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Dynamic simulations are necessary for understanding the mechanism of how biochemical networks generate robust properties
to environmental stresses or genetic changes. Sensitivity analysis allows the linking of robustness to network structure.
However, it yields only local properties regarding a particular choice of plausible parameter values, because it is hard to know
the exact parameter values in vivo. Global and firm results are needed that do not depend on particular parameter values. We
propose mathematical analysis for robustness (MAR) that consists of the novel evolutionary search that explores all possible
solution vectors of kinetic parameters satisfying the target dynamics and robustness analysis. New criteria, parameter
spectrum width and the variability of solution vectors for parameters, are introduced to determine whether the search is
exhaustive. In robustness analysis, in addition to single parameter sensitivity analysis, robustness to multiple parameter
perturbation is defined. Combining the sensitivity analysis and the robustness analysis to multiple parameter perturbation
enables identifying critical reactions. Use of MAR clearly identified the critical reactions responsible for determining the
circadian cycle in the Drosophila interlocked circadian clock model. In highly robust models, while the parameter vectors are
greatly varied, the critical reactions with a high sensitivity are uniquely determined. Interestingly, not only the per-tim loop but
also the dclk-cyc loop strongly affect the period of PER, although the dclk-cyc loop hardly changes its amplitude and it is not
potentially influential. In conclusion, MAR is a powerful method to explore wide parameter space without human-biases and to
link a robust property to network architectures without knowing the exact parameter values. MAR identifies the reactions
critically responsible for determining the period and amplitude in the interlocked feedback model and suggests that the
circadian clock intensively evolves or designs the kinetic parameters so that it creates a highly robust cycle.
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INTRODUCTION
A goal of systems biology is the generation of a coherent

understanding of the mechanisms of how the integration of

various components generates functional and robust systems in

living organisms [1–3]. The importance for robustness is

a functional criterion for performance of biochemical networks.

Robustness is the ability to resume successful operation in the

presence of signal and system uncertainties. Descriptions of the

mechanisms by which biochemical networks are robust in the face

of parameter uncertainty, environmental changes, and stochastic

fluctuations have been published [3–6]. Different types of feedback

loops and pathway redundancies are involved in enhanced

robustness. Sensitivity analysis of mathematical models describing

complex networks could allow for linking robustness properties to

network structure by measuring the degree to which parametric

perturbations change various target dynamics [7,8].

In principle, both molecular architecture and the values of

kinetic parameters determine the robustness of dynamic systems.

In biological systems, molecular structures are being built, but it is

still hard to know the exact values of kinetic parameters in vivo. The

values of kinetic parameters vary with time and environment and

the measured values in vitro are often different from those in vivo. In

most studies, a particular set of local kinetic parameters has been

determined for convenience so that dynamic models reproduce

target data. It is necessary to exclude the possibility that the

calculated results are dependent on variations in the values

assigned to kinetic parameters. The dependency of robustness on

parameter values has been investigated by only a few reports. To

compare some performances of alternative mathematical models,

Alves et al [9] statistically searched their parameter values so that

they make the other dynamic properties the same. Stelling et al

[10] studied dynamic properties linked to network structure in the

per-tim feedback loop model by systematically investigating the 2D-

parameter space and suggested some influential process de-

termining the oscillator features. These previously presented

random or systematic searches are a great step for approaching

to global analysis, but they restricted the search space of

parameters or the size of models due to calculation complexity

and few criteria have been presented to determine whether the

search is exhaustive.

The molecular mechanisms of how circadian clocks generate

robust cycles have extensively been studied and negative feedback

loops are found common structures for producing robust cycles

[11–13]. An interlocked feedback model is typical architecture to

provide robustness of the cycle and synclonization of two clocks to

environmental perturbation or parameter uncertainty[14], while

critical reactions responsible for determining cycle features such as

amplitude and period remain to be seen due to experimental

complexity. Generally both network architecture and its associated

parameter values determine the system’s function. For example,
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engineering design requires the tuning process of many parameters

for producing an optimal and highly robust system. However,

neither the optimal values of parameters nor the reactions

critically responsible for a robust cycle are known in circadian

clock systems.

Here, we propose a new strategy, named mathematical analysis

for robustness (MAR), that combines robustness analysis with an

evolutionary search that explores many plausible solutions for

kinetic parameters producing the same dynamic properties. To

search large parameter spaces without any human bias, the two-

step evolutionary method is proposed and novel and rigorous

criteria are introduced that characterize whether the search

approaches an exhaustive level. MAR leads to an understanding of

the global mechanism by which the Drosophila interlocked feedback

system generates the robustness of the circadian cycle without

insisting on the exact values of kinetic parameters.

RESULTS

Mathematical Analysis for Robustness algorithm
To link molecular architecture to robustness we propose MAR as

shown in Figure 1. It consists of two stages: exhaustive search and

robustness analysis. In the former stage, (1) we determine the

target dynamic features that a mathematical model should

simulate, (2) explore all possible solution vectors of kinetic

parameters that reproduce the target features using the two-step

evolutionary search, and (3) test the validity of exhaustive search

(Equations 3, 7). In the latter stage, (4) we simulate the sensitivity

of target features to perturbation of a single parameter

(Equation 8), (5) calculate the robustness to perturbation of

multiple parameters (Equation 13), and (6) identify the critical

reactions responsible for determining target features by combining

both the sensitivity and robustness analyses. Details of the

algorithms are described in Materials and Methods.

Validation of an exhaustive search method by using

a theoretical model
We propose the two-step evolutionary method that consists of the

random search and the subsequent evolutionary search as a fast

and non-biased method (Figure 1BC). To demonstrate the

advantage of the two-step method, we compared it with various

evolutionary searches, such as Unimordal Normal Distribution

Crossover (UNDX), UNDXm, Blend Crossover (BLX), and

Simplex Crossover (SPX) [15–17], by using a theoretical model

(Text S1 and Equations S1-S5 in Text S1). The two-step

method was a best choice for a fast and non-biased search among

available search method (Table S1). To test whether the search

by the two-step method becomes saturated or covers the entire

solution space, we investigated the convergence of the parameters

spectrum width and the variability of solutions (VarS)

(Equations 3, 7, Figure S1). Finally the sensitivity distributions

were numerically calculated. The range of the simulated sensitivity

was consistent with the theoretical range (Equation S3 in Text
S1) and the two-step method identified the potentially influential

parameter (Equation 10, Figure S2). By using a theoretical

model, the two-step method is demonstrated to explore the entire

solution space at a fast speed. The parameter spectrum width and

the variability of solutions are useful measures for the search

process of MAR.

Mathematical model of a biochemical oscillator and

exhaustive search
MAR is applied to the Drosophila circadian clock model as shown in

Figure 2. We have derived mathematical equations from the

interlocked-feedback model developed by Ueda et al. [14], as

shown in Tables 1–3. The target feature of the circadian

oscillator was set as the PER oscillation curves characterized by
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Figure 1. Schematic diagrams of exhaustive search and robustness analysis in MAR. A: A flowchart for MAR. B: The proposed two-step search
method that consists of a random search (RS) and a search by genetic algorithms (GAs). C: How to make the initial populations for a search by GAs.
doi:10.1371/journal.pone.0001103.g001
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the period and the top and bottom of the curves (amplitude).

