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ABSTRACT
Although numerous imprinted genes have been described in several lineages, the phenomenon of
genomic imprinting presents a peculiar evolutionary problem. Several hypotheses have been proposed to
explain gene imprinting, the most supported being Haig’s kinship theory. This theory explains the
observed pattern of imprinting and the resulting phenotypes as a competition for resources between
related individuals, but despite its relevance it has not been independently tested. Haig’s theory predicts
that gene imprinting should be present in eusocial insects in many social scenarios. These lineages are
therefore ideal for testing both the theory’s predictions and the mechanism of gene imprinting. Here we
review the behavioral evidence of genomic imprinting in eusocial insects, the evidence of a mechanism
for genomic imprinting and finally we evaluate recent results showing parent of origin allele specific
expression in honeybees in the light of Haig’s theory.
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Introduction

Genomic imprinting is the differential expression of alleles
in diploid individuals, with expression being dependent
upon the sex of the parent from which the allele was
inherited.1 Genomic imprinting is an evolutionary paradox.
Natural selection is expected to favor expression of both
alleles to protect against recessive mutations that render a
gene ineffective.2 What then is the benefit of silencing one
copy of a gene, making the organism functionally haploid
at that locus? Several explanations for the evolution of
genomic imprinting have been proposed.3

Haig’s kinship theory, is the subject of this review. It is the
most developed and best supported theory3 and the most
applicable to social insects.4 Outside the scope of this review
are several non-conflict based theories to explain the evolution
of genomic imprinting that have been recently reviewed by
Spencer and Clark.5

Haig’s theory is based on the idea that maternally
(matrigene) and paternally (patrigene) inherited genes in the
same organism can have different selectional pressures
(described in greater detail in the “Haig’s kinship theory” sec-
tion and Fig. 3). For example, in a species with multiple pater-
nity, a patrigene has a lower probability of being present in
siblings that are progeny of the same mother than does a matri-
gene. As a result, a patrigene will be selected to value the sur-
vival of the individual it is in more highly, compared with the
survival of siblings. This is not the case for a matrigene. In
mammals and angiosperms, this conflict is played out in the
provisioning of offspring with resources taken from the
mother.2 A patrigene will benefit by causing more maternal
resources to be allocated to the individual it is in, but a matri-
gene will benefit from sharing resources among all the siblings.

A method to differentiate matrigenes and patrigenes of these
genes (i.e., imprinting) would spread in the population.

Haig’s kinship theory is central to our evolutionary
understanding of imprinting effects in human health and
plant breeding;6,7 yet, despite its importance, the theory still
lacks an independent test. Social insects have been sug-
gested as such an independent test of Haig’s kinship theory
for the evolution of genomic imprinting.4 Here we review
the behavioral evidence of genomic imprinting in social
insects, evaluating recent results showing parent of origin
allele specific expression in honeybees asking whether
Haig’s kinship theory predictions are supported. We also
review the evidence for mechanisms in social insects for
genomic imprinting in light of what is known in mammals.
We then explore advances in technologies (e.g., next-gener-
ation sequencing, chromatin immunoprecipitation, CRISPR)
that can be used in dissecting this mechanism genetically
and molecularly. Finally, we propose a direction for future
research suggesting a merger of genetic and molecular
approaches to resolve pressing evolutionary and mechanistic
questions on the nature of genomic imprinting.

Genomic imprinting

Genomic imprinting is a phylogenetically widespread phenom-
enon, and genes have been shown to be imprinted in
mammals,8 plants, and fungi,9,10 as well as insects,11 although
see Coolon et al.12 In mammals, genomic imprinting is associ-
ated with both DNA and histone methylation and these epige-
netic markers are established in the germline of parents and are
preserved during development (see Box 1 Genomic Imprinting:
the mammalian way).13
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Haig’s kinship theory

Haig’s kinship theory is an extension of the theory of inclusive
fitness that was developed by W. D. Hamilton in 1964.14 The
inclusive fitness theory postulates that the fitness of an individ-
ual is not solely dependent upon their own survival and repro-
duction, but it is also reliant on the survival and reproduction
of those that share the same genes. Thus, an individual will
favor actions that appear to be altruistic toward related individ-
uals that will ensure shared genes are passed on to future
generations.

Haig’s kinship theory is currently the most widely accepted
theory for the evolution of genomic imprinting.5 Developed in
the late 1990s,15 Haig assumes that in a polyandrous mating
system the genetic relatedness of the offspring is higher for
maternally inherited alleles (matrigenes) than it is for pater-
nally inherited alleles (patrigenes). Therefore, selection is
expected to act on patrigenes to increase individual resource
allocation from the mother, thus increasing paternal inclusive
fitness. Whereas matrigenes should be selected to favor equal
resource distribution among offspring to maximise maternal
inclusive fitness.16 In this context the same genes may experi-
ence different evolutionary pressures depending upon whether
they are in the parents or in their progeny (F1). Genes in the
mother (or father) are referred to as maternal (or paternal)
genes. Genes from the mother (or the father) in the progeny
are called matrigenic (or patrigenic) and a matrigene
(or a patrigene) refers to an allele in the progeny derived from
the mother (or the father).

This theory explains for example how the cost-benefit ratio
changes during sibling competition for parental resources (i.e.,
time, food).4 If there is no genomic imprinting and no differ-
ence in the coefficient of relatedness between patrigenes and
matrigenes of offspring, an individual should weigh its own
benefit (relatedness coefficient, r:1) against the cost for the sib-
ling affected (full sibling, r:1/2; half sibling, r:1/4) and selfish or
selfless behavior should not be particularly associated to patri-
genes or matrigenes (Fig. 3). In a different situation where there
is imprinting and the cost falls on siblings with a different
father, the coefficient of relatedness is different between matri-
genes (r:1/2) and patrigenes (r:0) (Fig. 3). In this situation patri-
genes may be selected to be always selfish, while for matrigenes
selfishness is advantageous only when the benefit is greater
than 1/2 the cost to a sibling of a different father.

This theory has been used to explain why imprinting is
prominent in angiosperms and mammals with extended paren-
tal care.1,2 The theory also provides an explanation to why
many genes expressed in embryos, placenta, and sperm are
imprinted, as well as why paternally and maternally imprinted
genes have opposite effects on offspring size.1,4 Paternal genes
are expected to favor larger offspring while maternal genes
should favor smaller offspring in species with a polyandrous
mating system that also provide maternal care.1 Larger off-
spring are able to elicit more resources from the mother, which
is beneficial for the individual but detrimental for the siblings.
This would be advantageous to patrigenes, that may not be
present in all siblings, but disadvantageous to a matrigene that
has a 50% chance of being present in the siblings. For example,
inactivation of the paternal allele of the Mest gene in mice

(maternally imprinted) produced smaller, lighter pups,17 giving
weight to this theory. The function of most identified imprinted
genes in mammals support this theory.18,19

The theory also extends beyond systems with known
imprinting; Queller4 expands on Haig’s original suggestions
and applies the kinship theory to social insect colonies. The
haplodiploid sex determination of eusocial insects creates a
potential conflict of interest between patrigenes and matrigenes
in a given offspring due to different degrees of relatedness with
brothers and sisters (Fig. 3).1,4 Queller4 is able to make predic-
tions for genomic imprinting based on various social contexts,
for example queen competition and insertion of new queens,
male killing, and worker reproduction. These predictions pro-
vide a solid ground with which to test the validity of the kinship
theory and provide evidence for conflict within an individual
genome.

