.1005870.t001
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Fig 8. Neuronal coding varies with time sub-regions during turbulent stimuli. (A) Four different sub-regions of stimulus

sequences were defined with (a) onset of puffs, (b) end of long puffs, (c) offset of puffs and (d) end of long blanks; see text for detailed

definition. (B) (ORNs and in dotted grey the subpopulation of ORNs stimulated with pheromone loads of 10-5 and 10−4 ng) and (C)

(PNs): median values and bootstrap confidence intervals (95%) of firing rate in the 4 sub-regions. (D) Correlation coefficient between

consecutive responses of PNs to a sequence turbulent stimuli for the 4 sub-regions defined in (A). Distance was 16 m. Cell

number = 13. For each cell, 4 grey dots joined by a grey line represent the median values of correlation coefficients θ during sub-

regions. Black line joins the median values. Bottom: dual tests between sub-regions (*: p<0.05, **: p<0.01, ***: p<0.001, n.s.: non-
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of puffs (median ρ = 0.95), and indistinctively low both during tails of puffs (median ρ = 0)

and tails of blanks (median ρ = 0.05). This observation reveals that PNs do not encode olfac-

tory stimuli during prolonged presentation, but they encode well the beginning and the end of

puffs which is sufficient to reconstruct the odor sequence.

We then calculated the average correlation coefficient ρ between the L-N prediction and

the measured firing rate. We observed the same patterns as for repeated measures: for ORNs

ρ was maximal at the puff onset (median ρ = 0.72) and low during tails of puffs (median ρ =

0.17). At the offset of puffs ρ was high again (ρ = 0.82) and was low during tails of blanks (ρ =

0.28). All paired differences were significant with p<0.01 (paired Wilcoxon’s signed rank test,

n = 192 cells; Fig 8E). The pattern was similar for PNs: predictability of the response by the

model was high at the onset (median ρ = 0.85) and at the offset of puffs (median ρ = 0.74) and

low during tails of puffs (median ρ = 0.08) and tails of blanks (median ρ = 0.08). It is notewor-

thy that there was no difference in the predictability of responses to tails of puffs and tails of

blanks (p>0.8, paired Wilcoxon’s signed rank test, n = 46 cells; Fig 8F).

Thus the L-N model predicts only the reliable neuronal responses to turbulent stimulation,

and it fails at predicting neuronal activity when the stimulation is poorly encoded.

PNs but not ORNs encode olfactory stimuli at multiple time scales

We then focused on the two sub-regions with high correlation coefficients ρ (onset and offset

of puffs) to know if the predictability of responses varied with the duration of the preceding

time interval. We observed a clear difference between ORNs and PNs. In ORNs the L-N model

predicted well the response to the beginning of isolated puffs, remote from any previous stimu-

lation (time interval > 3.2 s). The prediction became gradually lower as the preceding puff

was at a shorter time interval (Fig 8G). In addition, the response to the offset of short puffs

(duration < 0.4 s) was better predicted than the response to the offset of longer puffs (Fig 8H).

Thus, the coding in ORNs appears adapted for a finite set of temporal profiles: short and iso-

lated puffs. These statistical characteristics are associated to close distance dynamics to the

source. The same dependence on the previous pulse duration and on the pulse duration for

the prediction of the response to pulse onset and offset, respectively, were observed with the

subset of ORNs stimulated with pheromone loads (10−5 and 10−4 ng, see Materials and Meth-

ods) that can be directly compared with the one used to stimulate PNs (Fig 8G and 8H). For

PNs the prediction of the response to puff onsets was as high for isolated puffs (time interval >

1.6 s) as for puffs immediately following another one (time interval < 0.1 s), and was even

larger for puffs with intermediate time intervals (between 0.4 and 0.8 s; Fig 8G). Moreover,

responses to puff onsets were always better predicted for PNs than for ORNs and the optimal

prediction of PN response to puff offset was extended to puffs lasting up to 0.8 s (Fig 8H).

We repeated this analysis with the subsets of ORN data stimulated with the same phero-

mone load and with subsets of ORN and PN data stimulated with sequences simulating the

same distance (Fig 9). The prediction of ORN responses to puff onsets decreased when lower-

ing the pheromone load (ANOVA, p< 10−10) independently of the duration of the preceding

significant, Wilcoxon’s signed rank tests). (E) Correlation coefficient between L-N prediction and ORN responses for the 4 sub-regions.

