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Abstract

The blood-brain barrier (BBB), composed of tightly organized endothelial cells, limits the availability of drugs to therapeutic
targets in the central nervous system. The barrier is maintained by membrane bound efflux pumps efficiently transporting
specific xenobiotics back into the blood. The efflux pump P-glycoprotein (P-gp), expressed at high levels in brain endothelial
cells, has several drug substrates. Consequently, siRNA mediated silencing of the P-gp gene is one possible strategy how to
improve the delivery of drugs to the brain. Herein, we investigated the potential of siRNA-chitosan nanoparticles in silencing
P-gp in a BBB model. We show that the transfection of rat brain endothelial cells mediated effective knockdown of P-gp
with subsequent decrease in P-gp substrate efflux. This resulted in increased cellular delivery and efficacy of the model drug
doxorubicin.
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Introduction

Gene silencing by RNA-interference (RNAi) is a relatively new

technology with potential to revolutionize medicine by offering

specific deactivation of genes in mammalian cells [1]. RNAi can be

mediated by intracellular delivery of siRNA (short interfering

RNA) duplexes that binds specifically to complementary mRNA

sequences, leading to degradation of the target mRNA and

inhibition of protein synthesis. siRNA is a polyanionic molecule of

approximately 13 kDa which is rapidly degraded by RNases.

These intrinsic properties of siRNA make the delivery into

mammalian cells a challenge, currently limiting the implementa-

tion of this technology into the clinic [2]. To improve the cellular

delivery of siRNA, several delivery vehicles based on lipids [1,3]

and cationic polymers [4–7] have been developed. Upon mixing

with siRNA, the cationic polymers form spontaneously nanopar-

ticles with siRNA. Among the polymer derived nanoparticles,

most research has been done on delivery vehicles based on

polyethyleneimine [5,6] and chitosan [4,7].

Chitosan is a cationic biopolymer derived from chitin, which is

one of the most abundant biopolymers on Earth [8]. In contrast to

most polycations, chitosan has an excellent biocompatibility, low

toxicity (reviewed in [9]) in addition to being biodegradable

[10,11]. Chitosan is chemically composed of b-(1,4) linked

monomers of N-acetylated D-glucosamine and positively charged

D-glucosamine units, and can be prepared with widely varying

fraction of N-acetylated units (FA) and chain lengths (DPn).

Chitosan can be considered as a family of polysaccharides with

very different functional properties [8]. Therefore, the properties

and efficiency of chitosan-based delivery systems for nucleic acids

are strongly dependent on the structure of chitosan. For instance,

it has been shown that the optimal chitosan for DNA delivery are

different from those required for siRNA delivery [4,12–14]. The

molecular properties of chitosan essential for efficient delivery of

siRNA into mammalian cells have recently been characterized,

showing that more high molecular weight chitosans are required

for efficient for delivery of siRNA as compared to DNA [4,12–14].

We have shown that nanoparticles based on fully de-N-acetylated

chitosans of DPn.50 mediated approximately 90% gene silencing

of the target gene even at low siRNA concentrations and without

toxic effects [4].

The blood-brain barrier (BBB) constitutes an efficient organi-

zation of tight junctions between endothelial cells in the brain

tissues (reviewed in [15]). This barrier prevents paracellular entry

of harmful substances into the brain interstitium and protects cells

in the central nervous system (CNS). In addition, the cellular efflux

pumps form another layer of defence and maintains the BBB by

efficient excretion of specific xenobiotics diffused into or taken up

by the endothelial cells [15]. Consequently, drugs are transported

across the BBB at very low efficiency, and this currently limits the

treatment of e.g. schizophrenia [16], depression [17], brain tumors

[18], HIV [19]and epilepsy [20]. The best characterized drug

efflux pump is P-glycoprotein (P-gp), involved in several anatom-

ical and physiological barriers [21–25] and also in cancer cell drug
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resistance [26–29]. Previous work on strategies to avoid P-gp

mediated drug efflux at the BBB includes the use of specific

inhibitors [30], altering the gene regulation [31] and lipid

mediated drug transport to increase the cellular uptake [32]. In

addition, repeated injections of naked siRNA in mice in vivo has

recently been shown to significantly reduce the expression of P-gp

in brain endothelial cells [33].