Do social insects possess the machinery for genomic
imprinting?

Haig’s kinship theory predicts imprinting for some genes in
certain conditions, but this implies that the parents are able to
differentially label their genes. How do they do that? Imprints
are established in gametogenesis and embryogenesis, and are
present in different tissues predominantly involved in the pro-
vision of nutrients to offspring. In mammals for example, most
of the identified imprinted genes are expressed in the pla-
centa.20 Moreover, the majority of imprinted genes in the
angiosperm lineage are expressed in the endosperm which sur-
rounds the plant embryo and is primarily a source of starch,
but also oils and proteins.21 Genes have also been reported to
be imprinted in the mammalian brain,22,23 and potentially in
the angiosperm embryo too [see;24 however also see25,26].

Although much is still not understood, many molecular
components of the mechanism of genomic imprinting (e.g.,
DNA methylation, histone modifications) are well studies in
mammals and in plants (for recent reviews of gene imprinting
mechanism in plants see27,28). Below we review the evidence for
the presence of these imprinting mechanism in eusocial insects
[see29].

DNA methylation

Among the epigenetic markers, the methylation of the fifth car-
bon of cytosine (5mC) is found to be associated with control of
transcription and regulation of splicing30 (see Box 1, Genomic
Imprinting: the mammalian way and Fig. 1).

DNA encoding for the DNA methyltransferases (DNMTs)
and 5mC have been found in many hymenopteran species.31 In
mammals, distinct classes of DNMTs are responsible for main-
taining methylation through cell division (DNMT1) and de
novo methylation (DNMT3s),32 but the insect catalytic activi-
ties of these enzymes have not been formally characterized.
Some species, like the silkworm B. mori, have only a single
DNMT with dual DNMT1/3 functions.33 The fruit fly,
D. melanogaster, has lost both DNMT 1 and 3 and encodes for
a DNMT2 enzyme that is involved in RNA methylation.33

Hymenoptera maintain all 3 classes of enzymes (DNMT1, 2,
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and 3) in single or multiple copies.31,33-36 The hymenoptera
methylation toolkit also includes 10–11 translocation enzymes
(TET) that catalyze the oxidation of 5mC to 5-hydroxymethyl
cytosine (5hmC).37 This enzyme and 5hmC are thought to be
part of the process of demethylation in mammals38 and may
also have similar roles in insects.

The distribution of DNA methylation in hymenoptera
shows similarities as well as differences with that of mammals.
In mammals more than 70% of CpGs are methylated and
methylation can be found in promoters as well as gene bodies,39

while in hymenoptera less than 2% of CpGs are methylated and
are primarily localized in gene bodies.31,35,40

In mammals, whole genome assays uncovered a substantial
difference between isolated CpG (usually heavily methylated)
and hypomethylated grouped CpGs (CpG islands or CGIs:
region of 500–2000 bp).41 A long held view associates DNA
methylation with transcriptional repression, but deep analysis
of CGIs and intragenic methylation began to erode this classic
view. CGIs tend to correlate with promoter regions and can be
classified as High, Intermediate or Low CpG density promoters
(HCPs, ICPs, and LCPs respectively). HCPs are linked to tran-
scriptionally active genes and increases in methylation indeed
result in gene silencing. ICPs are also inactive when methylated,
although the level of methylation changes significantly during
differentiation.42,43 In contrast, LCPs are usually hypermethy-
lated and transcriptionally active.42,44 Moreover, active genes in
the inactive imprinted X chromosome, show a high level of
gene body methylation. This could simply be a consequence of

the transcription availability since in this case the genes would
also be accessible to the DNA methylases,45 or the higher level
of methylation may be related to RNA transcription and/or
splicing given that the pattern of methylation marks intron-
exon boundaries.46

In eusocial insects, the caste system imposes another layer of
organization to the reprogramming and cell lineage specifica-
tion that may be controlled by epigenetic mechanisms. It is pos-
sible that like different cell lineages acquire a particular
epigenome during development, also different castes are epige-
netically defined during development.47,48 There may be pro-
gramming and re-programming windows during development
and later in life, as for example suggested by a study in honey-
bee (A. mellifera) where phenotypic plasticity between nurses
and foragers correlated with variation in DNA methylation in
the brain.49 However, re-programming outside these coding
windows may be difficult and result in less than fully penetrat-
ing phenotypes.50,51

Larvae, during development, may be considered dual potent
because they retain the ability to develop into different castes
(e.g., queens vs. workers) and many epigenetic tools (DNA
methylation, miRNA, piRNA, etc.) as well as alternative
splicing were implicated in this plasticity in the honeybee
A. mellifera and to a lesser extent in the ants Camponotus flori-
danus and Harpegnathos saltator.33-35,52 Interestingly,
DNMT1a is maternally transmitted to the progeny in the wasp
N. vitripennis and its downregulation results in a block of
development 10–12 h after egg laying, while DNMT3 is not

Figure 1. DNA methylation and splicing in mammals. (A)CTCF Binding to unmethylated CTCF binding sites pause Pol II elongation allowing retention of exon2. (B)CTCF
cannot bind to methylated sites resulting in skipping exon2. (C)MeCP2 does not bind to unmethylated sites allowing rapid progression of Pol II resulting in skipping of
exon2. (D)MeCP2 binding to methylated site pause elongation of Pol II permitting retention of exon2. Redrawn from Yan et al. 2015.30 CTCF binding site with methylation
sensitive CpG in bold: ATGCAGCTAGATGGCGCTC.74
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essential for early embryo development.53 Similarly in mice,
deletion of DNMT1 is lethal at gastrulation resulting in a global
loss of DNA methylation.54 Differences in behavior in adult
castes may be also associated with a difference in epigenetic
programming. The role of DNA methylation in this context
was recently tested with contrasting results in the honeybee A.
mellifera, the ants C. floridanus, H. saltator, Solenopsis invicta,
and Ooceraea biroi.31,35,49,55,56 Moreover, the function of DNA
methylation is reported to be of less importance in the simple
eusocial societies of the wasp Polistes canadensis and the ant
Dinoponera quadriceps where these species are more reliant on
transcriptional network re-organization to determine pheno-
type differences, in comparison with highly eusocial insects.57

Libbrecht et al. 2016, questioned the results of previous stud-
ies reporting caste dependent differences in DNA methylation,
suggesting that they used a false positive-prone method in their
next-generation sequencing data analyses.55 However, using
methylation-sensitive AFLP, Amarasinghe and colleagues58

also found differences in methylation in the heads of reproduc-
tive and non-reproductive workers in queenless B. terrestris
colonies. Drug manipulation of the methylation level
clearly correlated DNA methylation with changes in pheno-
type/behavior of the workers. Importantly, this data support
Haig’s kingship theory predictions that genomic imprinting
should be important in worker reproductive behavior. The the-
ory predicts in fact that there should be conflict between
maternally and paternally derived alleles in loci involved with
workers reproduction resulting in genomic imprinting4 (see
section: Parent of origin allele specific expression).