There are few reliable experimental data that measure the

absolute concentrations for the circadian proteins in Drosophila,

while they have been provided by most literatures as the relative

value to a constant level molecule. Thus, we produce a mathe-

matical but qualitative model that reproduces the intrinsic features

of the circadian cycle and adjust it so that the simulated time

courses of the proteins are consistent with those presented by

commonly employed simulation models, e.g., the PER concen-

tration varies from a few nM to a few dozen nM [18]. To explore

the target PER oscillator, a fitness function was designed and

twelve kinetic parameters were selected as the search parameters

(S[1], A[1] = A[2], R[1] = R[2],V[1], V[2], D[1], P[1], T[1], K[1],

and K[2]). The two-step method was employed. Details of the

fitness function and searches are described in Method

(Equations 14, 15) and the validity of these search parameters

will be verified in the later section (Numerical sensitivity to single

parameter perturbation). One thousand optimized PER oscillators

were obtained by performing 26105 random searches and the

subsequent GAs. We investigated the dynamic features of PER,

dCLK and TIM, where the circadian model was optimized with

regard to the PER cycle (Figures S3, S4). The period for dCLK

or TIM was consistent with that for PER. The amplitude and

mean concentration of PER oscillators varied over a narrow range

of values and the ratio of the amplitude to the mean concentration

was approximately 1.8. The amplitude and mean concentration of

dCLK and TIM varied over a wider range of values than those for

PER, and dCLK and TIM oscillated with ratios of 1.8 and 1.4,

respectively. These results indicate that they are good oscillators

and reproduce the target features. According to experimental data

regarding the circadian oscillator, the ratio of the amplitude to the

mean concentration varies from 1.2 to 2, depending on

experimental conditions. These values of the ration are reasonable

within the range of experimental data.

Characterization of exhaustive search
To characterize whether the search is sufficient or exhaustive we

investigated the convergence for two measures: the parameter-

spectrum width (Equation 3) and the variability in the feasible

solution space of the parameter vectors (Equation 7). Figure 3
shows the changes in the parameter-spectrum width with respect

to the number of solutions. The solutions were added by the

progression of evolutionary searches. For all the search parame-

ters, the parameter spectrum width increased with the number of

solutions and then converged above a solution number of 400.

To reveal the variability of the 12-dimensional parameter

vectors optimized to provide the similar time course for PER, we

classified those solutions by using a hierarchical clustering with the

average linkage method, where the parameter distances

D(P(i),P(j)) were calculated among the solutions (Equation 4).

When the parameter spectra converged at a solution number of

400, we clustered the early 400 solutions into six super-balls, where

the centroid for each cluster is employed as a representative vector.

Here we demonstrate whether the super-balls for those clusters

are sufficient for containing the subsequently optimized solutions

(from 401 to 1000). As shown in Figure 4, we plot VarS

(Equation 7) with respect to the solution number, while the

number of the employed clusters is varied. This figure indicates the

convergence of the variability in solution vectors with respect to

the solution number. By using VarS, we investigate if all the

solutions belong to one of the six clusters. VarS is less than one for

the early 400 solutions when the six clusters are employed. When

solutions were freshly added by the progression of evolutionary

searches, the value of VarS increased, showing that some new

solutions are distant from the centroid of the employed clusters. An

increase in the number of employed clusters decreased the VarS

value, which confirms that the increase in the employed clusters

enlarges the solution space. When all the six clusters were

employed, VarS was saturated close to one. This shows that all the

solutions can be assigned to one of the employed clusters,

suggesting that the search process is saturated at a solution

number of 400.

Numerical sensitivity to single parameter

perturbation
The period and amplitude sensitivities for the PER oscillator were

simulated for 400 optimized solutions. The numerical sensitivity of

period (ST) or amplitude (SA) to variations in a single kinetic

parameter was calculated (Equation 16). Broad distributions of

the absolute sensitivities occur as shown in Figure 5, where the

minimum, maximum and mean values are plotted with respect to

each kinetic parameter. The mean or minimum values indicate

that this model provides a robust property of period and amplitude

to parameter uncertainty. The period sensitivity was less than the

amplitude sensitivity. Applying a threshold value of 1028 to the

minimum sensitivities allowed the division of kinetic parameters

into potentially influential and non-influential categories

(Equation 10). Seventeen potentially influential parameters for

period and amplitude were identified respectively, which were

consistent between them. PER synthesis and degradation (S[1],

S[2], D[1], D[2], D[3], D[6], D[7]), phosphorylation and transport

Figure 2. A schematic diagram of the interlocked feedback system in
the Drosophila circadian clock. In the real biochemical reactions, the
binding of PER-P:TIM to dCLK:CYC suppresses the transcription for PER
and TIM and activates the transcription for dCLK. In this map, PER-P:TIM
directly suppresses the transcription of PER and TIM and activates the
transcription for dCLK. ‘‘:’’ and ‘‘-’’ indicate binding complexes and
modification, respectively.
doi:10.1371/journal.pone.0001103.g002
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for PER (P[1], K[1], T[1], K[2]), TIM synthesis and degradation

(S[3], S[4], D[4], D[5]), and binding of PER-P and TIM (V[1],

V[2]) are potentially influential. It indicates that the effect of every

reaction involving the per-time loop cannot be cancelled in any

possible models. It is reasonable because the per-tim loop is not

redundant. By contrast, the kinetic parameters involving the dclk-

cyc loop are not potentially influential. On the other hand,

a maximum value of period sensitivity was more than 0.3 (7.2 h)

with respect to some kinetic parameters, indicating that not only

network structures but also parameter values are critical for

generating a robust cycle. If an inappropriate set of kinetic

parameters is provided, an oscillation can be damaged by even

a small change in a single parameter. The interlocked feedback is

able to provide robustness to the circadian rhythm when the

kinetic parameters are appropriately tuned.

Numerical sensitivity analysis selected 17 potentially influential

parameters within the provided 12-dimensional space. A question

raises whether these parameters can be potentially influential in

the entire 36 dimensional parameter space. Of course, such

a complete search is impossible due to calculation explosion

inherent of numerical analysis. Instead, an extended search is

performed to investigate how an expansion of a search parameter

space affects the choice of potentially influential parameters, where

the number of search parameters is varied as 3, 6, 9, 12, 16, 25,

and 36. (Table S2 and Figure S5). The exploration with a search

parameter number of #9, a low-dimensional subspace, could not

Table 1. Mathematical equations for the interlocked-feedback system in Drosophila
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mathematical Equations No