In this work, we have investigated whether siRNA-mediated

silencing of P-gp lead to improved drug delivery in an in vitro BBB

model. First, we evaluated the siRNA-chitosan nanoparticle

uptake and transfection efficiency in RBE4 cells; a cell line of

endothelial origin derived from rat brain tissue and commonly

used as a BBB model [34,35]. Following the knockdown of P-gp in

the RBE4 cells we studied whether the silencing lead to reduced

efflux and increased intracellular accumulation of the P-gp

substrates rhodamine 123 (R123) and doxorubicin, used herein

as model drugs. We show that P-gp silencing using chitosan-

siRNA nanoparticles resulted in improved delivery and efficacy of

doxorubicin, indicating that this strategy can be suitable to

improve the drug delivery into the CNS.

Materials and Methods

A more detailed description of the materials and methods can

be found in Supporting Information S1.

siRNA
The following siRNA sequences used in this study were

predesigned and supplied by Ambion: anti-P-gp (Silencer Select,

sense 59-GCUGGUAUUUGGGCAAAGAtt-39, antisense 59-

UCUUUGCCCAAAUACCAGCtg-39), anti-GAPDH (Silencer

Select) in addition to a non-targeting (NT) siRNA sequence

(Silencer Select, Negative Control #1). For flow cytometry and

confocal microcscopy (CLSM), a NT Alexa-647 conjugated

siRNA duplex (AllStars Negative Control, Qiagen) was used.

Chitosan
The fully de-N-acetylated chitosan (FA,0.002) used in this study

was prepared in our laboratory from a commercial chitosan with

FA 0.01 (Pronova Biopolymers) by heterogenous de-N-acetylation,

as previously described [36]. The chitosan characteristics are listed

in Table 1.

Preparation of siRNA-chitosan nanoparticles
Formulations with different amino/phosphate (N/P) ratios were

prepared by a self-assembly method. A solution of siRNA was

diluted with sterile nuclease free water (5 Prime). Subsequently,

chitosan was added from a sterile solution during vortex mixing.

The assembled nanoparticles were incubated for 30 min at room

temperature before transfection.

Nanoparticle tracking analysis
The nanoparticle concentrations were determined using nano-

particle tracking analysis (NTA) on a NanoSight LM10 (Nano-

Sight) at a siRNA concentration of 500 nM. Measurements were

performed in MQ water at room temperature using the viscosity of

water in the calculations. The CCD camera was operated and

video was captured with the software NTA 2.0.

Cell culture
The immortalized rat endothelial cell line RBE4 [35] was kindly

provided by Prof. Tore Syversen (Dept. of Neuroscience, NTNU).

The cells were grown in alpha MEM (aMEM, Gibco, Invitrogen)

supplemented with 10% FBS, 300 mg/mL G418 selection

antibiotic (Sigma) and 1 ng/mL basic fibroblast growth factor

(Invitrogen). When seeding cells for experiments, growth media

supplemented with 100 U/mL of penicillin and streptomycin

(PEST, Sigma) was used. The cells were cultured on surfaces

coated with rat tail type I collagen (BD Biosciences) at 37uC in a

humidified atmosphere with 5% CO2.

Transfection
Cells were seeded in tissue culture wells (Corning) 24 h prior to

experiments in densities with approximately 50–75% confluency

on the day of transfection. The nanoparticles assembled in water

were diluted with an equal volume of Opti-MEM (Gibco,

Invitrogen), supplemented with 270 mM mannitol (Sigma) and

20 mM HEPES (Sigma) for adjustment of the osmolarity to

300 mOsm/kg and the pH to 7.2. Prior to adding the

nanoparticles, the cells were washed and briefly incubated with

Hank’s balanced salt solution (HBSS, Gibco, Invitrogen) at 37uC
and 5% CO2. Next, the HBSS solution was removed and

nanoparticle formulations were added to each well in 96-well

plates. The formulations were removed after 5 h of incubation and

replaced by growth media supplemented with PEST.

Rhodamine 123 efflux assay
Two days after transfection with anti-P-gp siRNA, cells were

incubated with the P-gp substrate rhodamine 123 (R123, Sigma).

A 10 mM R123 solution diluted in Opti-MEM was added to the

cells. After 45 min of incubation, R123 was removed and replaced

with growth medium. Two hours after removing the R123, cells

were prepared for analysis by flow cytometry or confocal laser

scanning microscopy (CLSM).