Responses to all distances and doses are pulled together. Same conventions as in (D). (F) Correlation coefficient between L-N

prediction and PN responses for the 4 sub-regions. Same conventions as in (D). (G) Correlation coefficient between L-N prediction and

measured responses during the onset of puffs depends on the time delay from the end of the preceding puff. Plot shows median values

and bootstrap confidence intervals. Grey: ORNs, dotted grey: subpopulation of ORNs stimulated with pheromone loads of 10−5 and

10−4 ng, black: PNs. Both for ORNs and for PNs, values with the same letters are not statistically different within a set of neurons

(Wilcoxon’s signed rank test, p>0.05). (H) Correlation coefficient at the end of puffs depends on the duration of the preceding puff.

Same convention as in (G).

https://doi.org/10.1371/journal.pcbi.1005870.g008
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blanks (Fig 9A, middle panel). The prediction of response to puff onset did not depend on the

distance (Fig 9B, middle panel; ANOVA, p = 0.22). The coding of the offset of puffs in ORNs

also depended on the pheromone load (Fig 9A, right panel; ANOVA, p<0.01) and was more

accurate at long distances than at short ones (Fig 9B, right panel; ANOVA, p< 10−10). Simi-

larly, if analyzing only ORNs stimulated with the pheromone loads (10-5 and 10−4 ng) that can

be directly compared with the one used to stimulate PNs, ρ depended on distance for puff off-

sets (Fig 9C, right panel; ANOVA, p<0.01) but not for puff onsets (Fig 9C, middle panel;

ANOVA, p = 0.56). For PNs, correlation coefficients were independent of the distance both

during the onset of puffs (ANOVA, p = 0.66) and the offset of puffs (ANOVA, p = 0.75; Fig

9D). It then appears that PNs encoded efficiently the beginning and end of puffs over a broad

range of temporal scales, irrespective of the temporal dynamic of the stimulation sequence.

Discussion

ORN and PN coding of broadband temporal sequences

Single-unit neuronal firing recorded from ORNs and PNs in response to sequences with white-

noise and turbulent temporal statistics were analyzed with L-N models. L-N models were fitted

with white-noise stimuli and used for predicting responses to turbulent stimuli. L-N models have

proven to successfully predict the response of ORNs [1, 57, 58] and PNs [53] to time-varying olfac-

tory stimuli. In addition, L-N models revealed correlations between time-varying chemosensory

signals and orientation behavior both in C. elegans [59] andDrosophila larva [60–62]. Surprisingly,

our study demonstrates that L-N modeling is also suited to predict neuronal responses to odorant

stimuli with long-tail distributions expected from turbulent transport. As for many sensory sys-

tems, the L-N model is unable to predict adequately neuronal responses during long odor puffs

but the coding of specific features is preserved, namely the timing of beginning and end of puffs.

ORN responses are generated locally, by detection of odorants and transduction into trains

of action potentials. Olfactory detection depends both on pre-neuronal filtering performed by

the sensillum cuticle and lymph and on the ORN intrinsic properties [63]. Olfactory informa-

tion in PNs is inherited from ORN inputs. However, the processing is also refined by intrinsic

properties of projection neurons (PNs) and a neuronal network including local neurons

(LNs), PNs and modulatory connections from other brain areas [64–66]. We noticed signifi-

cant differences in the coding properties of turbulent stimuli between ORNs and PNs, espe-

cially at large distances from the odor source. The variability of linear filters was higher in PNs

than in ORNs. PNs also coded more adequately for the transition between long and short puffs

than ORNs. This phenomenon was due to the inhibition phase at the end of PN responses that

contrasted with the adapted response and preserved its detectability. In addition, the firing

rate was way below the spontaneous activity during the PN inhibition phase, while in ORNs

the spontaneous activity was already close to 0. In our model, the inhibition phase was in-

cluded in the shape of the linear filters, contributing to the difference between ORN and PN

filters, in particular in the PC2 component. The inhibition phase results either from local

inhibitory circuits [66–68] and/or from intrinsic PN properties [69]. It is noteworthy that

inhibitory mechanisms have been hypothesized to enlarge the temporal bandwidth transmit-

ted through ORN to PN synapses [70]. Previous studies reported that ensemble of PNs can

very reliably track temporal properties of the stimulus [71]. Here we show that single PNs can

encode puff onset and puff offset for a large diversity of temporal structures of stimuli, and

thus virtually at any distance from the source, a key information component moths can use for

localizing odor sources from large distances.