d½mRNA(PER)�
dt

~S½1�:
(
½dCLK :CYC(n)�

A½1� )azB½1�

1z(
½PER:TIM(n)�

R½1� )rz(
½dCLK:CYC(n)�

A½1� )azB½1�
{D½1�:½mRNA(PER)�

M1

d½PER�
dt

~S½2�:½mRNA(PER)�{P½1� ½PER�
K ½1�z½PER�{D½2�:½PER� M2

d½PER� P�
dt

~P½1� ½PER�
K½1�z½PER�{D½3�:½PER{P� M3

d½mRNA(TIM)�
dt

~S½3�:
(
½dCLK :CYC(n)�

A½2� )azB½2�

1z(
½PER{P:TIM(n)�

R½2� )rz(
½dCLK :CYC(n)�

A½2� )azB½2�
{D½4�:½mRNA(TIM)�

M4

d½TIM�
dt

~S½4�:½mRNA(TIM)�{V ½1�:½PER{P�:½TIM�zV ½2�:½PER{P : TIM�{D½5�:TIM
M5

d½PER{P : TIM �
dt

~V ½1�:½PER{P�:½TIM�{V ½2�:½PER{P : TIM�{T ½1�: ½PER{P : TIM �
K ½2�z½PER{P : TIM�

zT ½2�: ½PER{P : TIM(n)�
K½3�z½PER{P : TIM(n)�{D½6�:½PER{P : TIM�

M6

d½PER{P : TIM(n)�
dt

~T ½1�: ½PER{P : TIM�
K ½2�z½PER{P : TIM�{T ½2�: ½PER{P : TIM(n)�

K ½3�z½PER{P : TIM(n)�{D½7�:½PER{P : TIM(n)� M7

d½mRNA(dCLK)�
dt

~S½5�:
(
½PER{P:TIM(n)�

A½3� )azB½3�

1z(
½dCLK :CYC(n)�

R½3� )rz(
½PER{P:TIM(n)�

A½3� )azB½3�
{D½8�:mRNA(CLK)

M8

d½dCLK �
dt

~S½6�:½mRNA(dCLK)�{V ½3�:½dCLK �:½CYC�zV ½4�:½dCLK : CYC�{D½9�:½dCLK� M9

d½dCLK : CYC�
dt

~V ½3�:½dCLK �:½CYC�{V ½4�:½dCLK : CYC�{T ½3�: ½dCLK : CYC�
K ½4�z½dCLK : CYC�

zT ½4�: ½dCLK : CYC(n)�
K ½5�z½dCLK : CYC(n)�{D½10�:½dCLK : CYC�

M10

d½dCLK : CYC(n)�
dt

~T ½3�: ½dCLK : CYC�
K ½4�z½dCLK : CYC�{T ½4�: ½dCLK : CYC(n)�

K½5�z½dCLK : CYC(n)�
{ D½11�:½dCLK : CYC(n)�

M11

doi:10.1371/journal.pone.0001103.t001..
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Table 2. Components used in the mathematical model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Component Definition Concentration

mRNA(PER) mRNA for PER 1.0 [nM]

PER PER 1.0 [nM]

mRNA(TIM) mRNA for TIM 1.0 [nM]

TIM TIM 1.0 [nM]

mRNA(dCLK) mRNA(dCLK) 1.0 [nM]

dCLK dCLK 1.0 [nM]

PER-P Phosphorylated PER 1.0 [nM]

PER-P:TIM Binding complex of PER-P and TIM 1.0 [nM]

PER-P:TIM(n) Binding complex of PER-P and TIM in
nucleus

1.0 [nM]

dCLK:CYC Binding complex of dCLK and CYC 1.0 [nM]

dCLK:CYC(n) Binding complex of dCLK and CYC in
nucleus

1.0 [nM]

CYC (constant) CYC 1.0 [nM]

The concentration shows the initial value and n indicates that molecules are
located in nucleus. ‘‘:’’ represents a binding complex of more than one protein;
‘‘-’’ represents covalent modification of a protein. Since the concentration of
CYC is fixed at a constant value, there is no differential equation for CYC in
Table 1.
doi:10.1371/journal.pone.0001103.t002..
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obtain the consistent sets of potentially influential parameters. On

the other hand, the analyses with a search parameter number of

$16 selected the same parameter sets as the 12-dimensional

search. Although the variability in the solutions does not

necessarily converge less than one above a search parameter

number of $16 due to an extremely large search space, this

extended search suggests that the potentially influential parameters

are consistent. In conclusion, twelve search parameters are

necessary and sufficient for finding them.

Robustness to multiple parameter perturbation
There are many possible models that generate circadian

oscillators. It raises a question of which models are close to a real

Table 3. Kinetic parameters used in the mathematical model
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Para-meter Definition Value Class

S[1] Transcription rate constant of PER 0.98 [nM h21] S

S[2] Translation rate constant of mRNA(PER) 0.98 [h21] A

S[3] Transcription rate constant of TIM 45 [nM h21] A

S[4] Translation rate constant of mRNA(TIM) 0.98 [h21] A

S[5] Transcription rate constant of dCLK 6.0 [nM h21] A

S[6] Translation rate constant of mRNA(dCLK) 23 [M21] A

A[1] DNA dissociation constant for dCLK:CYC(n) 0.14 [M] S

A[2] DNA dissociation constant for dCLK:CYC(n) 0.14 [M] S

A[3] DNA dissociation constant for PER-P:TIM(n) 0.21 [M] A

R[1] DNA dissociation constant for PER-P:TIM(n) 0.10 [M] S

R[2] DNA dissociation constant for PER-P:TIM(n) 0.10 [M] S

R[3] DNA dissociation constant for dCLK:CYC(n) 0.18 [M] A

B[1] Constant 0.71 A

B[2] Constant 0.71 A

B[3] Constant 0.71 A

V[1] Association rate constant between PER-P and TIM 8.6 [nM21 h21] S

V[2] Dissociation rate constant between PER-P:TIM 0.28 [h21] S

V[3] Association rate constant between dCLK and CYC 0.095 [nM21 h21] A

V[4] Dissociation rate constant between dCLK:CYC 0.0038 [h21] A

T[1] Maximum rate constant for transportation of PER-P:TIM(cyt-.nuc) 0.53 [nM h21] S

T[2] Maximum rate for transportation of PER-P:TIM(nuc-.cyt) 0.0 [nM h21] A

T[3] Maximum rate for transportation of dCLK:CYC(cyt-.nuc) 0.42 [nM h21] A

T[4] Maximum rate for transportation of dCLK:CYC(nuc-.cyt) 0.0 [nM h21] A

K[1] Michaelis constant for phosphorylation of PER 42 [nM] S

K[2] Michaelis constant for transportation of PER-P:TIM 6.8 [nM] S

K[3] Michaelis constant for transportation of PER-P:TIM(nuc) 0.0 [nM] A

K[4] Michaelis constant for transportation of dCLK:CYC 2.3 [nM] A

K[5] Michaelis constant for transportation of dCLK:CYC(nuc) 0.0 [nM] A

P[1] Maximum rate constant for phosphorylation of PER 15 [nM h21] S

D[1] Degradation rate constant of mRNA(PER) 0.56 [h21] S

D[2] Degradation rate constant of PER 0.12 [h21] A

D[3] Degradation rate constant of PER-P 1.2 [h21] A

D[4] Degradation rate constant of mRNA(TIM) 0.60 [h21] A

D[5] Degradation rate constant of TIM 0.12 [h21] A

D[6] Degradation rate constant of PER-P:TIM 0.12 [h21] A

D[7] Degradation rate constant of PER-P:TIM(n) 0.12 [h21] A

D[8] Degradation rate constant of mRNA(dCLK) 2.3 [h21] A

D[9] Degradation rate constant of dCLK 0.12 [h21] A

D[10] Degradation rate constant of dCLK:CYC 0.12 [h21] A

D[11] Degradation rate constant of dCLK:CYC(n) 0.12 [h21] A

a Hill coefficient for activation 4 A

r Hill coefficient for repressor 8 A

S: the kinetic parameters estimated by evolutionary searches, A: the values estimated/provided in the model.
doi:10.1371/journal.pone.0001103.t003..
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biochemical oscillator or a question of which reactions feature

robust oscillators. Robustness to multiple parameter perturbation

is a key criterion for model selection. Here we define the CVs

of the period and amplitude distributions generated by

randomly-perturbed parameters CV_Period(i) and CV_Amplitude(i)

(Equation 13), which characterize the robustness of the period

and amplitude to simultaneous changes in all kinetic parameters,

assuming that the oscillators are always exposed to uncertainty or

changes in parameters under strict environmental stresses. An

oscillator with a small value of CV is a highly robust model,

because the change in period or amplitude is suppressed to be

small against random changes in all kinetic parameters.