Doxorubicin delivery and metabolic activity assay
One day after transfection with anti-P-gp siRNA, the RBE4

cells were added growth medium with concentrations of the P-gp

substrate, and DNA intercalating agent, doxorubicin (Pharmacia)

ranging from 0 to 5 mM. The cells were incubated with

doxorubicin for two days before the effect on metabolic activity

was measured using an Alamar Blue assay (Invitrogen). The

Alamar Blue assay reagent diluted in growth medium without

phenol red was added to the cells and the sample absorbances

were measured 4 h after adding the assay reagent using a

spectrophotometer (Molecular Devices) at 570- and 600-nm.

The metabolic activities of the cells were determined from the

fraction of Alamar Blue reagent that was turned over during a 4 h

incubation period.

The evaluation of intracellular doxorubicin delivery by flow

cytometry and CLSM was performed by incubating the cells in

growth medium with 50 mM doxorubicin for 3 h before analysis.

Table 1. Molecular characterization of the chitosan used in
the study.

DPn
Mn Mw PDI FA

kDa kDa

375 75.1 203 2.7 ,0.002

The weight and number average of the molecular weight (Mw, Mn) and the
polydispersity index (PDI) were analyzed by SEC-MALLS. The fraction of N-
acetylated units (FA) was determined by 1H NMR.
doi:10.1371/journal.pone.0054182.t001
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Flow cytometry
Cellular uptake of siRNA, R123 efflux and doxorubicin delivery

were evaluated using a Gallios flow cytometer (Beckman Coulter).

The obtained data were analyzed and visualized using the Kaluza

software package (Kaluza Flow Cytometry Analysis v1.1, Beckman

Coulter).

The cellular uptake of siRNA was determined by transfection

with Alexa-647 conjugated siRNA. After incubating with nano-

particles for 4 h, the cells were washed with PBS and further

incubated with aMEM for 30 min and heparin supplemented

aMEM (1 mg/mL, Sigma) for another 30 min. The cells were

then washed in PBS (Gibco, Invitrogen), trypsinized, resuspended

in ice-cold PBS supplemented with 5% FBS and kept on ice until

the time of analysis.

Intracellular R123 and delivery of doxorubicin was measured

48 h after transfection with anti-P-gp siRNA as previously

described.

The R123 and doxorubicin or Alexa-647 treated cells were

excited using a 488 nm or 633 nm laser line, respectively. Emitted

light was collected at FL1 (R123), FL2 (doxorubicin) or FL6

(Alexa-647) using 525/40 nm, 575/40 nm or 660/20 nm band

pass filter, respectively. The relative amounts of intracellular

Alexa-647, R123 or doxorubicin were estimated from the median

FI of the analyzed cells.

Real-time quantitative reverse transcriptase PCR
Knockdown of the ubiquitously expressed endogenous gene

GAPDH (Glyceraldehyde-3-phospate dehydrogenase) and P-gp

was measured at mRNA level using the ABI 7500 real-time PCR

system (Applied Biosystems). The mRNA was harvested, and

cDNA was synthesized and amplified using the Cells-to-CT kit

(Applied Biosystems) as described in the manufacturer’s protocol.

Reverse transcription was performed at 37uC for 60 min. Real-

time quantitative reverse transcriptase PCR (qRT-PCR) was

performed using the following cycle conditions: 95uC for 10 min,

40 cycles at 95uC for 15 s and 60uC for 1 min. The primers that

were used are described in Table 2.

The primer efficiencies were determined using standard curves.

The percentage of mRNA expression relative to untreated cells

was calculated using the comparative Ct method, where the target

sample was normalized to endogenous b-actin.

GAPDH protein activity assay
The effect of transfection with anti-GAPDH siRNA on the

GAPDH protein activity was measured using the commercial

available KDalert GAPDH assay kit (Ambion) according to the

manufacturer’s protocol. The amounts of lysate and assay reagents

were halved, and measurements were performed in half-area 96-

well plates (Corning) at 615 nm using a spectrophotometer.