The statistic of turbulent olfactory signals changes with distance from the source. Adapta-

tion of neural coding to input signal statistics is found in numerous sensory systems including
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Fig 9. Neuronal coding of time sub-regions of turbulent stimuli analyzed as a function of pheromone

load and distance. (A) Analysis of olfactory coding in ORNs as a function of pheromone load. Left: coding

during the 4 sub-regions described in Fig 8A analyzed for each pheromone load using the same analysis as in

Fig 8E. Plot shows median values of correlation coefficients and bootstrap confidence interval. Colors code

for pheromone load. Middle and right: same analysis as in Fig 8G and 8H, but ORN data are subdivided in

different pheromone loads. Middle: coding of onset of puffs depends on time delay from the end of the
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the visual [72, 73], the auditory [74–77], the mechanosensory [78, 79] and the somatosensory

systems [80, 81]. Adaptation is not solely desensitization, but it changes how sensory systems

process information. In the insect olfactory system, the cellular mechanism of spike-frequency

adaptation induces a sparse and reliable encoding of stimuli across neuronal layers [82]. Here,

we show that rapid adaptation does not preclude the detection of plume transitions in PNs.

Other stimulus properties could still be encoded in the PN adapted response, like odor identity

through synchronous activity [83]. There are 3 behaviorally active compounds in the phero-

mone of A. ipsilon and PNs can be blend-specific, generalist and component-specific neurons

[84, 85]. In neuronal systems, adaptation is rarely considered at time scales longer than a few

seconds. However recent evidences suggest that adaptation processes still occurs after tens of

seconds in pyramidal neurons and this observation can be implemented in L-N models by

including an adaptation filter with the shape of a power-law function [86–90]. Here we used a

similar approach to compute the long-term filters and we show that the power-law function is

also effective in fitting adaptation in insect olfactory neurons. It thus suggests that in insects,

olfactory adaptation should be considered at multiple time scales up to tens of seconds. In nat-

ural conditions ORNs and PNs are likely never fully adapted but rather oscillate dynamically

between multiple adaptation levels.

Toward more realistic stimuli

Analyzing the neuronal coding of turbulent stimuli requires a mean to monitor precisely the

time course of olfactory plumes. Two strategies have been used so far: the use of biological

(electroantennographic, EAG) [3, 82] or artificial odor detectors [1, 2]. However, both meth-

ods are restricted to odor detections over short distances, up to a couple of meters. Moreover,

artificial detectors target a specific range of chemicals and EAG signals already result from a

neuronal processing of olfactory information. Finally, it is neither possible to precisely control

and set the stimulation, nor to ascertain the relative position of the recording site to the center

of the plume cone. We chose to overcome these limitations by using an alternative strategy:

we delivered olfactory sequences with plume time statistics corresponding to turbulent flows

and tested numerous concentrations and long distance transportation. Significant work is still

necessary to complete our understanding of the key features extracted by olfactory coding.

Fluctuations of concentration with distance and time will also have to be taken into account.

The features used by moths to provide information about source position remain unknown.

Thus, a question remains on how many features present in real turbulent flows should be sim-

ulated in virtual environments. For example, in the current simulations, duration of puffs and

blanks were generated to mimic turbulence structures. Yet, finer structures exist in plume

dynamics [8]. In long puffs, groups of high concentration peaks are grouped together

(clumps). There are relations between the statistics of peak numbers and the distance to the

source, thus moths might be able to exploit these peaks to estimate the distance to the source.

The dynamic of odorant reaching the insect antenna depends not only on the turbulence

but also on active olfactory sampling behaviors including wing beating, antennal flicking and

body displacement [82, 91, 92]. In realistic olfactory searches strong correlations in detection

dynamics (time and concentration) are due to the strategy implemented by moths. Thus, a

preceding puff and on pheromone load. Right: coding of offset of puffs depends on time delay from the end of

the preceding puff and on pheromone load. (B) Sub-region analysis of olfactory coding in ORNs as a function

of distance. Same conventions as in (A), but ORN data are subdivided in different simulated distances. (C)

Same analysis as in (B) but from the subpopulation of ORNs stimulated with pheromone loads of 10−5 and

10−4 ng. (D) Sub-region analysis of olfactory coding in PNs as a function of distance. Same conventions as in

(A), but PN data are subdivided in different distances.

https://doi.org/10.1371/journal.pcbi.1005870.g009
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complete study would require effective modelling of the moth search strategies. However, long

distance recording of searching moths coupled to the olfactory input is not accessible. Thus, it

is unknown whether moths or other insects are really able to perform olfactory searches at

very large distances solely based on the specific input of the odor of interest. Nevertheless, our

study unveils the basic mechanisms of olfactory processing of the broadband temporal profiles

of olfactory plumes in the turbulent realm.