For all 400 solution vectors (oscillator models), the period and

amplitude were simulated 10,000 times by randomly varying all

kinetic parameters within a range from 1/1.5-fold to 1.5-fold,

resulting in 400 distributions of the simulated period and amplitude.

The means and CVs almost converged at 10,000 time simulations.

The frequency distributions of the period and amplitude for

a certain parameter vector are exemplified as shown in Figure 6.

We plotted the frequency distribution of the CVs of period and

amplitude for 400 solution vectors as shown in Figure 7. The CVs

of period changed from 0.08 to 0.44. The mean periods were

around 24 h (data not shown). A CV of 0.08 indicates 1.9 h, which

significantly changes the circadian cycle. On the other hand, the

CVs of amplitude changed above 0.4, which was larger than the

CVs of period. The mean amplitudes were around 10 nM, which is

reasonable because it is within the range of commonly simulated

values [18]. This figure indicates that an appropriate selection of

kinetic parameters decreases the CVs, i.e., a tuning of kinetic

parameters enhances robustness to random changes in all kinetic

parameters. It is interesting if a biological system adjusts kinetic

parameter values so that robustness is most enhanced.

To investigate the mechanism of how the circadian clock

models provide a robust property to the period and amplitude, the

relationship between the CVs of period and amplitude was plotted

(Figure S6). Significant linear correlation was not observed

between the CVs of period and amplitude. The mechanism that

provides a robust property to the period is suggested to be different

from that to the amplitude.

Critical parameters in highly robust oscillators
MAR combines the numerical sensitivity analysis with the CV

analysis to identify the critical reactions in the interlocked feedback

model. To explore the parameters that show a high sensitivity of

period or amplitude, we investigated how the robustness of the

oscillator models, CV _Period(i) or CV_Amplitude(i) or (Equation 13),

is correlated to the sensitivity distributions or to the kinetic

parameter vectors. The period and amplitude sensitivity distribu-

tions were classified into 6 clusters by using hierarchical clustering

with the average linkage (Matlab), respectively. They were named

sensitivity clusters of 1 to 6. In the same way the parameter

solution vectors were classified into 6 clusters, named parameter

clusters of 1 to 6. As shown in Figure 8, the cluster index that

0 200 400 600 800 1000
0

5

10

15

20

Solution Number

Lo
g 

W
id

th
 fo

r 
P

ar
am

et
er

 S
pe

ct
ru

m

Figure 3. Convergence of the logarithmic width of the parameter
spectrum for 12 search parameters. One thousand solutions for
optimized kinetic parameters were obtained by using the repetition of
the two-step search. The black solid line is S[1], the black dotted line
A[1] = A[2], the black chain R[1] = R[2], the blue solid line V[1], the blue
dotted line V[2], the blue chain D[1], the red solid line P[1], the red
dotted line T[1], the yellow solid line K[1], and the red chain K[2].
doi:10.1371/journal.pone.0001103.g003

Figure 4. Convergence for the variability in the solutions of kinetic
parameters. Six clusters were generated from using the early 400
solutions. The number of the employed clusters is changed from 1 to 6.
VarS (Equation 7) is plotted with respect to the solution number. VarS
of less than one shows the parameter solutions are included in the
employed clusters. The brown line is one cluster employed, the blue
line two clusters, the green line three clusters, the yellow four clusters,
the red line five clusters, and the black line six clusters.
doi:10.1371/journal.pone.0001103.g004
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Figure 5. Distributions of period and amplitude sensitivities. For 400
solutions, we simulated the period and amplitude sensitivity by
changing the value of each kinetic parameter by 1.5-fold. A change
ratio of 1.5 was validated (data not shown). The absolute sensitivities
are employed. The resulting distributions exclude the models whose
oscillations are abolished by parameter perturbations (|sensitivity|.10).
The sensitivities with a value of less than 10210 are set to 10210. The
black circles indicate the minimum, the blue crosses the maximum, and
the red triangles the mean, respectively. The kinetic parameters are
sorted according to the minimum value of the absolute sensitivities in
the descending order. Use of a threshold value of 1028 separates the
critically influential parameters. (A) Period sensitivity, (B) Amplitude
sensitivity.
doi:10.1371/journal.pone.0001103.g005
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each model belongs to is plotted with respect to the model sorted

in the ascending order of the CVs of period or amplitude.

For a high CV period (CV period order .300) the period

sensitivity distributions were varied because they belonged to all

the clusters. By contrast, in highly robust models with a small CV

value (CV period order ,50) their sensitivity distributions were

consistent because most of the models belonged to the one cluster,

while the parameter vectors were greatly varied (they belonged to

six clusters). For a high CV amplitude (CV amplitude order .300)

the amplitude sensitivity distributions were varied. In highly robust

models with a small CV value (CV amplitude order ,30), their

sensitivity distributions were consistent because most of the models

belonged to the one cluster, while the parameter vectors were

different. The period and amplitude sensitivity distributions and

their associated parameter vectors are illustrated (Figures S7 and

S8). These demonstrate that the period or amplitude sensitivity

distributions are very consistent in highly robust models, while the

parameter vectors are greatly varied. In other words the critical

reactions are uniquely determined in highly robust models despite

the variability of the kinetic parameters.

Next, the critical parameters were selected from the sensitivity

distributions of both period and amplitude. For ten highly robust

models, we calculated the means of period and amplitude absolute

sensitivities and normalized them by their maximum values, as

shown in Figure 9. Twelve critical parameters showing a high

sensitivity were selected that determine period and amplitude,

respectively. The critical parameters responsible for period are

D[7], V[2], T[3], D[9], D[6], P[1], D[1], D[10], V[3], D[11], K[1],

D[4]; those responsible for amplitude are R[1], D[7], T[1], K[2],

D[1], D[4], R[2], P[1], V[2], S[1], S[2], D[2]. (The parameters are

sorted in the rank order of the absolute sensitivity value.) They

feature highly robust oscillators (Figures S9).

Degradation (D[1],D[2],D[6],D[7],D[9],D[10],D[11]) is the key

reaction that determines both the period and amplitude of the

PER oscillator. Since the CVs of period were hardly correlated

with those of amplitude (Figure S6) and the period sensitivity

distributions were different from the amplitude ones, the

mechanisms providing robust properties to period and amplitude

are different. This is supported elsewhere [10]. Here, the kinetic

parameters are classified according to their biochemical processes.

