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Choosing Clinical Variables for Risk 
Stratification Post-Acute Coronary 
Syndrome
Paul D. Myers1, Wei Huang2,3, Fred Anderson2,3 & Collin M. Stultz   1,2,4

Most risk stratification methods use expert opinion to identify a fixed number of clinical variables 
that have prognostic significance. In this study our goal was to develop improved metrics that utilize 
a variable number of input parameters. We first used Bootstrap Lasso Regression (BLR) – a Machine 
Learning method for selecting important variables – to identify a prognostic set of features that 
identify patients at high risk of death 6-months after presenting with an Acute Coronary Syndrome. 
Using data derived from the Global Registry of Acute Coronary Events (GRACE) we trained a logistic 
regression model using these features and evaluated its performance on a development set (N = 43,063) 
containing patients who have values for all features, and a separate dataset (N = 6,363) that contains 
patients who have missing feature values. The final model, Ridge Logistic Regression with Variable 
Inputs (RLRVI), uses imputation to estimate values for missing features. BLR identified 19 features, 
8 of which appear in the GRACE score. RLRVI had modest, yet statistically significant, improvement 
over the standard GRACE score on both datasets. Moreover, for patients who are relatively low-risk 
(GRACE≤87), RLRVI had an AUC and Hazard Ratio of 0.754 and 6.27, respectively, vs. 0.688 and 2.46 
for GRACE, (p < 0.007). RLRVI has improved discriminatory performance on patients who have values 
for the 8 GRACE features plus any subset of the 11 non-GRACE features. Our results demonstrate that 
BLR and data imputation can be used to obtain improved risk stratification metrics, particularly for 
patients who are classified as low risk using traditional methods.

Risk-stratification plays an important role in the management of patients after an acute coronary syndrome 
(ACS). Early identification of patients at risk of adverse outcomes helps to ensure that they are assigned therapies 
that are appropriate for their level of risk. For example, patients who are identified as high risk using traditional 
risk metrics benefit from invasive therapies within 24–48 hours of presentation1,2. Risk scores such as the Global 
Registry of Acute Coronary Events (GRACE) and the Thrombolysis in Myocardial Infarction (TIMI) scores are 
widely used metrics that are calculated using a patient’s presenting signs and symptoms, historical data – informa-
tion that is available at the time of presentation – and the results of laboratory studies that can be obtained within 
minutes to hours after presentation3–5. Despite the relative success of these methods, an accurate assessment of 
patient risk remains a difficult task. Many risk scores, for example, fail to capture a significant number of deaths 
in certain patient cohorts6,7. Indeed, while patients who fall into the highest risk group have the highest preva-
lence of adverse outcomes, many adverse events occur in patients who are not classified as being high risk using 
conventional metrics. This happens because only a small fraction of the population is typically classified as being 
high risk by most risk scores. Although the probability of adverse outcomes in patients who are not-high risk is 
relatively low, the absolute number of deaths in this cohort will be large as the vast majority of the population is 
considered to be not high-risk. Such “low risk-high number” phenomena plague many risk stratification prob-
lems in medicine6,8. There is therefore a great need to develop risk models that can more accurately identify high 
risk subgroups that are missed by traditional metrics.

Traditional risk scores that are used in clinical practice were developed using regression models that take 
a fixed number of clinical variables as input. These input features are typically derived from an analysis of the 
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relevant clinical literature and the opinions of experts who are well versed in the signs, symptoms, associated 
risk factors, and pathophysiology of ACS3–5,9,10. While “domain-specific knowledge” – information that can be 
garnered from clinical experts and pertinent scholarship – provides a powerful resource for identifying clinical 
variables that have prognostic value, domain experts are not infallible. As clinical information grows with time, 
for example, factors that were once deemed important may later be found to be less so, and factors that were once 
not thought to be significant may later be found to have prognostic value. We therefore hypothesized that feature 
selection methods that rely on limited domain specific information would identify important clinical character-
istics that could be used to build risk metrics that are better able to identify high risk subgroups among patients 
who are identified as being low risk using traditional methods.

In this work we demonstrate that machine learning techniques can be used to select a subset of prognostic 
features from a large list of patient characteristics in an unbiased manner. We show that this naive approach 
can discover prognostic features that were not identified by domain experts when deriving the original GRACE 
score, thereby demonstrating the potential benefit of using methods that do not heavily rely on domain specific 
information. We also use a data imputation method to impute missing clinical variables, which enables the model 
to use a variable number of input parameters. We show that the resulting model can identify patients at risk of 
adverse events amongst cohorts that would not be classified as high risk using the original GRACE score.