Materials and methods

Insects

A. ipsilon moths were reared on an artificial diet until pupation. Adults were maintained under

a reversed 16h:8h light:dark photoperiod at 23˚C and fed with sugar water. Experiments were

performed on virgin 4- or 5-day-old (sexually mature) males.

Electrophysiology

For all recordings, insects were immobilized with the head protruding. For ORN recordings,

the antenna was fixed with adhesive tape on a small support and a tungsten electrode was

inserted at the base of a pheromone-sensitive sensillum. The electrical signal was amplified

(×1000) and band-pass filtered (10 Hz–5 kHz) with an ELC-03X (npi electronic, Tamm, Ger-

many), and digitized at 10 kHz (NI-9215, National Inst., Nanterre, France) under Labview

(National Inst.).

For PN recordings, the head was immobilized with dental wax after removing the scales.

The cephalic capsule was open and the brain was exposed by removing the mouth parts and

muscles. The antennal lobe was desheathed to allow the penetration of the recording electrode,

a glass micropipette whose tip was manually broken to a diameter of 2 μm and filled with (in

mM): NaCl 150, KCl 4, CaCl2 6, MgCl2 2, Hepes 10, Glucose 5 (pH 7.2). The same solution

was used to perfuse the preparation. The pipette was slowly inserted in the cumulus of the

macroglomerulus of one antennal lobe, where ORNs sensitive to the major pheromone com-

ponent project [51], until the appearance of a well-isolated single-unit firing activity. Extracel-

lular recordings from A. ipsilon proved to sample only neurons with a large neurite (PNs but

not LNs) in the antennal lobe [51]. Furthermore, the inhibition phase recorded at the end of

each individual response is a hallmark of PN responses both in this species [83] and in other

insect species such asManduca sexta [93] and D.melanogaster [94]. The electrical signal was

amplified (×1000) and band-pass filtered (10 Hz–5 kHz) with a Cyberamp 320 (Molecular

Devices, Union City, CA, USA) and digitized at 10 KHz (NI-9215) under Labview.

Stimulation

We used the major component, (Z)-7-dodecenyl acetate (Z7-12:Ac) of the A. ipsilon sex phero-

mone blend as stimulus. Z7-12:Ac was diluted in hexane and applied to a filter paper at doses

ranging from 10−6 to 100 ng (ORN recordings) and at 10−1 ng (PN recordings). The entire

antenna was exposed to a constant charcoal-filtered and humidified air flow (70 L.h-1). For ORN

recordings, air puffs (10 L.h-1) were delivered through a calibrated capillary (Ref. 11762313, Fisher

Scientific, France) positioned at 1 mm from the antenna and containing the odor-loaded filter

paper (10 × 2 mm). For PN recordings, stimuli were delivered to the entire antenna witha Pasteur

pipette containing the odor-loaded filter paper (15 × 10 mm) inserted 15 cm upstream of a 7-mm

glass tube positioned at 10 mm from the antenna. Responses to a control (hexane) and phero-

mone puffs of increasing concentrations (10−3 to 101 ng) were first tested. Only PNs exhibiting

dose-dependent pheromone responses were included in the analysis.
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Control of electrovalves (LHDA-1233215-H, Lee Company, France) was done by custom-

made Labview programs. All sequences were executed asynchronously from text files where

the states of electrovalves were indicated by a Boolean variable. Sequences were generated

using Matlab scripts (The Mathworks, Natick, MA). The time resolution of the sequences was

1 ms. The characteristic response time of the valves, i.e. the time to go from open to closed

(and closed to open) is< 5 ms.

Stimulus sequences

White-noise stimuli were approximated by randomly controlling the state (Open-Close) of the

electrovalve used to deliver pheromone stimuli. The valve state was updated every 10, 50 or 100 ms

(referred to the correlation time). Thus, the spectra were colored for frequencies greater than 16,

3.4 and 1.6 Hz, respectively. There is no significant effect of correlation times on filter extraction.