The amplitude of PER can be determined mainly by reactions in

the per-tim loop (S[1], S[2], R[1], R[2], T[1], K[2], D[1], K[1], D[4]),

especially the synthesis and transport of PER and TIM (S[1], S[2],

R[1], R[2],T[1], K[2]). Both T[1] and K[2] are critical, indicating

transport cannot be represented as a single linear reaction. It

suggests that a nonlinear reaction plays a significant role in

determining the amplitude. On the other hand, the period of PER

is strongly affected not only by the per-tim loop but also by the dclk-

cyc loop (D[9],D[10],D[11],V[3],T[3]), although the dclk-cyc loop is

neither potentially influential nor does affect the amplitude of

PER. It shows that the dclk-cyc loop plays a critical role in

determining the PER period. The phosphorylation reaction (P[1],

K[1]) would play a major role in determining the period rather

than the amplitude. Both P[1] and K[1] are critical, which suggests

that a nonlinear reaction is necessary for determining the period.

DISCUSSION
The objective of MAR is to determine critical reactions without

insisting on the exact values of kinetic parameters, thereby linking

robust properties to specific molecular architectures. MAR seeks

global and firm results that do not depend on particular parameter

values. It is a powerful tool because it is still very hard to measure full

kinetics in vivo. The key technique is to combine robustness analysis

with a two-step evolutionary search that explores many solutions for

kinetic parameters showing the similar dynamic features.

Compared with the previous method that systematically

analyzed two-dimensional parameter space in the per-time feedback

model [10], MAR enables more precise analysis of more complex

models, the interlocked feedback model that contains the per-tim

and dclk-cyc loops. MAR is advantageous because it enables one to

explore a higher dimensional and much larger space of the kinetic

parameters of a complex model. Searching a larger parameter

space is demonstrated to make clearer separation of potentially

influential parameters (Table S2 and Figure S5). Notice that

a low dimensional search may find a false set of potentially

influential parameters. In the circadian model, a search parameter

number of $12 should be used to obtain the true set of potentially

influential reactions in a large parameter space. This shows the

extensive search is really required to obtain global and firm results

from mathematical analysis.

The potentially influential parameters, which become consistent

with progression of search, means that the effect of them cannot be

reduced very small or less than a certain threshold value in any

possible models, but they do not necessarily indicate critical

parameters responsible for target instances. The potentially

influential parameters would be effective in testing whether the

search is exhaustive rather than in exploring critical reactions.

The central contribution here is that MAR provides the results

compatible with biological knowledge or lead to new hypotheses

on the function of cellular networks with realistic complexity. By

searching wide parameter space, MAR gives global results that

a local simulation cannot obtain. The identification of the

relationship among the robustness to multiple parameter pertur-

bation (Equation 13), the sensitivity distribution, and the

parameter solution vectors could provide a basis to assume

a potential mechanisms generating robustness. The robustness to

multiple parameter perturbation greatly depends on the values of

kinetic parameters. Actually, appropriate sets of kinetic parameters

greatly enhance the robustness of period or amplitude, while their

sensitivity values converge to a unique distribution. In highly

robust models the critical reactions are uniquely determined

despite the variability of the parameter values.

While the phosphorylation of PER and the transport and

synthesis of PER and TIM are critical for period and for

amplitude, respectively, degradations are key reactions for both

period and amplitude. This outcome agrees with previous

simulation studies suggesting that circadian performance is greatly

affected by changes in degradation [8,10]. Interestingly, the dclk-cyc

loop plays a major role in determining the PER period, although

the dclk-cyc loop is neither potentially influential nor does affect the

amplitude of PER. The mechanism generating robustness to

period is found different from that to amplitude. These are

supported by a general theory that the robustness of one function

does not imply that of other functions due to robustness

tradeoff[5,6]. Biochemical oscillators should be evolved to provide

a robust property to different dynamic functions such as period

and amplitude.

Engineering design conventionally consists of the investigation

of functional specification and the subsequent basic and detail

design. Specification is the act of understanding of a product to be

modelled or of defining what a function has to achieve rather than

how it has to do it. Basic design carries out the identification,

classification and selection of constraints and then determines the

design architecture of how the system obtains its specification. The

process of detail design manipulates the system’s parameters so as

to satisfy the specification. In analogy to engineering design,

evolution of a circadian clock is understandable in Drosohpila. The
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functional specification can be to provide robustness of the

circadian cycle to various perturbations. In basic design under the

constraint that the system must use genetic circuits within a cell, an

interlocked feedback system is created as network architecture so

that two clocks are consistently harmonized with environmental

changes such as light pulse and they show robustness of the

circadian period against various perturbations[14]. Generally such

robustness is provided by molecular architecture such as feedback

[3,5,6]. Then the process of detail design further evolves kinetic

parameters so as to optimize the specification in the given network

structure. In terms of engineering design concept, the circadian

clock is suggested to not only evolve an interlocked feedback

system but also intensively design kinetic parameters for further

enhanced robustness.

MATERIALS AND METHODS

General dynamic model
Dynamic models for biochemical networks are formulated as

ordinary differential equations:

dy
dt

~F(t; y; p) , ð1Þ

where t is the time, y is the vector whose elements are the

differential variables for molecular concentrations, and p is the

vector of kinetic parameters.

Evolutionary search for all possible solutions
The target features are determined that the dynamic model should

reproduce. A fitness function must be designed so that the

mathematical model reproduces the target dynamics and then all

possible solutions are explored to satisfy the fitness function.

Excessive computational requirements make it impossible to

explore the entire space of kinetic parameters in large-scale dynamic

models. Techniques that address this problem should provide ways

to reduce the number of search parameters combined with the

method that allows searches within a large parameter space to

proceed efficiently. In general, an evolutionary search seeks out

a global minimum of certain fitness functions based on the heuristic

assumption that best solutions will be found in the regions of the

parameter space by using the genetic operations of selection,

crossover, and mutation. However, the objective of MAR is not to

find a global minimum, but to explore all possible solutions of

kinetic parameter vectors that produce the target dynamics.

MAR presents the two-step evolutionary search that combines

a random search with a search by GAs [17], as shown in Figure 1.

First, the random search explores a large parameter space without

any human biases and finds multiple coarse solutions showing

a good fitness value. It is not necessary to find any solutions

providing highest fitness values. The coarse solutions are employed

to make initial populations for the subsequent GAs. Second, each

initial population for GAs is created around one of the coarse

solution vectors. The search by GAs focuses on the space

surrounding the coarse solution and is applied to each initial

population independently to find plausible solution vectors that

show a high fitness value, i.e., provide the target features. The

search is performed by various crossover methods, resulting in

obtaining local solutions around the coarse solutions. The i-th

resultant solution vector of kinetic parameters P(i) is given by:

P(i)~(p(i,1),p(i,2),p(i,3),:::::::,p(i,N)) , ð2Þ

where p(i, k) is the value of the k-th parameter of the i-th solution

vector and N is the number of search parameters.