CLSM
RBE4 cells were seeded onto type I collagen coated 8-chamber

microscopic slides (Ibidi) and transfected with Alexa-647 labeled

siRNA or anti-P-gp siRNA with subsequent addition of R123 or

doxorubicin as described previously. At the time of analysis, the

cells were added 5 mg/mL of CellMask plasma membrane stain

(Invitrogen) diluted in aMEM, as described in the manufacturer’s

protocol. Live cells were examined using a LSM 510 (Carl Zeiss)

confocal laser scanning microscope equipped with a c-Apochro-

mat 406/1.2 NA W corr objective. R123 and doxorubicin were

excited using 488 nm argon, CellMask Orange was excited using

543 nm HeNe and Alexa-647 and CellMask Deep Red were

excited using a 633 nm HeNe laser line. The emitted light was

collected using 525/25 nm band pass (R123), 590/25 band pass

(CellMask Orange and doxorubicin) or 650 nm long pass

(CellMask Deep Red) filters. The acquired images had resolutions

of 5126512 pixels.

Statistical analysis
The measurements were collected and expressed as mean values

6 standard deviation (s.d.). Statistical differences between raw

data were investigated using the SigmaPlot 11.0 software package

with one-way ANOVA in conjunction with a multiple comparison

test (Holm-Sidak).

Results

Transfection of the RBE4 cell line
The aim of this study was to determine whether increased drug

delivery to brain endothelial cells could be obtained by silencing P-

gp expression using siRNA-chitosan nanoparticles. The nanopar-

ticles were assembled from a fully de-N-acetylated chitosan of

intermediate chain length (Table 1) that we have previously found

to be optimal for siRNA delivery and transfection in mammalian

cells [4]. The nanoparticles formed using this chitosan were

evaluated for their ability to transfect the RBE4 cell line,

commonly used as a BBB model.

Figure 1A-C shows the internalization of Alexa-647 conjugated

siRNA nanoparticles with varying amino/phosphate (N/P) ratio.

The amount of internalized siRNA depended both on the N/P

ratio of the formulation and the concentration of siRNA. As shown

in Figure 1A, formulations with a N/P ratio of 10 showed

increased uptake with increasing siRNA concentration whereas

the formulations with N/P ratios of 30 and 60 showed relatively

stable uptake, independent on the siRNA concentrations.

Surprisingly, at a constant siRNA concentration of 100 nM, the

amount of internalized siRNA decreased with increasing N/P

(Figure 1A and B) as also confirmed from the CLSM images

shown in Figure 1C.

Since the uptake of siRNA nanoparticles depended on N/P

ratio of the formulation, we measured the nanoparticle concen-

trations as a function of NP ratio by nanoparticle tracking analysis

to determine the amount of particles per volume of the

formulations. However, as shown in Figure 2, the particle

concentrations were not significantly different at the varying N/

P ratios with between 2 and 2.5N108 particles/mL in the three

formulations.

The knockdown efficiency of the nanoparticles was determined

using anti-GAPDH siRNA targeting the ubiquitously expressed

endogenous gene GAPDH in the RBE4 cells. Preliminary

experiments revealed that the highest knockdown efficiency was

Table 2. The qRT-PCR primers used in the study.

Primer Direction Sequence Supplier

target (59-39)

GAPDH Forward TCGGTGTGAACGGATTTG MWG Operon

GAPDH Reverse CCGTGGGTAGAGTCATACTGG MWG Operon

P-gp Forward AGCCCTGTTCTTGGACTG Sigma

P-gp Reverse AGTTCTGATGGCTGCTAAGAC Sigma

b-actin Forward TCCACCTTCCAGCAGATGTG MWG Operon

b-actin Reverse GCATTTGCGGTGCACGAT MWG Operon

doi:10.1371/journal.pone.0054182.t002
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obtained with nanoparticle formulations with a N/P of 30 or

higher (data not shown), despite lower uptake compared to

formulations with a N/P of 10. Therefore, further experiments

were performed with nanoparticles with N/P of 30. The results in

Figure 3 show that levels of both GAPDH mRNA and protein

activity are reduced two days post-transfection to approximately

25 and 40% relative to the untreated cells, respectively. The

transfection with naked siRNA or chitosan-formulated NT siRNA

resulted in levels of GAPDH comparable to the untreated cells,

indicating that the nanoparticles were non-toxic.