Whether differences in DNA methylation are hallmarks of
different caste specific behavior is still to be resolved. It is worth
noting here that DNA methylation plays an important role in
learning and memory formation in both mammals (rats) and
honeybees and is dynamically regulated in mammalian adult
brains.59,60

Gene body methylation and splicing

CpG methylation in gene bodies seem to have a conserved
function between mammals and hymenoptera. CpG methyla-
tion was found mostly in exons marking intron-exon bound-
aries and was associated with controlling splicing in the
honeybee A. mellifera,34,49,61,62 in the wasp N. vitripennis63 (but
see also40) and in both the ants C. floridanus and H. saltator.35

Highly methylated genes were found to be uniformly and tran-
scriptionally active in different conditions and representing
housekeeping genes expressed in most cell types.34,35,40,64,65

This also holds true in a social insect outside of hymenoptera,
the termite Zootermopsis nevadensis (isoptera) shows the same
intragenic methylation associated with highly expressed genes
and alternative splicing.66 In contrast, sparsely methylated
genes are associated with caste-specific gene expression in germ
lines in honeybees.67 How can DNA methylation mediate splic-
ing and even participate in the process of alternative splicing?
Recent data from mammals may provide some clues.

DNA methylation can change the availability of a locus to a
protein or a protein complex. This is the case of ZFP57, a pro-
tein important to maintaining genomic imprinting during
development in mammals (see Box 1: Genomic Imprinting: the

mammalian way). ZFP57 affinity for its binding site increases
with methylation.68

Another example is the allele-specific expression of
H19/IGF2 locus. The allele-specific level of methylation of the
imprinting control region (ICR) in this locus mediates the
binding of CCCTC-binding factor (CTCF) that in turn controls
the expression of H19 (maternal allele) or IGF2 (paternal
allele).69 The binding of CTCF is a pausing signal for RNA
polymerase II (Pol II). DNA methylation inhibits CTCF
binding, therefore enabling Pol II elongation resulting in skip-
ping of an exon (Fig. 1).70 This mechanism could explain why
hypomethylation was associated with alternative gene splicing
in the gene alk in the honeybee A. mellifera and lipoprotein
receptor 2 in the ant C. floridanus.71,72

Conversely, the mammalian methyl-CpG-binding protein 2
(MeCP2) is involved in exon retention, but mirrors CTCF in its
affinity to DNA methylation (Fig. 1).73 MeCP2 has greater
affinity for its methylated binding site inducing a pause in Pol
II elongation and retention of the target exon (Fig. 1). High
levels of methylation were associated with retention of exons in
the ants C. floridanus and H. saltator35 that could be achieved
via a MeCP2 like mechanism. These 2 mechanisms (MeCP2
like, CTCF like) could be operating in concord, resulting in a
complex relationship between DNA methylation and control of
alternative splicing.

It is important here to note that MeCP2 was implicated in
neuronal function that in mammals relies heavily on alternative
splicing.75 Similarly in A. mellifera the transition from nursing
to foraging associates with alternative splicing events.49 In the
plant Arabidopsis thaliana and in the green spotted puffer-fish
Tetraodon nigroviridis a particular histone variant (H2A.Z) is
enriched in hypomethylated loci and could serve as a marker
for alternative splicing76,77 while in mammals the methylation
of H3K9 by the Histone H3K9 methyltransferase G9a recruits
DNMTs to unmethylated loci and changes chromatin status.78

Although little evidence is at the moment available, it has been
shown that histone deacetylases (HDACs) in the ant
C. floridanus are involved in the transition to foraging/scouting
suggesting a possible role for histone modifications in deter-
mining caste-specific patterns of behavior.79 It is probable that
DNA methylation is therefore acting in concert with other
epigenetic modifiers (e.g., ncRNAs, histone modifications) to
regulate alternative splicing in hymenoptera71,80 in a cell spe-
cific manner.

Further investigation is needed to reveal the mechanistic role
of DNA methylation and other epigenetic modifications in reg-
ulating alternative splicing in hymenoptera.

Other epigenetic mechanisms

Regardless of the role of DNA methylation, other epigenetic
markers could be important in defining a specific caste related
behavior. Long non-coding RNA (lncRNA) and microRNA
(miRNA) are potential additions to the epigenetic tool kit in
defining behaviors. miRNA may have a role in determining
caste-specific expression profiles in A. mellifera, targeting
unmethylated genes during development.81

Changes in miRNA expression profiles are also associated
with the nurse-forager transition.82 Another class of small RNA
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Box 1. Genomic Imprinting: The mammalian way

The expression of imprinted genes in mammals is coordinated by allele-specific (maternal or paternal) DNA methylation in
imprinting control regions (ICRs).90 Allele-specific methylation or parent-of-origin-specific methylation is introduced during
gametogenesis and it is preserved throughout the entire life. During gametogenesis in fact, the somatic epigenetic code is
removed in the primordial germ cells (PGCs). A new sex specific and germ specific epigenetic code and transcription profile is
established and finally a post-fertilization removal of this epigenetic code is activated to allow further embryonic develop-
ment.91 The ICRs allele specific methylation therefore must be protected from the post-fertilization wave of de-methylation.

The first wave of de-methylation in the PGCs erases the somatic epigenetic code and establishes totipotency. The global level of
DNA methylation at this stage is dramatically reduced and parental imprinting and X-chromosome silencing are removed in
mouse embryos.92 This reprogramming is achieved trough a combination of passive and active de-methylation. During the PGCs
proliferation the de-novo DNMT3s are repressed and Np95 (an essential cofactor for DNMT1) is either downregulated or excluded
from the nucleus.92,93 This passive de-methylation affects the genome globally, but some regions (including imprinted genes, CGIs
of inactive X-chromosomes) are hypomethylated only after an active de-methylation involving TET1/2 and 5hmC.92,94

Following this PGC re-programming, a new sex-specific epigenetic code and ICR methylation is established. The exact
mechanism of this precise re-methylation is still to be uncovered, but it appears to be related more to the chromatin structure,
histone modifications and transcription factors, as opposed to sequence specificity.95,96

The second wave of epigenetic reprogramming takes place post fertilization during early embryogenesis and shows important
differences to the quasi total de-methylation occurring in PGCs. The kinetics of de-methylation of the zygote genome for exam-
ple is very different compared with PGCs, and imprinted regions tend to be protected during this de-methylation process, allow-
ing parent-of-origin-specific gene expression.97-100 The level of methylation and the kinetics of de-methylation of the paternal
and maternal DNA is very different. The sperm DNA has double the level of methylation (80–90% CpGs) than DNA of the egg
(40% CpGs), and is quickly de-methylated soon after zygote formation.97-99 On the contrary, the maternal DNA undergoes a
delayed, replication-dependent de-methylation.97-99 This implies that an efficient active de-methylation mechanism must be in
place soon after fertilization and that the maternal DNA must be shadowed to it (Fig. 2). This differential de-methylation
required an active TET3 that specifically localizes to the paternal pronucleous inducing a conversion from 5mC to 5hmC as a
first step in the de-methylation program.101 Since the affinity of DNMT1 for oxidized 5mC (5hmC, 5fC and 5caC see below: A
molecular future) is extremely poor, it is also possible that methylation is reduced passively during cell division.102-104