Characterization of exhaustive search
The proposed two-step method explores multiple plausible

solution vectors for kinetic parameters that generate target features

or satisfy a fitness function. It is necessary to characterize whether

the search is saturated or exhaustive. Here saturation means that

the variability in all possible solutions is large enough to cover

almost the entire solution space. Since numerical methods are not

theoretically able to guarantee the exhaustive search, we present

practically useful criteria: a parameter spectrum width and the

variability in the solution vectors for parameters.

First, a parameter spectrum is defined as the allowable range of

each parameter. The range is from the minimum value to the

maximum for the resultant parameter solutions. The logarithmic

width of the parameter spectrum for each kinetic parameter is

defined by:

Log Width for Parameter Spectrum (k)

~ max
i
flog10p(i,k)g�min

i
flog10p(i,k)g (i~1,2,::,La)

ð3Þ
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Figure 6. Frequency distributions of the period and amplitude in
a randomly perturbed oscillator model. The period (A) and amplitude
(B) were simulated 10,000 times while all kinetic parameters were
randomly varied within a range from 1/1.5-fold to 1.5-fold. The
oscillators with a long period (.36 h) are excluded, resulting in the
remove of the oscillators with small amplitude.
doi:10.1371/journal.pone.0001103.g006

Figure 7. Frequency of the CVs of period and amplitude distributions
in randomly perturbed oscillator models. For 400 solution vectors
(oscillator models), the period and amplitude were simulated 10,000
times by randomly varying all kinetic parameters within a range from 1/
1.5-fold to 1.5-fold, resulting in 400 distributions of the simulated
period and amplitude. The CVs were calculated for every period and
amplitude distribution and the frequency distributions of the CVs for
period (A) and amplitude (B) are plotted for 400 oscillator models.
doi:10.1371/journal.pone.0001103.g007
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where La is the number of all the solutions. The parameter

spectrum width can be regarded as the indicator for a large-space

search. Convergence of the width with respect to the number of

generated solution vectors suggests that the search is approaching

saturation. The number of the solutions at which the spectrum

width begins to saturate is defined as Ls.

Second, to reveal the variability in the solution vectors that show

the target dynamic behaviours, the distance between two N-

dimensional solution vectors (P(i),P(j)) is defined by:

ðD(P(i),P(j))~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k~1

flog10 p(i,k){ log10 p(j,k)g2

s
(i=j) ,

(i,j~1,2,:::,Ls):

ð4Þ

We classify the solution vectors from 1 to Ls by using hierar-

chical clustering with the average linkage. The number of clusters

Figure 8. Classification of the sensitivity distribution and the parameter solution vectors. The sensitivity distributions and their associated
parameter solution vectors for all the oscillator models that reproduce the circadian cycle are classified into six clusters. The six clusters for the
sensitivity distributions and their associated parameter vectors are named sensitivity cluster from 1 to 6 and parameter cluster from 1 to 6,
respectively. The models are sorted in the ascending order of the CV value, where the left is highly robust models because their CVs are small. The
sensitivity and parameter cluster indexes that each model belongs to are plotted with respect to the model index. The sensitivity cluster (A) and
parameter cluster (B) are for the models sorted according to the CV period value. The sensitivity cluster (C) and parameter cluster (D) are for the
models sorted according to the CV amplitude value. Note that the number of models is less than 400 because some sensitivity distributions with
a very large value (|sensitivity|.10) are excluded.
doi:10.1371/journal.pone.0001103.g008
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(M) is determined by inspecting the dendrogram. Each cluster is

named C( j ), ( j = 1,2,…M). Assuming that the clusters form N-

dimensional super-balls, we define the radius of each cluster as

follows:

Rcluster(j)~ maxfD(P(i),G(j)) P(i)[C(j) ^ i~1,2,::,Lsj g , ð5Þ

where G(j) = (g(j,1),g(j,2),g(j,3),…g(j,N)) is the centroid for C( j ) and

g(j, k) is the k-th parameter of the centroid vector. The distances

between the centroid and intra-cluster parameter vectors are

calculated and the maximum distance is set to the radius of the

cluster ball.

Third, to investigate whether the solution vectors,

{P(i)|i = 1,2,…,La}, can be assigned to one of the existing cluster

balls, we define the relative minimum distance between P(i) and

the centroid of each cluster as follows:

MinD(P(i))~

min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k~1

( log10 p(i,k){ log10 g(j,k)g2

s

Rcluster(j)
j~1,2,::,Mj

8>>>><
>>>>:

9>>>>=
>>>>;

,

(i~1,2,:::,La)

ð6Þ

where the relative distance between P(i) and each G(j) is

calculated and the relative minimum distance is selected as

MinD(P(i)). MinD(P(i)) determines whether a solution vector P(i)
belongs to one of the existing cluster balls or not. When MinD(P(i))

is less than one, P(i) belongs to one of the existing clusters. When

MinD(P(i)) is greater than one, it does not any cluster.

Finally, to display the convergence of the variability in the

solution vectors, we define VarS(L) as the maximum distance of

{MinD(P(i))|i = 1,2,…L}:

VarS(L)~ maxfMinD(P(i)) i~1,2,:::Lj g : ð7Þ

VarS(L) is defined as an indicator of whether the L parameter

solutions fall into one of the cluster-balls generated by the Ls

solutions. When VarS(L) is less than one, the L solution vectors are

assigned to one of the existing clusters, indicating that the cluster-

balls contain all L solutions. In contrast, when VarS(L) is greater

than one, these clusters are not able to contain all L solutions.

Convergence of VarS to less than one indicates that the cluster-

balls are able to cover the parameter space spanned by the L

solution vectors. In other words, Ls is large enough to provide the

variability in the solutions and the evolutionary search is suggested

to approach saturation at a solution number of Ls.

Numerical sensitivity to single parameter

perturbation
It is important to note which structural characteristics of specific

molecular networks are responsible for specific instances of

robustness. The numerical sensitivity of a target instance to

variations in a single kinetic parameter p(i, k) is defined as follows:

S(i,k)~ D ln Target(P(i))
D ln p(i,k)

, (i~1,2,::,Ls) (k~1,2:::N): ð8Þ

Sensitivity analysis contributes to finding critical reactions for

Figure 9. A distribution of the mean absolute sensitivity for period and amplitude in highly robust models. The blue and red bars are the period
and amplitude sensitivities, respectively. The blue line is the threshold for selecting the critical parameters responsible for period and the red for
amplitude. The absolute sensitivity values for ten highly robust models that show the smaller CV values are averaged. The resulting mean sensitivity is
normalized by the maximum value. 1:S[1], 2:A[1], 3:R[1], 4:B[1], 5:S[2], 6:S[3], 7:A[2], 8:R[2], 9:B[2], 10:S[4], 11:P[1], 12:K[1], 13:V[1], 14:V[2], 15:T[1], 16:K[2],
17:D[1], 18:D[2], 19:D[4], 20:D[5], 21:D[3], 22:D[6], 23:D[73], 24:S[5], 25:A[3], 26:R[3], 27:B[3], 28:S[6], 29:V[3], 30:V[4], 31:T[3], 32:K[4], 33:D[8], 34:D[9],
35:D[10], 36:D[11].
doi:10.1371/journal.pone.0001103.g009
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determining the target feature, in which kinetic parameters

showing high sensitivities are critical.