P-gp silencing efficiency and the effect on substrate
efflux

Following confirmation that the siRNA-chitosan nanoparticles

were able to efficiently transfect the RBE4 cells, the particles were

assembled with anti-P-gp siRNA to silence the P-gp drug efflux

pump. As shown in Figure 4, the transfection resulted in reduced

P-gp mRNA levels to approximately 20% compared to the

untreated cells. In addition, no significant change in mRNA

expression was observed from the mock transfection with chitosan
(M) or NT siRNA delivery, indicating absence of non-specific

effects from the chitosan or nanoparticles, respectively.

Next, the fluorescent P-gp substrate R123 was used as a

molecular marker to investigate the reduction in cellular efflux in

the transfected cells. Cells were transfected using formulations of

different siRNA concentrations in order to investigate the effect of

the siRNA concentration on the degree of P-gp mediated efflux.

The results are given in Figure 5A, showing an extensive increase

in intracellular R123 when the siRNA concentration was

increased to and above 50 nM. The amount of accumulated

R123 peaked when the cells were transfected with 100 nM siRNA,

and there was no additional effect when further increasing the

concentration. The transfection with NT siRNA resulted in low

levels of intracellular R123, similar as for the untreated cells (data

not shown). Based on these results, a concentration of 100 nM

siRNA was used to minimize P-gp mediated substrate efflux by

gene silencing.

Figure 1. Chitosan-mediated siRNA uptake in RBE4 cells. A) Levels of internalized Alexa-647 conjugated siRNA at different nanoparticle N/P
ratios and siRNA concentrations expressed as the median fluorescence intensities (FI) of the analyzed cells. Data represents mean values 6 s.d., n = 3.
B) Representative histograms of siRNA fluorescence from flow cytometry analysis of untreated cells, cells with added naked siRNA or transfected with
nanoparticles having N/P 10, 30 or 60 and a siRNA concentration of 100 nM. C) Representative CLSM images of a) untreated cells, b) cells with added
naked siRNA or nanoparticles having N/P c) 10, d) 30 or e) 60 and a siRNA concentration of 100 nM. The cellular plasma membrane was stained with
CellMask Orange (blue) and the fluorescent siRNA is indicated with the red color. The bar size is 20 mm.
doi:10.1371/journal.pone.0054182.g001

Figure 2. Particle concentrations measured by nanoparticle
tracking analysis. The samples consisted of complexes in formula-
tions having N/P 10, 30 or 60 and a siRNA concentration of 500 nM.
Data represents mean values 6 s.d., n = 3.
doi:10.1371/journal.pone.0054182.g002

Figure 3. Knockdown of GAPDH measured by levels of mRNA
and protein activity. The nanoparticles had a N/P ratio of 30 and a
concentration of 50 nM GAPDH targeting (T) or non-targeting (NT)
siRNA. Cells were also treated with naked siRNA (siRNA). Data
represents mean values 6 s.d., n = 3.
doi:10.1371/journal.pone.0054182.g003
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To characterize the P-gp knockdown kinetics in the RBE4 cells,

R123 efflux in transfected cells were monitored for up to five days.

The results presented in Figure 5B and C show that after an initial

weak effect one day post-transfection, the maximum accumulation

of R123 was recorded after two days. The efflux then increased,

but the level of intracellular R123 remained high until day four

when it returned to similar level as one day post-transfection. If

longer silencing is required, it is possible to further reduce the

substrate efflux and increase the duration of knockdown by

repeated transfections (data not shown). The intracellular distri-

bution of R123 is visualized by CLSM in Figure 5D, showing a

clear accumulation of R123 in the majority of the transfected cells.

In contrast, the untreated cells and cells transfected with NT

siRNA were R123 negative, confirming the functional efflux

mediated by P-gp.

The effect of P-gp silencing on drug efficacy and delivery
To determine the effect of increased intracellular delivery of P-

gp substrate drugs on the cellular physiology, differences in

metabolic activities after treatment with the DNA intercalating

agent doxorubicin was evaluated. As shown in Figure 6A, cells

with P-gp knocked down showed considerably higher sensitivity to

doxorubicin, even at doxorubicin concentrations as low as 0.5 mM.

The efficacy of doxorubicin treatment was even higher at 1 mM,

where the cells transfected with anti-P-gp siRNA at 100 nM

showed a 60% reduction in metabolic activity compared to the

cells with normal P-gp expression. A further increase in the

concentration of doxorubicin also resulted in a reduction of the

metabolic activity in the untreated cells. The cells showed higher

sensitivity to doxorubicin when they were transfected with siRNA

concentrations of 100 nM as compared to 50 nM (Figure 6A).