The maternal genome in the zygote is protected from the TET3 activity by a protein called STELLA (also PGC7 or Dppa3).
STELLA has a strong affinity for the maternally enriched dimethylated histone H3 Lys9-marked chromatin (H3K9me2) and this
interaction results in a change of chromatin structure that prevents TET3 binding.105 The protection from the rapid de-methylation
driven by differential paternal-maternal H3K9me2/STELLA interaction could also be a mechanism to maintain genomic imprint-
ing. In fact, imprinted gene loci undergo a complete loss of methylation if STELLA is not present and some paternally imprinted
genes are found to retain H3K9me2-marked chromatin, preserving them from rapid de-methylation post fertilization (Fig. 2).105

The maternal DNA sees a passive loss of methylation achieved by nuclear exclusion of DNMT1. The level of methylation of
maternally imprinted genes is however preserved and a low level of nuclear DNMT1 is essential to maintain genomic imprint-
ing.106 DNMT1 in this context is part of a complex of proteins that has at its center ZFP57 (Krueppel-associated box (KRAB)
domain zinc finger protein) and TRIM28 (also KAP1).107 Other components of this complex are nucleosome remodelling and
histone deacetylation (NuRD), H3K9me3-catalyzing histone methyltransferase (Setdb1), heterochromatin protein 1 (HP1),
and DNMT3a/b108-110 (Fig. 2). This complex localizes to ICRs, possibly thanks to a recognition site for ZFP57 (TGCCGC).111

ZFP57 affinity for this binding site is methylation dependent and increases when the site is methylated.68,108 So during early
cell divisions the ZFP57/TRIM28 complex, brings DNMT1 to ICRs in a ZFP57 target-dependent manner, enabling the mainte-
nance of DNA methylation during this early stage.112 TRIM28 also interacts with HP1 and Setdb1.113 Since H3K9me3 associ-
ates strongly with DNA methylation, the TRIM28/HP1/Setdb1 complex may participate (via histone modifications) in the
preservation of DNA methylation during this early stage of development.

This mechanism may be robust enough to permit even some initial loss of methylation in imprinted regions (as it was
observed) as long as it does not affect the ZFP57 target sites.114,115 The ZFP57/TRIM28 complex recruit DNMT3a/b that may be
able to compensate for the initial loss of methylation.114,115 ZFP57 is expressed during embryogenesis, but is restricted to ovaries
and testes in the adults116 suggesting that ZFP57 is necessary to maintain methylation at imprinted loci during development.

DNA methylation is often associated with histone modifications. We have already encountered 2 of these modifications
(H3K9me2–3), but also H3K4me3 and H3K36me3 play fundamental roles in the preservation of DNA methylation in
imprinted loci. H3K4me3 for example specifically inhibits DNA methylation and is relegated to the unmethylated allele in
imprinted regions.117 DNMT3a/b and their co-factor DNMT3L interact to the histone 3 (H3) tail via a ATRX-DNMT3-
DNMT3L (ADD) domain. Methylation of H3K4 (H3K4me3) either prevents this interaction (with DNMT3L) or inhibits
DNMT3 activity (DNMT3a/b).118 The PWWP domain of DNMT3a/b is important for the interaction with H3K36me3, which
intriguingly is found to be enriched in gene bodies of active genes.119-121 So DNMT3a/b localization to a specific imprinted
region depends on the absence of H3K4me3 (H3K4me0) and the presence of H3K9me3 (see above).122-124

Therefore, methylation at imprinted loci is maintained thanks to the ZFP57/TRIM28 localization to these regions that
results in the preservation of H3K9me3 via Setdb1 and DNMT3a/b recruitment (Fig. 2).
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(piRNA, PIWI interacting RNA) are associated to genomic
imprinting of the paternally methylated Rasgrf1 in mammals.83

In addition, some lncRNA have being implicated in mediating
aspects of brain development, functional diversification
(kakusei,84), and the transition from nursing to foraging
(Nb-1,85) in A. mellifera. In mammals, lncRNA are also related
to genomic imprinting (for recent reviews see86 and 87). All
clusters of imprinted genes in mammals include one or more
lncRNA88 and the genes and the lncRNA in these clusters are
often expressed from the opposite parental chromosomes.89

lncRNA use a variety of molecular strategies to epigenetically
regulate transcription of imprinted clusters.86,87

More work is required to reveal how the different epigenetic
markers are intertwined together to generate the different pat-
tern of behavior and expression, genomic imprinting during
gameto- and embryogenesis resulting in phenotypic plasticity
in hymenoptera.

It seems that even the variant of histone allocated to
imprinted loci contributes to maintaining imprinting. Dur-
ing development the H3.3 histone variant was found to be
enriched in heterochromatic regions including the DNA
methylated allele in imprinted loci.125,126 The chaperone
responsible for the allocation of H3.3 in this region is the
ATRX/Daxx complex that preferentially targets the methyl-
ated allele.125,126 ATRX has an ADD domain to interact
with H3K4me0 and can also directly bind H3K9me3 and
HP1.127 It has been shown in addition that Daxx interacts
with TRIM28 and Setdb1.128 So the ATRX/Daxx complex
could represent another way (alternatively or in combina-
tion with ZFP57) to recruit TRIM28/Setdb1 to imprinted
regions and maintain DNA methylation during develop-
ment (Fig. 2).

Whether such an exquisite epigenetic reprogramming
with successive waves of de-methylation and re-methylation
during gametogenesis and embryogenesis exists in

hymenoptera, is not currently known. The role of histone
modification is also unknown. In honeybee at the present
time there is no evidence for a comprehensive de-methyla-
tion program during embryogenesis.129 Moreover, methyla-
tion levels are retained through early stages of development,
as they also are in other animals (e.g., Danio rerio, Caeno-
rhabditis elegans) although the specific mechanism is still to
be determined.130,131

Behavioral evidence of genomic imprinting in social
insects

Differences in worker ovary size and stinging behavior in
A. mellifera show strong parent-of-origin effects132,133 suggest-
ing that an imprinting mechanism may be in place.

It has been extensively demonstrated that honeybee
defensive behaviors are heritable in a parent-of-origin
dependent manner. Africanised honeybees (Apis mellifera
scutellata) are known to exhibit a more rapid stinging
response to alarm stimuli (visual or pheromonal), that is
more sensitive, with a lower threshold before initiating a
sting response, compared with the European subspecies.132

Through backcrossing and reciprocal cross studies this
defensive behavior has been correlated with paternal inheri-
tance. Drones from F1 queens of a cross of Africanised
drones and European queens were used for backcrosses in
Stort and Goncalves’ study which found increased defensive
behaviors in backcross colonies.134 Guzman-Novoa and
Page report workers of a cross with an Africanised paternity
have a sting response equal to that of those with full
Africanised inheritance.135 Backcrossing of F1 gynes twice
with European drones resulted in the same worker stinging
response as full European control workers. Similarly,
DeGrandi-Hoffman and colleagues found that colonies with
an Africanised paternity showed a higher level of defensive