In MAR the potentially influential parameters for determining

a specific target feature are defined. The minimum sensitivity

values provided by:

minS(k)~ minfS(i,k) i~1,2,::,Lsj g, ð9Þ

are compared for all kinetic parameters and the potentially

influential parameters (C) are selected by:

C~fk minS(k)wsj g , ð10Þ

where k is the index of the selected parameters and s is the

threshold value that is determined from the distribution of minS(k).

The threshold value depends on mathematical models or target

instances. The numerical sensitivity for the potentially influential

parameters cannot be reduced less than a threshold value of s,

while that for the other parameters can be reduced.

Robustness to multiple parameter perturbation
There are many possible models that produce the target instance.

It raises a question of which models are close to a real biochemical

model. Robustness to multiple parameter perturbation is a key

criterion for model selection. The intracellular environment

consistently varies with time and with changes in external stresses,

which would provide uncertainty to kinetics for all intracellular

molecules. To characterize the changes in a target instance with

respect to simultaneous changes in all kinetic parameters,

Target(pr(i)) are simulated by randomly varying all kinetic

parameters of p(i)(i = 1,2,…,Ls) within a specific range given by

r, where pr(i) = (pr(i,1),pr(i,2),…pr(i,N)) (r = 1,2,…,Nr) is the ran-

domly-perturbed parameter vector and Nrindicates the repetition

number of the random simulations. The component of pr(i) is

given by:

pr(i,k) = c(r,i,k) ? p(i,k), (k = 1,2,…,N)

where c(r,i,k) is the uniform random value within a range of:

1

1zr
vc(r,i,k)v1zr : ð11Þ

By simulating Target(pr(i)), the frequency distribution of Target(pr(i))

occurs. To characterize its distribution, we define the mean and

coefficient of variance (CV) by:

mean Target(i)~ 1
Nr

PNr

r~1

Target(pr(i)) ð12Þ

CV Target(i)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNr

r~1

(Target(pr(i)){mean Target(i))2

Nr{1

s

mean Target(i)
, ð13Þ

respectively. A small value of CV indicates that a distribution is

narrow and the model provides a robust property to simultaneous

changes in all kinetic parameters.

Link of reactions to robustness
Finally MAR combines the sensitivity distribution S(i,k)

(k = 1,2,…,N) and CV_Target(i) with respect to p(i) to explore the

critical reactions responsible for determining the target instance.

For highly robust models with a small value of CV_Target(i), the

parameters showing a high sensitivity are selected as critical

parameters. Use of statistical methods investigates how the selected

critical parameters feature highly robust models, thereby linking

reactions to robustness.

Biochemical model
Circadian rhythms are defined as endogenously generated 24-h

variations in behaviour and physiology that allow organisms to

adapt to the varying environmental demands of the solar cycle. In

Drosophila, oscillating levels of period (per) and timeless (tim)

constitute the fly’s molecular clock. The circadian feedbacks are

composed of two interlocked negative feedback loops: a per-tim

loop, which is activated by Drosophila clock (dclk) and repressed by

PER:TIM, and a dclk-cyc loop, which is repressed by dCLK:CYC

and derepressed by PER:TIM[12]. A loop that connects per-tim to

dclk-cyc represents a positive feedback loop. Figure 2 shows

a schematic diagram of the circadian clock, with the notation of

the reactions described elsewhere [19]. PER and TIM form

dimers and then inhibit transcription of their own genes.

Expression of the per and tim genes is regulated by a pair of

transcription factors, dCLK and CYC, whose activity is decreased

by forming a complex with PER:TIM [20]. Phosphorylation and

proteolysis of PER make a time-delayed negative feedback,

generating oscillations. PER is phosphorylated by DBT (encoded

by the double-time (dbt) gene), which is present at roughly constant

levels during the rhythm [21]. Phosphorylated PER (PER-P) is

readily susceptible to degradation, while PER-P is stabilized by

dimerization with TIM. The dimerized PER-P:TIM is transported

to the nucleus. Transcription of dclk and cyc is regulated by PER-

P:TIM-mediated release of dCLK:CYC-dependent repression.

Mathematical model
We have derived mathematical equations from the interlocked-

feedback model developed by Ueda et al. [14]. In Ueda’s model,

while PER directly binds to TIM, it is not considered that

phosphorylated PER binds to TIM. Thus, we present the modified

mathematical model that includes the mechanism for DBT-

phosphorylated PER binding to TIM (Tables 1–3). DBT does

not appear in the model as it is assumed that the DBT

concentration is constant. The modified model is described

by 11 ordinary differential equations. The CADLIVE system

is employed for numerical simulation (http://www.cadlive.jp)

[17].

Optimization for the mathematical model
The dynamic model of the circadian system has 36 kinetic

parameters to search as shown in Table 3, where T[2], T[4], K[3],

and K[5] are set to zero to reduce the number of search

parameters. Twelve parameters (S[1], A[1], A[2], R[1], R[2], V[1],

V[2], D[1], P[1], T[1], K[1], K[2]) that are related to feedback

architectures were explored using the evolutionary search in order

to generate stable oscillators for PER. These parameters involve

the transcription, phosphorylation, transport, and degradation of

PER and the binding between PER-P and TIM. The values of the

remaining parameters are estimated or provided from the previous

model [14].

Based on the two-step method we randomly vary the values of

12 parameters in logarithmic space to find parameter solutions

that indicate some oscillations, where a basis parameter vector is

determined that produces a circadian oscillator and the value of

each basis parameter is 1022 to 102-fold varied. Such solutions will

Critical Reactions

PLoS ONE | www.plosone.org 11 October 2007 | Issue 10 | e1103



be employed as the initial population for the subsequent search by

GAs. In the random search, an oscillation curve of PER is sampled

after a simulation time of 300 h and the fitness function is

provided by:

Frandom(Xmin,Xmax)~
Xmax{Xmin

XmaxzXmin

, ð14Þ

where Xmin is the minimum value of an oscillation curve of PER

and Xmax is its maximum. At this stage, it is important to find the

coarse solutions showing some oscillations because GAs cannot

evolve non-oscillatory solutions into stable oscillators. The initial

population with 100 individuals is created around the coarse

solution that shows some oscillatory behaviors.

Next, to search for the solutions that show stable oscillations

with a 24-h period and large amplitude, GAs are carried out in

logarithmic space, where each coarse solution obtained by the

random search is set to the basis parameters and the value of each

basis parameter is 1021 to 10-fold varied. Twelve kinetic

parameters are optimized where the generations and population

are set to 100 and 100, respectively. The Unimordal Normal

Distribution Crossover (UNDX) is employed as crossover [17],

while mutation is not used. Twenty elites are selected for each

generation. The cycle features provide the fitness function:

FGA(T ,Xmin,Xmax)~{
Xmax{Xmin

XmaxzXmin

{0:9

����
����{

0:05 Xmax{Xmin{10j j ,

under T{24j jv1 ,

ð15Þ

where T is the period. Equation 15 is an experience formula that

generates the 24-h cycles whose amplitude is large enough for the

average of the oscillatory curves. A target PER oscillator is that the

ratio of the amplitude to the mean concentration of PER (the first

term in Equation 15 is 1.8 (0.962), the amplitude (the second

term) is 10 nM, and the period is between 23 and 25 h.