Furthermore, the effect of doxorubicin on the metabolic activity

after transfecting with NT siRNA at 100 nM was similar as for the

untreated cells. When no doxorubicin was added to the growth

medium, the transfected cells were as metabolically active as the

untreated cells, indicating that the nanoparticles were non-toxic

(data not shown).

The intracellular delivery of doxorubicin was further evaluated

by flow cytometry as shown in Figure 6B and C. The measured

median FI values were doubled in cells transfected with anti-P-gp

siRNA as compared to the untreated or NT transfected cells. The

delivery of doxorubicin was also visualized by CLSM (Figure 6D

and E). The CLSM images show an apparently homogenous

cytoplasmic distribution of doxorubicin both in the untreated and

NT transfected cells. However, the images also show that

doxorubicin was only able to accumulate and to intercalate with

DNA in the nucleus of cells where P-gp was silenced.

Discussion

The xenobiotic efflux pump P-gp is expressed in cells at the

anatomical and physiological barriers in mammalian tissues and

also in malignant cells [21–26]. Several of the identified P-gp

substrates are drugs [37] and consequently a considerable research

Figure 4. Knockdown of P-gp measured at mRNA level by qRT-
PCR. The cells were transfected with only chitosan (mock, M) or
nanoparticles having N/P 30 and P-gp targeting (T) or non-targeting
(NT) siRNA concentrations of 100 nM. Cells were also treated with
naked siRNA (siRNA). Data represents mean values 6 s.d., n = 3.
doi:10.1371/journal.pone.0054182.g004

Figure 5. The effect of P-gp knockdown on R123 efflux. Intracellular levels of R123 as a function of A) siRNA concentration and B) days post-
transfection. The relative levels of R123 are expressed as the median FI of the cells. The cells were transfected with nanoparticles having N/P 30 and P-
gp targeting (T) or non-targeting (NT) siRNA concentrations of 100 nM. Data represents mean values 6 s.d., n = 3. C) Representative histograms of
R123 fluorescence from flow cytometry analysis of untreated cells or cells transfected with nanoparticles having N/P 30 and a siRNA concentration of
100 nM at one to five days post-transfection. D) Representative CLSM images after incubation with R123 post-transfection with a) T or b) NT siRNA or
c) untreated cells. The cells were transfected with nanoparticles having N/P ratios of 30 and a siRNA concentration of 100 nM. The cellular plasma
membranes were stained with CellMask Deep Red (blue) and R123 fluorescence is indicated with the green color. The bar size is 20 mm.
doi:10.1371/journal.pone.0054182.g005
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effort has focused on finding ways to overcome drug efflux from P-

gp expressing cells. Temporary silencing of the P-gp gene by RNAi

is a possible way to inhibit the efflux, and this approach has been

applied to overcome drug resistance in cancer cells by improving

the delivery of chemotherapeutic agents [27–29,38]. Recently, a

preliminary study showed a reduction in P-gp expression in brain

endothelial cells in vivo by repeated hydrodynamic injections of

naked siRNA intravenously in mice [33], but extremely high doses

of siRNA were used in this study. We hypothesized that the

delivery of siRNA formulated in nanoparticles may represent a

more rational approach as the nanoparticles will protect siRNA

from degradation and facilitate the uptake, thereby allowing the

use of lower doses. The naturally derived biopolymer chitosan has

been chosen as a delivery vehicle for anti-P-gp siRNA primarily

due to its favourable safety profile which is an essential prerequisite

for drug delivery into the CNS. We demonstrate herein that

siRNA-chitosan nanoparticles can efficiently silence the P-gp gene

expression in rat brain endothelial cells which leads to reduced

substrate efflux and improved drug delivery.

The chitosan mediated efficient uptake of siRNA by the RBE4

cells (Figure 1A–C). As shown in Figure 1A, the degree of

nanoparticle uptake depended on the N/P ratio. Since the

formulations prepared at different N/P ratios contained similar

number of particles per volume (Figure 2), and were of similar size

(data not shown), it can be assumed that the higher the N/P ratio,

the higher is the excess of chitosan in the formulation. The excess

of free unbound chitosan at higher N/P ratios may inhibit the

uptake of siRNA by binding to cellular surfaces and preventing the

attachment of siRNA-chitosan nanoparticles. This is consistent

with the increased siRNA uptake observed at the lower N/P ratios.