Figure 2. Mechanism of gene imprinting in mammals. (A)Stella binding to H3K9me2 prevent TET3 dependent de-methylation. Maternal (M) DNA is enriched of H3K9me2
compared with paternal (P) and therefore maternal imprinted regions are protected from active de-methylation. (B)After zygote formation and during the firsts cell divi-
sions, level of methylation at imprinted loci is maintained by ZFP57/TRIM28 complex binding to methylated consensus and recruitment of DNMTs. (C)DNMT3a/b interact
with H3 tail via ADD domain and their activity is permitted only when H3K4 is unmethylated (H3K4me0). This modification is enriched in the DNA methylated allele of
imprinted loci (see text). DNMT3s interact also via a PWWP domain (dotted arrow) to H3K36me3 (enriched in gene bodies of active genes). H3K9me3 methylation is mai-
tained by Setdb1 (continuous arrow). (D)At transcriptionally active imprinted loci the S-phase specific H3.1/H3.2 histones are exchange for the cell cycle independent
H3.3 histone. The ATRX/Daxx complex is responsible for the exchange of H3.1/3.2 with H3.3 (dotted arrow). ATRX bind H3K4me0 via an ADD domain and interact also
with to H3K9me3. Daxx recruit Setdb1 that maintain H3K9me3 methylation (continuous arrow). Re-draw from Messerschmidt et al. 2014 and Voon and Gibbons 20168,91
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behaviors regardless of whether the colony was founded by
an Africanized or European queen.136 Reciprocal crosses by
Guzman-Novoa et al. also showed F1 workers with African-
ised paternity to have a greater sting response compared
with F1 workers with European paternity. F1 colonies with
European paternity exhibited a response intermediate to
that of control European and Africanised colonies.137

If imprinting is present, one would expect these asymme-
tries in behavioral phenotypes between F1 colonies of a
reciprocal cross. These examples of parent-specific behaviors
are consistent with the theory of imprinting via increased
patrigenic expression or silencing of matrigenic expression.
High expression of patrigenic alleles involved in increased
aggressive behaviors with conspecifics is likely to promote
the lineage of those individuals.137 Whereas matrigenic
alleles of the same genes are benefited when silenced as it
will reduce the costs of increased colony defensive
behaviors.

It is also worth noting a non-social, parasitic wasp (Nasonia
vitripennis) of the same lineage (hymenoptera), also has been
reported to show a “grandfather effect” in which F1 females of
reciprocal crosses of closely related species show mating behav-
iors similar to their paternal heritage.138

Although the heritability of defensive behaviors has been
well recorded, it has been questioned whether there is a suffi-
cient range of empirical studies regarding the effect of imprint-
ing on conflict-resolution behaviors.139 Though more recently,
other examples of potential behavioral effects of imprinting in
social insects have been identified in the reproductive behavior
of honey bees133 and caste allocation and behavior effects in
ants.140,141

A reciprocal cross between 2 honey bee subspecies (Apis
mellifera capensis and A. m. scutellata) found F1 workers
with an A. m. capensis father to produce on average 30%
more ovarioles than F1 workers with an A. m. scutellata
father.133 In the wild, A. m. capensis workers are unique in
the ability to produce reproductive female offspring through
thelytokous parthenogenesis.142 Hence male A. m. capensis
individuals may experiencing an increased “motivation” for
their worker daughters to produce a greater number of
ovarioles and monopolise gyne reproduction. Whereas
founding queens are neither benefited or at a disadvantage
from worker gyne production.

Parent-of-origin specific effects on caste and behavior
have also been reported in ants.140,141 Libbrecht et al.141

conducted Linepithema humile crosses to reveal the propor-
tion of queens and workers produced in a colony as deter-
mined by the paternal lineage. The proportions of queens
and males, and all females and males were affected by the
interaction between parental lineages. L. humile ants from
the same crosses were also used to demonstrate that the
maternal lineage affected the behaviors of efficiency to col-
lect pupae, foraging propensity, and the distance between
non-brood-tenders and brood.140 Similarly, the paternal
lineage influenced 2 other ant behaviors: the efficiency to
feed larvae and the distance between brood-tenders and
brood. Therefore, differences in parental selection pressures
exist, and this observed behavior is highly consistent with
the traits of genomic imprinting.

Parent of origin allele specific expression

Haig’s theory predicts workers reproduction genes should
be imprinted

Haig’s kinship theory predicts different outcomes in terms of
imprinted genes and selfish/selfless behavior depending on the
specific social structure considered. Here we outline the theory
in relation to 2 important species: Apis mellifera (European
honeybee), a single diploid queen mated by multiple haploid
males and Bombus terrestris (Buff-tailed bumblebee), a single
diploid queen mated by a single haploid male. We also discuss
how the theories predictions change for each species depending
on the presence or absence of the queen, referred to as a queen-
right colony or queenless colony respectively (Fig. 3).

Why should a worker (self; Fig. 3) take care of her sisters
instead of reproducing? In haplodiploid species females hatch
from fertilized (diploid) eggs, while males hatch from unfertilized
(haploid) eggs, so the degree of relatedness between offspring is
different for matrigenes and patrigenes. In the case of bumble-
bees, the coefficient of relatedness between self (Fig. 3 right) and
other sisters is r:3/4 (they share 3/4 of their genome on average),
which is higher than their relatedness with their own offspring
(r:1/2), so this may explain their selfless behavior.

These coefficients of relatedness between bumblebee sisters
or toward offspring change when calculated independently
from the perspective of a patrigene and a matrigene. For a pat-
rigene r:1 since all sisters have the same father, while r:1/2 for a
matrigene. In addition, for patrigenes in self, r:0 with any males
produced by the queen. So in a queenright bumblebee colony,
the only chance for the self patrigene to be passed to the next
generation is to favor self reproduction or reproduction by her
sisters (either workers or new queens) at the cost of rearing
fewer brothers. Matrigenes however should be selected to regu-
late self reproduction when it is associated with high costs to
brothers as these genes are less likely to occur in nephews than
they are in brothers.

However, should the singly mated bumblebee queen die and
the self begin to reproduce, a patrigene would have the same
probability to be passed to the next generation either by self or
self’s sisters (r:1/2). Patrigenes should now not experience selec-
tive pressure for reproductive behavior, meaning sterility and
nursing behavior are just as beneficial as reproductive behavior.
For a matrigene the situation is different since this probability
is reduced (r:1/4) in the self’s sisters. So under queenless condi-
tions with self reproducing, matrigenes may be imprinted to
promote reproduction and avoid sterility.

In honeybee colonies queens mate with multiple males, so a
worker (self; Fig. 3 left) has both full sisters and half sisters. The
coefficient of relatedness between self and sisters varies between
r:3/4 for full sisters and r:1/4 for half sisters. From a patrigene
perspective r:1 with full sisters but r:0 with half sisters because
the latter have a different father. To a matrigene half sisters and
full sisters looks the same having both r:1/2. The matrigene in a
worker has an equal (50%) chance of being in a brother as well
as in self’s offspring. Therefore, the matrigene tries to ensure an
equal distribution of her resources among both her sons and
daughters. In a queenright situation once again patrigene may
promote self reproduction because this is the only way to be
passed to the next generation. In a queenless situation self

EPIGENETICS 731



should be selected to begin to reproduce, since the patrigene
(with no relatedness to half sisters and their progeny) will only
increase its fitness if self, or full sisters, reproduce. On the con-
trary, matrigenes having the same degree of relatedness with
both full and half nephews (r:1/4) should be selected to moder-
ate reproduction if this comes at a high cost to half sisters. So
in the case of honey bees when a queen dies and self begin to
reproduce, patrigenes may been imprinted to promote repro-
duction and avoid sterility.