Time dynamics of turbulent plumes were derived from Celani et al. [8]. The virtual source

and positions of the moths were aligned with the wind direction. We tested 4 virtual distances,

8, 16, 32, 64 m. The geometric progression of distances was chosen to emphasize the effect of

turbulence on puff/blank statistics. The distribution of puff/blank time was generated from:

pðtp=bÞ /
1

tp=b

 !3
2

fp=bðtp=bÞ ð1Þ

where the index p is for puff, b for blanks, fp/b is a cutoff function with exponential decrease

of rate T � 1
p=b for τp/b� Tp/b. Cutoffs Tp/b are physical properties of the turbulent flow. Using sim-

ilar notation as in Celani et al. [8], we set U = 1 m.s-1 (average wind velocity), δU = 0.1 m.s-1

(wind fluctuations), a = 0.1 m (size of the pheromone source), χ = 0.4 (intermittency factor),

t ¼ Ua2

dU2d ; Tp ¼
d
U ; Tb ¼ Tp

1

w
� 1

� �
. The largest distance used for ORNs, 64 m, imposed a

selection on the generated sequences because some sequences exhibited either extremely long

stimuli, which led to the complete stop of spiking activity, or almost no puffs. Thus, the statis-

tics for 64 m was biased from the pure turbulence by removal of extremely rare events

(puffs > 30 s). A given sequence of turbulent olfactory sequence was never used twice with the

same pheromone concentration unless specifically mentioned for tests with frozen sequences.

A single ORN was recorded per insect. For each recorded ORN, only one sequence of sti-

muli was delivered during 15 min at a constant pheromone concentration. The different stim-

ulation sequences were tested on different ORNs. White-noise stimulations were performed

with 3 correlation times (10, 50, 100 ms) and 4 decades of pheromone concentrations. Turbu-

lent plumes were simulated from 4 distances and 7 decades of concentrations. Control experi-

ments were performed with 2 repetitions of 3-min long white-noise sequences interleaved

with various (1, 3, 5, 15 min) inter-sequence intervals.

We tested PNs at 0.1 ng of pheromone loaded on the filter paper, a dose chosen in the

medium-low range of cell population dose-response curves [51]. Stimuli were delivered to the

entire antenna to ensure proper coding in PNs. For each recorded neuron several stimulation

sequences were delivered to the antenna. The first sequence was a 4-min long white-noise

stimulation followed by 4 min of no stimuli. The white-noise sequence had a correlation time

of 50 ms. Then 4 different sequences of olfactory plume statistics simulating 4 distances were

presented in random order. Sequence durations were 5 min and inter-sequence intervals were

3 min. Control experiments were performed in the following way: (1) delivering 4 consecutive

frozen white-noise sequences with various inter-sequence intervals, (2) delivering 3 consecu-

tive frozen sequences with a temporal dynamic simulating a distance of 16 m and (3) testing 3

white-noise sequences with different correlation times, 10, 50 and 100 ms.
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We could not monitor odor delivery with a photoionization detector (PID) due to the too

high ionization energy of Z7-12:Ac and the too low sensitivity of PIDs. Therefore, we cannot

perfectly characterize the relation between the dynamics of the electrovalve commands and the

effective odor release.

Data analysis

Spike sorting was performed with Spike2 (CED, Oxford). Shapes of action potentials were ana-

lyzed using principal component analysis and spike clusters were identified using the first 3

eigenvector subspaces. In long duration experiments involving turbulent stimuli, slow drifts of

clusters and secondary clusters resulting from collision with spikes from another cell were

taken into account. Finally, visual inspection was used to ensure that rare events with high fre-

quency did not prevent efficient spike detections. Firing rates were calculated by Gaussian con-

volution of 50 ms width then resampled at 100 Hz.

L-N model

To model neural responses we used the linear–nonlinear (L-N) model [95]. The L-N model

was determined separately for each neuron, and for each dose as one single dose of pheromone

was applied on each neuron. The firing rate r(t) of neurons is decomposed into a linear kernel

K(t) and a nonlinear functionH(r). Thus we have

rðtÞ ¼ H ð
R t
� 1
duK ðt � uÞs ðuÞÞ ð2Þ

with s(t) the olfactory input signal. The kernel is extracted by minimizing the L2 norm between

experimental measures and the L-N prediction with a Lasso regularization [96]

K ¼ argminK ðk r � SKk2
þ lkK k2

þ m jK j1Þ ð3Þ

with �K the Kernel Vector, r the experimental vector response, ��S the time shifted stimulus

matrix and (λ, μ) the regularization coefficients. The [pxq] matrix ��S was built so that the pth

line contains the stimulation vector shifted by p time bins, and q is the bin length of the ana-

lyzed time window (-0.5 to 2.5 s). Lasso regularization was used to prevent anomalies in K(t)
due both to overfitting and to correlations in the input signal s(t). The L2 norm prevents anom-

alous rise of the Kernel amplitude and L1 norm favors sparse response. The nonlinear function

H(r) was extracted by fitting the experimental rate, r(t), as a function of the linear rate,

rLðtÞ ¼
Z t

� 1

duKðt � uÞsðuÞ

using a Hill function. The training samples were made by 20% of the points and the test sample

by the remaining 80%. The procedure was applied 100 times per sequence with different values

of λ and μ, and these parameters were set to optimize the average determination coefficient R2

of the test sample.