Methods
This study used the ACS cohort in the GRACE study and the outcome of interest was six-month all-cause mortal-
ity from admission. GRACE was designed to reflect an unbiased and generalizable sample of ACS patients hospi-
talized from 1999 to 2007 in 94 hospitals in 14 countries. All methods were carried out in accordance with 
relevant guidelines and regulations at each participating site, and only patients ≥18 years of age were eligible to be 
enrolled in the database11. The GRACE protocol was approved by the UMass Medical School institutional review 
board and participating hospitals, where required, also received approval from their local ethics or institutional 
review boards. Signed, informed consent for follow-up contact was obtained from the patients at enrollment. For 
those sites using active surveillance for case identification, verbal or written consent was obtained from patients 
to review information contained in their medical charts. Details of the GRACE design, recruitment, and data 
collection are described elsewhere5,11–14.

Feature selection with bootstrap lasso regression.  We restricted our analysis to clinical features that 
are available within the first 24 hours after presentation, yielding 198 such features in the registry. These features 
collectively include laboratory data, patient demographic information, as well medications administered during 
the first hospital day. In GRACE there were 15,534 patients who had values for all 198 features. We used 80% 
(12,428) of these patients for the BLR analysis and left the remaining 20% (3,106) as a holdout set. Both sets of 
patients had the same mortality rate.

All features were normalized to fall between 0 and 1, inclusive, where 0 corresponds to the minimum value of 
that feature in the dataset and 1 corresponds to the maximum feature value. Features were taken directly from the 
registry, so no feature preprocessing was necessary. In Bootstrap Least Absolute Shrinkage and Selection Operator 
(LASSO) Regression (BLR), a logistic regression model is trained using repeated rounds of bootstrapping where 
some fraction of the data is used for training and the remaining fraction is used for testing15. Lasso regression 
models have the property that many of the feature weights in the model are forced to zero, leaving only the most 
important features in the final model (see Supplementary Information for details). As the features that are selected 
by lasso regression may differ depending on the precise dataset used for training, we only use features that are 
consistently retained (i.e., have non-zero weights) after many bootstrap iterations.

We trained a BLR model on the 198 features available within the first 24 hours using a bootstrapping proce-
dure, where a random subset of 80% of the 12,428 patients was used for training and hyperparameter tuning; this 
process was repeated 100 times to generate 100 bootstrap splits. We ensured that each random 80% had the same 
percentage of patients who died as in the overall registry; i.e., each bootstrap was stratified with respect to death. 
Hyperpameter tuning was done using three-fold cross validation on the training sets. Features that had non-zero 
weights in at least 90% of the bootstrap splits were retained. Throughout this work we use the term “bootstrap 
split” to refer to a training-test set pair generated as described above.

To determine whether the final set of features chosen by BLR yielded a model that has similar discriminatory 
ability relative to the model trained with 198 features, we trained a logistic regression model using all 198 features 
and compared its performance to a model trained with only the features selected by BLR and tested them both on 
the holdout set of 3,106 patients. Both models were trained using L2-regularization (see Supplementary Methods 
for details) on the 12,428 patients used for the BLR analysis. To determine statistical significance, we randomly 
selected 20% of the patients in the holdout set and evaluated the performance of both models on this 20%; we 
repeated this process 10 times to generate confidence intervals.

Model development and testing.  Our final risk stratification model was developed using L2-regularized 
logistic regression (also known as Ridge Logistic Regression, RLR) using the features selected by BLR. RLR, unlike 
lasso regression, tends to assign non-zeros weights to all of the variables that are used as input. L2-regularization 
is a method that helps to prevent over-fitting the model to the training data (see Supplementary Methods for 
details). Hence, while BLR is used to select important features (it assigns zero weights to features that are not 
related to the outcome of interest), RLR is used to prevent overfitting once the important features have been cho-
sen (it finds values for the weights that minimizes overfitting assuming all of the input features are important).

We performed 100 bootstrap rounds on a development set where for each round 80% of the patients were used 
for training and the remaining 20% was used for testing; i.e., 100% of the dataset is represented across each train/
test split. As before, the training and testing sets were constrained to have the same percentage of deaths as in the 
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overall dataset. The development set consisted of all patients in the ACS cohort of the GRACE dataset who had 
values for all of the features discovered by BLR.