Haig’s kinship theory provides the theoretical basis to pre-
dict genomic imprinting in hymenopteran eusocial insects (e.g.,
A. mellifera, B. terrestris, C. floridanus). These insects have full
epigenetic toolkits including DNMTs and TETs, they display
complex social structures with caste specific behaviors, and dif-
ferences in matrigene-patrigene relatedness due to the haplo-
diploid sex determination, which are all elements that reinforce
the expectation for genomic imprinting. So, is there any evi-
dence for genomic imprinting in hymenoptera?

Evidence for parent of origin allele specific expression

Testing candidate genes using allele-specific (parent-specific)
amplifications, Amarasinghe and colleagues145 identified 2
genes (ecdysone 20-monooxygenase-like and IMP-L2-like) with
parent-of-origin specific expression in B. terrestris. The pattern
of expression was consistent with the prediction of Haig’s kin-
ship theory that genes associated with initiation of worker
reproduction should be paternally expressed in queenright
B. terrestris workers, and genes that inhibit reproduction
should be maternally expressed. Indeed, Ecdysone 20-monooxy-
genase-like, a gene involved in ovary activation,146 was pater-
nally expressed and IMP-L2-like, that was implicated in
inhibition of worker reproduction,147 was maternally expressed.
This expression profile was evocative of a possible genomic
imprinting mechanism at work.

Recently a few studies have looked for parent-specific gene
expression (PSGE), possibly due to genomic imprinting, with

Figure 3. Genetic basis for intragenomic conflict in A. mellifera (left) and B. terrestris (right). In honey bee colonies a single queen (diploid) mates with multiple haploid
males. In bumblebee colonies the queen mates only with a single male. Re-drawn from Queller 2003 and Galbraith et al. 2016.4,143
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interesting results in the honeybee A. mellifera.143,144 These stud-
ies took advantage of reciprocal crosses to investigate the predic-
tion that PGSE should affect reproductive and cooperative
behaviors of non- reproductive workers (Fig. 4). This approach
uncouples parent-of-origin effects from lineage-specific effects,
generating single drone insemination between 2 different line-
ages. In Kocher et al. 2015 the authors used 2 different lineages
from Europe (Apis mellifera carnica) and Africa (A. mellifera
scutellata) while in Galbraith et al. 2016 they used A. mellifera
ligustica from both continents. Crucially for the identification of
any PSGE, the lines used showed behavioral differences and most
importantly they had many single nucleotide polymorphisms
(SNPs) that allowed identification of maternal and paternal
alleles.148 In Kocher et al. 2015, the authors identified only a small
group of significant PSGE, mostly maternally biased, while in
Galbraith et al. 2016, the authors reported an association between
patrigene expression and worker reproduction (Table 1). In
Kocher et al. 2015 the parental allele expression was compared in
queen right guard worker bees (full body), larvae (full body), and
individual forager brains. They found 12 (larvae), 17 (guards),

and 23 (brains) maternally biased genes and 3–4 (guard brains)
paternally biased genes. In this environment (queenright) one
may expect to find imprinted genes that repress worker repro-
duction and mediate social behavior (perhaps reducing aggres-
sion). The adult tissues where it is more likely that genomic
imprinting would result in PGSE could reasonably be the ovary
(being directly affected by changes in reproduction) and the brain
(mediating reproduction related behavior). Indeed one of the
genes in the brain with PGSE was huntingtin that has been asso-
ciated with stinging behavior,137 and a maternally expressed gene
in larvae (Neural Lazarillo) that downregulates insulin signaling,
a pathway important for queen-worker differentiation.149

Most likely a combination of different reasons explained the
small number of maternally biased genes identified in Kocher
et al. 2015. For instance no particular phenotypic or behavioral
difference was imposed on the bees tested. Moreover, full bod-
ies were used for larvae and guards, masking any possible tissue
specific effects (even though they used forager brains with simi-
lar results)(Table 1). But most importantly they suffer from a
strong lineage-of-origin bias that would cloud any other allele-
specific bias. In fact, they suggest that mito-nuclear incompati-
bilities in the hybrids were affecting the results, and more
recently they expand on that observation confirming it.150

In the paper by Galbraith and colleagues, the authors took
advantage of a clear phenotypic and behavioral difference
between African and European bees where African workers
tend to have larger ovaries and become more readily reproduc-
tively active151 (Table 1). These differences allow the kinship
theory prediction that patrigenes should promote reproduction
to be tested. In the reciprocal crosses a strong patrigenic effect
was evident at the phenotypic level. In fact workers from the
reciprocal crosses with African fathers showed an increased
number of ovarioles and were more likely to become reproduc-
tive compared with workers with European fathers. To test for
PSGE, workers from the reciprocal crosses were maintained in
an environment (queenless and broodless) that was inducive to
reproduction, and difference in expression was measured in
ovaries and fat bodies of reproductive and non-reproductive
individuals. In this condition one would expect that regardless
of the lineage-of-origin of the father, patrigenes should be upre-
gulated in both non-reproductive and reproductive workers but
even more so in the latter. Of the 303 identified transcripts with
an allele bias, the number of patrigenes over represented in
sterile and reproductive workers was 143 and 181 respectively
with an additional 12 and 13 matrigenes. These results broadly
confirmed the initial predictions. Genes of the ecdysone-
vitellogenin pathway, controlling egg production, including
vitellogenin (that encode for a yolk precursor protein), showed
paternal expression. Some genes that were paternally biased
only in reproductive workers included yolkless, ecdysone recep-
tor (ECR) and ecdysone-induced protein 75 (E75).

Figure 4. Reciprocal crosses. Females from different lineages (A and B) are crossed
reciprocally with single drones of the opposite lineages (B and A). Because of SNPs
between the lineages maternal and paternal alleles are recognizable in F1. The
global level of expression of maternal (Mat) and paternal (Pat) alleles in a tissue
can be tested by RNA-seq. Parental Bias results in an overexpression of the Paren-
tal allele (Mat or Pat) in both crosses. Lineage Bias results in an overexpression of
the lineage specific allele (A or B). Redraw from Kocher et al 2015.144

Table 1. Comparison of PSGE in 2 Apis mellifera studies, Kocher et al. 2015 and Galbraith et al. 2016.

Kocher et al. 2015 Galbraith et al. 2016

Same subspecies No (A. mellifera carica and A. mellifera scutellata) Yes (A. mellifera ligustica)
Tissue Brain/full body Fat body and ovaries
PSGE Mostly maternally biased expression Mostly paternally biased expression
Association between PSGE and methylation No No
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Comparing transcription of ovaries between reproductively
active and inactive individuals could include an intrinsic source
of noise. In fact, although oocytes are not transcriptionally
active and the on-set of zygotic transcription is usually placed
after egg deposition (5 h after egg laying in the wasp N. vitri-
pennis152), the oocytes include several maternally transferred
mRNA (for a review see153) that may not be represented in tis-
sue from non reproductive individuals.