However, despite higher uptake, nanoparticles with low N/P

ratios showed lower transfection efficacy (data not shown). This

may be related to low stability of these nanoparticles and

premature intracellular dissociation of siRNA [39–41]. Thus, we

chose the intermediate N/P ratio of 30 for the assembly of the

nanoparticles in this study.

The gene expression analysis of GAPDH and P-gp shown in

Figure 3 and 4, respectively, confirmed the ability of the siRNA-

chitosan nanoparticles to efficiently silence genes in the RBE4 cell

line with a reduction in mRNA levels of approximately 80%

compared to the untreated cells. Chitosans have repeatedly and by

independent groups been shown to mediate efficient nucleic acid

delivery in vitro, and is often the gene delivery vehicle of choice

[4,13,14,42]. Furthermore, the NT siRNA and mock transfections

indicated that there were no side-effects from the transfections

affecting the gene expression or the viability of the cells. This is in

agreement with several studies illustrating that chitosan is a siRNA

delivery agent with low cytotoxicity [4,39,41].

The concentration-response curve illustrated in Figure 5A

shows a considerably lower R123 efflux as the concentration of

siRNA increased from 10 to 100 nM. A concentration of 50 nM

has been previously reported sufficient for gene knockdown when

using fully de-N-acetylated chitosans as delivery vehicles [4].

However, this may depend on the cell line and the expression of

the target gene. The P-gp gene is known to be relatively weakly

expressed in the RBE4 cell line [43] and this was confirmed by

Figure 6. The effect of P-gp knockdown on doxorubicin efficacy and delivery. A) Metabolic activity of cells after two days of incubation
with doxorubicin. The cells were transfected with nanoparticles having N/P 30 and P-gp targeting (T) or non-targeting (NT) siRNA concentrations of
50 or 100 nM. Data represents mean values 6 s.d., n = 4. B) Intracellular uptake and accumulation of doxorubicin expressed as the median FI of the
cells. The cells were transfected with nanoparticles having N/P 30 and T or NT siRNA concentrations of 100 nM. Data represents mean values 6 s.d.,
n = 3. C) Representative histograms of doxorubicin fluorescence from flow cytometry analysis of untreated or transfected cells. D) Representative
CLSM images after transfection with a) T or b) NT siRNA or c) untreated cells. E) Enlarged images of RBE4 nuclei. The cells were transfected with
nanoparticles having N/P 30 and a siRNA concentration of 100 nM. Doxorubicin fluorescence is indicated with the green color. The bar size is 20 mm.
doi:10.1371/journal.pone.0054182.g006
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qRT-PCR in our study (data not shown). Silencing a weakly

expressed gene could require a higher concentration of siRNA

before the effect is observed due to strong regulation and low

availability of target mRNA [44,45]. This was supported by

experiments with transfection of C6 cells with even weaker

expression of P-gp compared to the RBE4 cells (data not shown).

In this case, efficient silencing of P-gp was not achieved despite

promising preliminary GAPDH silencing experiments at low

siRNA concentrations. Furthermore, the knockdown kinetics

presented in Figure 5B and C show that the reduced P-gp

mediated efflux lasted only from one to four days post-transfection.

Such short duration of P-gp knockdown has also been observed in

other studies with different cancer cell lines, where the protein

expression was shown to reach its lowest levels one to two days

after transfection, and recovered after two to three days [28,29]. A

short duration of P-gp down-regulation is beneficial since it allows

rapid re-establishment of the protective function of the BBB after

drug therapy. Although the maximum P-gp knockdown was

observed two days post-transfection, a maximum reduction in P-

gp mRNA was accomplished already one day after transfection.

The delay in effect on P-gp efflux is probably caused by the

relative long half-life of the P-gp protein, reported to be 14–17 h

[46].