Robustness analysis for the biochemical model
The numerical sensitivity of period (ST) or amplitude (SA) to

variations in a single kinetic parameter is calculated by:

ST (i,k)~
D ln Period

D ln p(i,k)
, SA(i,k)~

D ln Amplitude

D ln p(i,k)
,

(i~1,2,::,Ls) (k~1,2,::,N)

ð16Þ

where Ls and N are set to 400 and 36, respectively. Each kinetic

parameter was changed by 1.5-fold. In robustness analysis to

multiple parameter perturbation, characterized by the CVs of

period and amplitude, the period and amplitude are simulated

10,000 times by randomly varying all kinetic parameters within

a range from 1/1.5-fold to 1.5-fold (r= 0.5) for Ls models. The

means and CVs: mean_Period(i), CV_Period(i), mean_Amplituede(i),

and CV_Amplitude(i), are calculated for all the distribution-

s(i = 1,2,…Ls).

Computation
Since a search parameter space is very large, the obigrid system

(RIKEN, Yokohama) is used to greatly increase a calculation

speed, where dozens of computers are available simultaneous-

ly[22]. Dynamic simulation programs are written in C. The

Runge-Kutta method is employed.

Statistical analysis
A hierarchical clustering method with the average distance is used

to classify parameter solution vectors. The Matlab functions,

linkage and dendrogram, are employed to determine the number

of clusters. Other statistical analyses are also carried out by

Matlab.

SUPPORTING INFORMATION

TextS1

Found at: doi:10.1371/journal.pone.0001103.s001 (0.08 MB

PDF)

TableS1

Found at: doi:10.1371/journal.pone.0001103.s002 (0.13 MB

PDF)

TableS2

Found at: doi:10.1371/journal.pone.0001103.s003 (0.11 MB

PDF)

FigureS1

Found at: doi:10.1371/journal.pone.0001103.s004 (0.11 MB

PDF)

FigureS2

Found at: doi:10.1371/journal.pone.0001103.s005 (0.09 MB

PDF)

FigureS3

Found at: doi:10.1371/journal.pone.0001103.s006 (0.10 MB

PDF)

FigureS4

Found at: doi:10.1371/journal.pone.0001103.s007 (0.12 MB

PDF)

FigureS5

Found at: doi:10.1371/journal.pone.0001103.s008 (0.14 MB

PDF)

FigureS6

Found at: doi:10.1371/journal.pone.0001103.s009 (0.11 MB

PDF)

FigureS7

Found at: doi:10.1371/journal.pone.0001103.s010 (0.10 MB

PDF)

FigureS8

Found at: doi:10.1371/journal.pone.0001103.s011 (0.10 MB

PDF)

FigureS9

Found at: doi:10.1371/journal.pone.0001103.s012 (0.12 MB

PDF)

ACKNOWLEDGMENTS

Author Contributions

Conceived and designed the experiments: HK. Performed the experiments:

HK TT FO. Analyzed the data: HK TT. Contributed reagents/materials/

analysis tools: HK TT FO. Wrote the paper: HK.

Critical Reactions

PLoS ONE | www.plosone.org 12 October 2007 | Issue 10 | e1103



REFERENCES
1. Savageau MA (1971) Concepts relating the behavior of biochemical systems to

their underlying molecular properties. Arch Biochem Biophys 145: 612–621.

2. Savageau MA (1971) Parameter sensitivity as a criterion for evaluating and
comparing the performance of biochemical systems. Nature 229: 542–544.

3. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity.
Science 295: 1664–1669.

4. El-Samad H, Kurata H, Doyle JC, Gross CA, Khammash M (2005) Surviving

heat shock: control strategies for robustness and performance. Proc Natl Acad
Sci U S A 102: 2736–2741.

5. Kurata H, El-Samad H, Iwasaki R, Ohtake H, Doyle JC, et al. (2006) Module-
based analysis of robustness tradeoffs in the heat shock response system. PLoS

Comput Biol 2: e59.

6. Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of
cellular functions. Cell 118: 675–685.

7. Ma L, Iglesias PA (2002) Quantifying robustness of biochemical network models.
BMC Bioinformatics 3: 38.

8. Bagheri N, Stelling J, Doyle FJ 3rd (2007) Quantitative performance metrics for
robustness in circadian rhythms. Bioinformatics 23: 358–364.

9. Alves R, Savageau MA (2000) Extending the method of mathematically

controlled comparison to include numerical comparisons. Bioinformatics 16:
786–798.

10. Stelling J, Gilles ED, Doyle FJ 3rd (2004) Robustness properties of
circadian clock architectures. Proc Natl Acad Sci U S A 101: 13210–

13215.

11. Leloup JC, Goldbeter A (2000) Modeling the molecular regulatory mechanism
of circadian rhythms in Drosophila. Bioessays 22: 84–93.

12. Glossop NR, Lyons LC, Hardin PE (1999) Interlocked feedback loops within the
Drosophila circadian oscillator. Science 286: 766–768.

13. Cheng P, Yang Y, Liu Y (2001) Interlocked feedback loops contribute to the
robustness of the Neurospora circadian clock. Proc Natl Acad Sci U S A 98:

7408–7413.
14. Ueda HR, Hagiwara M, Kitano H (2001) Robust oscillations within the

interlocked feedback model of Drosophila circadian rhythm. J Theor Biol 210:
401–406.

15. Ono I, Kobayashi S (1997) A Real-coded Genetic Algorithm for Function

Optimization Using Unimodal Normal Distribution Crossover. Proc of 7th Int
Conf on Genetic Algorithms. pp 246–253.

16. Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval
schemata. In: Whitley LD, ed. Foundations of Genetic Algorithms. San

Fransisco: Morgan Kaufmann. pp 187–202.

17. Kurata H, Masaki K, Sumida Y, Iwasaki R (2005) CADLIVE Dynamic
Simulator: Direct Link of Biochemical Networks to Dynamic Models. Genome

Res 15: 590–600.
18. Smolen P, Baxter DA, Byrne JH (2001) Modeling circadian oscillations with

interlocking positive and negative feedback loops. J Neurosci 21: 6644–6656.
19. Kurata H, Matoba N, Shimizu N (2003) CADLIVE for constructing a large-

scale biochemical network based on a simulation-directed notation and its

application to yeast cell cycle. Nucleic Acids Res 31: 4071–4084.
20. Stanewsky R (2003) Genetic analysis of the circadian system in Drosophila

melanogaster and mammals. J Neurobiol 54: 111–147.
21. Suri V, Hall JC, Rosbash M (2000) Two novel doubletime mutants alter

circadian properties and eliminate the delay between RNA and protein in

Drosophila. J Neurosci 20: 7547–7555.
22. Kimura S, Kawasaki T, Hatakeyama M, Naka T, Konishi F, et al. (2004)

OBIYagns: a grid-based biochemical simulator with a parameter estimator.
Bioinformatics 20: 1646–1648.

Critical Reactions

PLoS ONE | www.plosone.org 13 October 2007 | Issue 10 | e1103