Both papers provide evidence for parent-of-origin effects in
the progeny, but they offer very different results. This may sug-
gest that PSGE is conditional to the specific context in which
the difference in expression is tested, implying that different
genes may be parentally imprinted in different cell lineages.
PSGE may therefore be revealed only in specific environmental
contexts. For example, an imprinted gene promoting ovary
development, may result in a difference in expression solely
when a worker becomes reproductive in a queenless, broodless
situation and in a specific tissue (e.g., ovary). In the same ani-
mal a gene may be imprinted in one tissue and not in another,
and a difference in expression becomes visible only in a tissue-
specific, condition-specific manner.

How parental allele bias is achieved is still unknown but
some interesting observations can be drawn from these papers.
In mammals, genomic imprinting is often associated with
DNA methylation but Kocher et al. 2015 did not find any asso-
ciation between their parentally biased genes and known meth-
ylated genes (Table 1). We compared Galbraith et al. 2016 list
of PSGE with known methylated genes (taken from67,34,31

and49), not only did we not find a correlation between the 2, in
fact there were zero genes in common between the 2 lists. These
findings have also been mirrored in,154 where only a small list
of genes were found to overlap between Galbraith et al. 2016
PSGE list and gamete/embryo methylated genes from.155 It is
entirely possible little overlap is seen because the samples
between these studies are too varied, PSGE and methylation
may differ depending on tissue and developmental stage. When
investigating the role of methylation in PSGE it is worth noting
epialleles, where the sequence itself determines methylation sta-
tus, can potentially be confused for parent-specific methyla-
tion.156 It is vital that future studies, exploring methylation as a

regulatory mechanisms for genomic imprinting in hymenop-
tera, take this potential confusion into consideration. However,
in hymenoptera, methylation is often found in gene bodies
marking intron-exon junctions and is associated with splicing
more than gene silencing. Chromatin remodelling in the fruit
fly Drosophila melanogaster was associated with parent-of-ori-
gin expression11 and both Kocher et al. 2015 and Galbraith
et al. 2016 identified genes involved in this process. So it is quite
possible that other epigenetic mechanisms (e.g., histone modifi-
cations) are generating the genomic imprinting that provoke
the PSGE observed in these papers.

A molecular future: Prospects

Next generation sequencing technologies have permitted an
extraordinary advance in our understanding of the genetics of
many hymenoptera species in a relatively short time. RNA-seq
and sequencing of bisulfite converted DNA (BS-seq) are power-
ful tools enabling researchers to ask and answer new and
important questions about the distribution and functions of
DNA methylation in hymenoptera as well as to test the predic-
tion of Haig’s kinship theory. As noted above careful analyses
of these data are required, epialleles156 and poor statistical anal-
ysis64 could lead to genomic imprinting being incorrectly
labeled. In fact Wedd et al. 2016 describe a differentially meth-
ylated epiallele (of the gene AmLAM ) in the honeybee, where
an increase in methylation correlated with an increase in gene
expression, but only in certain developmental stages and tissue
types.157 This shows how important it is to take into account
epialleles, splice forms, tissue type and developmental stage
when exploring methylation as a mechanism for genomic
imprinting in insects.

Recently other modifications on cytosines have been
described in many tissues in mammals including 5-hydroxyme-
thylationcytosine (5hmC), 5-formylcytosine (5fC) and 5-car-
boxylcytosine (5caC). TET enzymes can convert 5mC to 5hmC
and further oxidise it to 5fC and 5caC in a possible demethyla-
tion pathway back to unmodified C.38,158,159 5hmC in addition
may be an epigenetic mark on its own160 for example changing
the DNA interaction dynamics of 5mC binding proteins and

Table 2. Useful Technologies for addressing questions of mechanism of GI.

Name Target /Use Characteristic References

RNA-Seq RNA sequence small RNA sequence Returned expression levels and sequence of RNA 198

199Difference in expression Accurate quantification
Alternative splicing

BS-Seq Identify 5hmC Single base resolution 200

Accurate quantification 201

Do not discriminate between 5mC and 5hmC
TAB-Seq oxBS-Seq Identify 5hmC Single base resolution 162

Discriminate between between 5mC and 5hmC when paired with BS-Seq 163

redBS-Seq Identify 5hmC Single base resolution 164

Discriminate between between 5mC and 5hmC when paired with BS-Seq
ChIP-Seq Identify DNA-protein interactions Returns maps of DNA binding for proteins of interest 202

Requires good quality antibodies 203

iChIP Identify DNA-protein interactions Returns maps of DNA binding for proteins of interest 183

Requires good quality antibodies
HT-ChIP Identify DNA-protein interactions Returns maps of DNA binding for proteins of interest 184

Requires good quality antibodies

For a recent review on other omic technologies see204
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functioning as an off-switch.161 The identification of intermedi-
ate C modifications may therefore be important in the context
of rapid re-programming associated with response to environ-
mental changes, tissue specific epigenomes, caste specification,
and genomic imprinting. BS-sequencing cannot discriminate
between 5mC and 5hmC because both are resistant to deami-
nation by sodium bisulfite treatments so until recently whole
genome quantification of 5hmC has been very difficult. New
technologies however are now available to map both 5hmC and
5fC at a genome level with single base resolution.162-164 Tet-
assisted bisulfite sequencing (TAB-Seq) and oxidative bisulfite
sequencing (oxBS-Seq) combined with BS-seq has allowed
mapping of full genome 5hmC at single-nucleotide resolu-
tion,162,163 while reduced bisulfite sequencing (redBS-Seq)
permits identification of 5fC with the same resolution.164 To
increase their statistical and biologic power, future experimen-
tal design should consider carefully both number of indepen-
dent biologic replicates, tissue specificity as well as
developmental and social context.

Although DNA methylation seems to have some conserved
functions between mammals and hymenoptera (e.g., control of
splicing) it is not clear whether its role in genomic imprinting
is shared by the 2 groups. Genomic imprinting is widely found
in mammals165 and plants,166 and imprinted chromosomal
regions have also been identified in insects,167 fish168 and nem-
atodes.169 The epigenetic markers that are most frequently
associated with genomic imprinting are histone modifications.
Methylation of some of histone 3 (H3K9, H3K27, H3K4) and 4
(H4K20) lysines are among the most common modifications
associated with genomic imprinting.170 In particular H3K9me
is a shared feature of imprinting in mammals (see Box 1, Geno-
mic Imprinting: the mammalian way), plants (A. thaliana)171

and insects (Planococcus citri ).172 Even in Drosophila, where
only a small fraction of the genome shows any methylation at
all (0.5% in early embryo173), both H3K9 and H3K4 methyla-
tion are associated with genomic imprinting11,174 suggesting
that these modifications may be part of an ancestral common
mechanism. Chromatin immunoprecipitation sequencing
(ChIP-seq) is a versatile technology that identifies genome wide
DNA-protein interactions175 and has been successfully used to
investigate histone modifications176 and chromatin remodelling
complexes177 as well as RNA polymerase and transcription fac-
tor binding regions.178,179 This approach used in the context of
hymenoptera species could provide key answers regarding
changes in chromatin structure and histone modifications
related to different development stages, caste definition, and
possible mechanisms of genomic imprinting. A limitation of
this approach is that it requires a large sample size (1–10 million
cells) that could be problematic to achieve especially in the
context of environment-specific/tissue-specific epigenetic re-
programming.175,180 Nevertheless, both ChIP and ChIP-seq
have been successfully used in D. melanogaster,181182 and recent
advances in this technologies such as indexing-first ChIP
(iChIP)183 and high- throughput ChIP (HT-ChIP)184 dramati-
cally reduce the amount of cells required and could be adapted
to work in insects.