The reduction in P-gp mediated efflux following successful

siRNA transfection improved the delivery and considerably

increased the efficacy of doxorubicin (Figure 6). As shown in

Figure 6A the cells were more sensitive to doxorubicin when they

were transfected with 100 nM anti-P-gp siRNA than 50 nM. On

the other hand, it is apparent from Figure 6B and C that

comparable amounts of doxorubicin were internalized at both

concentrations of siRNA. Probably, the cells have been saturated

with the dose of doxorubicin (50 mM) used in the flow cytometry

and CLSM experiment, where a higher dose was used to visualize

the intracellular doxorubicin. Consequently, no detectable differ-

ences in doxorubicin delivery are observed. In contrast, the

relatively low doses of doxorubicin used in the metabolic activity

assay are unable to saturate the cells and will be efficiently effluxed

or accumulated, depending on the degree of achieved knockdown.

As shown in Figure 6D and E, doxorubicin was located

intracellularly both in transfected and non-transfected cells.

However, the drug was only able to intercalate with DNA in the

nucleus after P-gp knockdown. This suggests that P-gp is located

both at the cellular membrane, as also indicated from the R123

experiments (Figure 5), and at the nuclear envelope. Indeed, the

expression and localization of P-gp in RBE4 cells have previously

been confirmed at both sites [47]. Furthermore, doxorubicin has

been shown to depend on P-gp silencing for delivery to the nucleus

in the multi-drug resistant cell line KB-V1 [27]. This illustrates

that an improved delivery of drugs does not necessarily enhance

their efficacy, as efflux pumps can still prevent them from reaching

their final destination, such as the nucleus in the case of

doxorubicin. Similarly, the dose of drugs needed to obtain a

therapeutic window could be considerably reduced if a larger

fraction reaches its target, which in turn will reduce potential

deleterious side effects from the drug.

Any P-gp substrate can also be a substrate for other drug efflux

pumps, e.g. R123 has been reported to be transported by Mrp1

[48], which is also expressed in RBE4 cells [43]. Therefore, even

though the P-gp is successfully downregulated, efflux by other

pumps may still occur. In addition, P-gp is encoded by two

different genes in rodents, mdr1a and mdr1b, with partly

overlapping substrate specificity and efflux efficiency [49]. In this

study we focused on delivering siRNA targeting mdr1a, as we could

not measure any effect on R123 efflux when silencing mdr1b (data

not shown). Despite the possibility of having to deal with several

different drug efflux pumps to improve the delivery of a certain

drug, this possibility could be solved by assembling nanoparticles

with a pooled library of siRNAs targeting several different mRNA

sequences.

Conclusions

We show that siRNA-chitosan nanoparticles are able to

efficiently silence the P-gp gene in a BBB model. The knockdown

resulted in a considerable reduction in P-gp substrate efflux and

improved delivery and efficacy of doxorubicin, which we used as a

model drug. Our results suggest that a nanoparticle mediated

delivery of anti-P-gp siRNA could be a feasible approach to

improve the treatment of various diseases in the CNS where drug

delivery is currently limited by the BBB.
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36. Tømmeraas K, Vårum KM, Christensen BE, Smidsrød O (2001) Preparation
and characterisation of oligosaccharides produced by nitrous acid depolymer-

isation of chitosans. Carbohydr Res 333: 137–144.
37. Sauna Z, Smith M, Müller M, Kerr K, Ambudkar S (2001) The Mechanism of

Action of Multidrug-Resistance-Linked P-Glycoprotein. J Bioenerg Biomembr

33: 481–491.
38. Matsui Y, Kobayashi N, Nishikawa M, Takakura Y (2005) Sequence-Specific

Suppression of mdr1a/1b Expression in Mice via RNA Interference. Pharm Res
22: 2091–2098.

39. Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, et al. (2006) RNA
Interference in Vitro and in Vivo Using a Chitosan/siRNA Nanoparticle

System. Mol Ther 14: 476–484.

40. Rojanarata T, Opanasopit P, Techaarpornkul S, Ngawhirunpat T, Rukta-
nonchai U (2008) Chitosan-Thiamine Pyrophosphate as a Novel Carrier for

siRNA Delivery. Pharm Res 25: 2807–2814.
41. Techaarpornkul S, Wongkupasert S, Opanasopit P, Apirakaramwong A,

Nunthanid J, et al. (2010) Chitosan-Mediated siRNA Delivery In Vitro: Effect

of Polymer Molecular Weight, Concentration and Salt Forms. AAPS
PharmSciTech 11: 64–72.
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