Modified L-N model

In order to sample coding for turbulent environments, recordings were performed over long

time periods (up to 15 min). The firing rate was found to decrease during a stimulus sequence

in a predictable and reversible fashion. Thus the L-N model with a short-term kernel was com-

pleted adding a long-term kernel leading to the effective Kall(t) = Kshort(t) + Klong(t). Both com-

ponents of the kernel were simultaneously extracted from Eq 2 where the time shifted stimulus
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matrix was extended with 7 additional time bins with exponentially spaced bin classes. The

modified time shifted stimulus matrix had therefore q+7 columns, the first q columns corre-

spond to the short-term Kernel (-0.5 to 2.5 s), and the last 7 columns, corresponding to the

long-time kernel, contained the integrated firing rate calculated in time windows with respec-

tive edges of 2.5, 5, 10, 20, 40, 80, 160 and 320 s.

The accuracy of the filters was quantified using classical R2 determination coefficients

between prediction and measured data. R2 is the proportion of variance in the measured firing

rate (independent variable) that is predicted by the model (dependent variable). For data vs

data comparison, as well as predicted vs measured data in small time regions, both variables

were relatively independent with different mean signals, and thus correlation coefficients, ρ,

were used since more informative than R2.

Comparison of odor delivery devices

As we used different odor delivery devices when recording ORNs (peri-sensillum device) and

PNs (whole-antenna device), we established dose-response curves from ORNs with both

devices to compare them (200-ms stimuli; n = 7). We measured the maximum firing frequency

during the response and the number of action potentials evoked until the firing frequency

returned to baseline. The comparison of pheromone loads and responses indicates that the

concentration delivered on a sensillum by the peri-sensillum device is 103 to 104 higher than

with the whole-antenna stimulator (S3A Fig). We inferred that 0.1 ng stimuli with the whole-

antenna stimulator correspond approximately to 10−5 to 10−4 ng stimuli with the peri-sensil-

lum device. ORN activities (n = 32) were then recorded in response to a frozen white-noise

sequence (5 min, time step = 50 ms) delivered consecutively by both devices (10 ng with the

whole antenna device and 5 pg with the peri-sensillum device). The order of use of the two

devices was randomized. The average short-term filters calculated from the responses to the

white-noise sequences delivered by the two devices overlap (S3B Fig), indicating that they

deliver stimuli with the same dynamics.

Supporting information

S1 Fig. Parametrization of the shapes of PN linear filter sets. Short term linear filters of 97

PNs were time-shifted according to their onset times and the PC analysis was performed

again. (A) Time-shifted linear filters sorted by decreasing θ (see Fig 4A). (B) First two principal

components for the PN short-term filter set. Same conventions as in Fig 4D. (C) Projection of

normalized PN short term filters on the subspace spanned by the first two components. Same

conventions as in Fig 4F.

(EPS)

S2 Fig. Raster plot of pseudo-populations of ORNs (A) and PNs (B) in response to the

same frozen sequence of white-noise odor stimuli (correlation time 50 ms). Successive lines

with the same color correspond to the repetition of the stimulation sequence in the same neu-

ron. Below each raster, the population peri-stimulus time histogram is included.

(EPS)

S3 Fig. Comparison of whole antenna and peri-sensillum odor delivery devices. (A) Num-

ber of action potentials evoked until the firing frequency returned to baseline in response to

200-ms stimuli with different pheromone loads (n = 7). The 10 ng pheromone load used with

the whole antenna stimulator induced approximatively the same ORN responses as 1 to 10 pg

used with the peri-sensillum stimulator. (B) Average short-term filters calculated from ORN

responses to a frozen noise sequence (time step = 50 ms) delivered consecutively by both
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stimulus devices while an ORN activity was recorded (n = 32). The pheromone load was 10 ng

with the whole antenna stimulator and 5 pg with the peri-sensillum stimulator. The order of

use of the two stimulators was randomized. The 2 linear filters were aligned on the peak of the

positive lobe to compensate for the longer delay in odor delivery with the whole antenna

device.

(EPS)
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