CRISPR gene editing is one of the most exciting and far
reaching tools available today to the molecular biologist for
manipulation of target genes. CRISPR has been successfully

used in a variety of insect species including Diptera (Drosophila
melanogaster, Anopheles gambiae, Aedes aegypti),185-187

Coleoptera (Tribolium castaneum),188 Lepidoptera (Bombyx
mori ),189 and lately hymenoptera (Nasonia vitripennis, Apis
mellifera, Ooceraea biroi ).190-192 Due to differences in life cycle,
social structure, and ease of laboratory manipulation, some
hymenoptera species may be more suitable than others to sup-
port CRISPR approaches. At the very least this technology
could be used to induce knockout or mutations of genes sus-
pected to be involved in genomic imprinting (e.g., DNMTs,
TETs, Histone modification proteins), but it has also the poten-
tial to facilitate the functional investigation of protein domains
and control target expression. Mimicking an approach that has
been already tested for mammalian DNMTs,193 CRISPR could
facilitate the generation of transgenic flies (D. melanogaster)
expressing hymenoptera genes (e.g., DNMTs, TETs, Histone
modification proteins) in null backgrounds, therefore enabling
their functional characterization, contributing greatly to our
understanding of the mechanism of genomic imprinting. The
functional characterization of DNMTs could also help to
understand why hymenoptera and mammals differ so dramati-
cally in their level of CpG methylation. A possibility is that the
“common” status of hymenoptera DNMTs is to be function-
ally/molecularly inactive or in a “closed” conformation and
require a cofactor(s) to be “open” and/or active. Alternatively,
an unknown cofactor(s) may strongly repress DNMTs limiting
their activity to specific sites. In addition, other epigenetic
mechanisms (e.g., histone modifications) may contribute to the
observed CpG methylation difference between mammals and
hymenoptera, making DNA more or less accessible to DNMTs,
implying in fact that the majority of hymenoptera DNA is
unavailable at any given time/tissue. CRISPR may also permit
the implementation of DNA adenine methyltransferase (Dam)
identification (DamID)194 a powerful technology that has been
used for the identification of chromatin interacting proteins
and other DNA-protein interactions (see Pindyurin et al.,
2016195 for a recent DamID application in D. melanogaster).
Recently a very exciting application of CRISPR-Cas9 technol-
ogy has been used to manipulate the level of methylation of
specific cytosines in a target specific manner. Mammalian cells
were transformed with a catalytic inactive form of Cas9 fused
with either TET1 or DNMT3a along with gRNAs that direct
enzymatic activity in a sequence specific manner.196,197 This
technology, adapted to be used in vivo in hymenoptera, will be
a powerful tool to study the function of specific CpG methyla-
tion and the contribution of DNA methylation to genomic
imprinting, splicing, caste definition, tissue specificity, and
much more.

Using a combination of these technologies in a hypothesis
driven context (e.g., Haig’s kinship theory predictions) will allow
us to explore the mechanism of genomic imprinting in hymenop-
tera. Moreover, it will be possible to explore commonalities as
well as differences between hymenoptera and other insects, mam-
mals, and plants in the mechanism of genomic imprinting.

Closing remarks

The quest for understanding genomic imprinting and the
mechanisms that generate and maintain it in hymenoptera is
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only beginning. Although many questions are still unanswered,
some relevant observations are already possible. Genomic
imprinting may be not a common characteristic to all hyme-
noptera since evidence are lacking for some species (e.g
N. vitripennis) and may be more common in eusocial insects as
initial investigation in A. mellifera suggests. Genomic imprint-
ing may not have a binary status but be very much a variable of
time (developmental time), social context (e.g., caste definition,
queenright or queenless), tissue, and physiologic status. By its
very nature, the epigenetic code (including DNA methylation,
C intermediate status, histone modifications, and more) is plas-
tic and responsive to environmental changes, tissue specific,
and probably variable during development. So it is not far
fetched to suppose that also genomic imprinting, relying on
epigenetic modification for its generation and maintenance,
could be as plastic. The definition of a specific context (e.g., tis-
sue specificity, social context, age) is particularly important for
studies that apply an expression only approach. A poor choice
of tissue and or social context may produce results of difficult
interpretation. Future work therefore will be facing the chal-
lenge of defying with particular care the context of genomic
imprinting investigation and should combine multiple technol-
ogies to investigate differences in expression as well as changes
in epigenetic markers.

Whether DNA methylation is associated with genomic
imprinting in hymenoptera is still an open question; however,
its role in controlling splicing has been supported in different
species in many studies. Alternative splicing could be a possible
target of genomic imprinting where the expression of a splicing
variant is parent-of-origin specific. Examples of sex specific
alternative splicing are found both in the fruit fly
D. melanogaster205 and mammals206 and DNMT1 alternative
exon splicing results in maternal/paternal differential expression
in mammalian germ cells.207 In hymenoptera, DNA methylation
could play a crucial role mediating the inclusion/exclusion of
introns/exons in a parent-of-origin specific manner determining
the parent-of-origin variant expression. The investigation of
other epigenetic markers including intermediate C modifications
and euchromatin signals (e.g., histone modifications) is becom-
ing crucial for the understanding of the mechanism of genomic
imprinting. It is now fundamental to identify the proteins medi-
ating genomic imprinting as well as defining their molecular
functions. This task as challenging as it is, may be facilitated by
the availability of technologies such as CRISPR and Chomatin IP
that allow us to explore the role of target genes as well as whole
genomes. The vast amount of knowledge from mammals, plants,
and Drosophila regarding the genes and histone modifications
involved in genomic imprinting as well as the resources already
available for these species, could serve as a vantage starting point
for the challenges ahead.

Is it possible to generate and maintain gene imprinting with-
out DNA methylation in hymenoptera, and what is the role of
H3K9 and H3K4 methylation and other histone modifications?
What is the relation if any between 5mC, 5hmC and 5fC and
gene imprinting/alternative splicing? Is alternative splicing a
target of genomic imprinting? What are the proteins mediating
genomic imprinting? These are but few of the questions that
need to be answered to understand the mechanism of genomic
imprinting in hymenoptera.

The studies today available143,144 suggest that genomic
imprinting is present in the honeybee A. mellifera but in a very
complex interaction between several variables. Questioning the
prediction of Haig’s kin theory in other species has become
now essential to reveal whether it is a common strategy in euso-
cial insects. Will genomic imprinting be pervasive in other
eusocial insects (e.g., B. terrestris, C. floridanus)?

We think that we are now at the dawn of a very exciting time
having the extraordinary opportunity to dissect the epigenetic
code and genomic imprinting with unprecedented detail and
from both mechanistic and evolutionary points of view using
population genetics and molecular biology approaches. This
will provide answers to many of today’s questions and hope-
fully allow us to ask many more.
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