We evaluated the model’s performance on bootstrapped test sets as well as several clinically important sub-
groups within each test set; i.e., patients with: 1) ST-elevation myocardial infarction (STEMI), 2) non-ST elevation 
MI (NSTEMI), 3) unstable angina (UA), and 4) a GRACE score ≤ 87 (the “low-risk” patients). We chose a cutoff 
of 87 to identify low risk patients because prior work suggests that this value captures patients who fall within the 
lowest tertile of risk for both NSTEMI and STE-ACS and yields an overall 6-month mortality less than 2%12,13. In 
our development set, patients who have a GRACE score ≤ 87 fall within the lowest 14% of risk.

Metrics used to evaluate the model performance include the area under the receiver operator characteristic 
curve (AUC or C-statistic), six-month hazard ratio (HR, highest vs. other quartiles), and two-category net reclas-
sification index (NRI)16. AUCs, HRs and NRIs, are reported as the means across these 100 bootstrap trials. Upper 
and lower 95% confidence intervals for the HRs are reported as the means of the confidence intervals across 
bootstrap rounds.

Data imputation.  In instances where patients are missing values for some of the features used in the RLR 
model, a data imputation technique was applied to estimate them. Imputation was done using a multivariate 
normal distribution with mean and covariance estimated using the sample mean and covariance of the training 
set. Absent values in the test set were imputed by finding the corresponding feature values that maximize the con-
ditional probability of the normal distribution given values for the features that are present. These values can be 
analytically computed once the mean and covariance matrix of the multivariate normal distribution are specified 
(see Supplementary Materials for details). We call the resulting model, which uses imputed values for missing 
model parameters, RLR with a Variable number of Inputs (RLRVI) because, from the standpoint of the user, the 
model can accommodate a variable number of input features.

We note that the RLRVI model reduces to the RLR model for patients who have values for all model param-
eters. Furthermore, we note that this imputation procedure makes no assumptions about the underlying pattern 
of “missingness” within the data. Rather it makes a fundamental assumption about the underlying distribution of 
the features; i.e., that they arise from a multivariate normal distribution.

Testing on the validation set.  To further evaluate the model, we constructed a validation set that com-
prised patients who had all eight GRACE score features, but who were not part of our development set nor part 
of the patient cohort that was used to derive the original GRACE score. Patients in the validation set could be 
missing any of the non-GRACE score features that are part of the RLRVI model. We trained a RLRVI model on 
the entire development set, and evaluated its performance on the validation set. Thus, the validation set was used 
as a held-out test set; no feature selection or model development was done on this group of patients. For compar-
ison, we also evaluated the performance of the GRACE score on the validation set. To obtain confidence intervals 
for both models, we computed performance metrics (e.g., AUCs, HRs) using bootstrapping. For each bootstrap 
iteration, we randomly chose 20% of the validation set (subject to the constraint that it had the same percentage 
of deaths as in the overall validation set) and evaluated the models’ performance on this subset. The confidence 
intervals were calculated as the standard error of the mean (standard deviation divided by the square root of the 
number of bootstrap splits) for the AUCs and HRs across these 100 bootstrap splits.

Statistical analyses.  HRs were computed using a Cox proportional hazards model17. Confidence intervals 
were generated by computing the standard error of the mean from the bootstrap test sets. HRs were computed by 
placing all patients with model scores in the upper-quartile of risk in the high-risk group and all other patients in 
the not-high-risk group. The cutoff for determining the upper-quartile score was derived from the training sets. 
Statistical significance testing was done using two-sided, paired-sample t-tests between each pair of models over 
the 100 bootstrap splits. All logistic regression models and statistical analyses were performed using the commer-
cial software MATLAB 9.0 (2016a) (The MathWorks, Natick, MA).

Results
Feature selection with BLR.  BLR identified 19 clinical features out of 198 clinical features available within 
the first 24 hours as being the most predictive (Table 1). A L2 regularized model using the 19 features has an AUC 
on the holdout set of 0.852, which is similar to the AUC of a L2 regularized model using all 198 features (AUC 
0.859, p = 0.127).

RLRVI performance on the development set.  A development set of 43,063 patients was constructed by 
collecting all patients who had values for all features identified by BLR. Table 2 shows the distribution of patient 
characteristics in the development set.

The RLRVI model has improved discriminatory ability relative to the GRACE score in the bootstrapped test 
sets, as well as the STEMI, NSTEMI, and UA subsets, as measured by the AUC (Fig. 1A). Similarly, HRs for all 
subsets show a statistically significant improvement over the GRACE score (Fig. 1B). The RLRVI model correctly 
classifies more patients than GRACE in all patient subsets, as evidenced by a positive two-category NRI of 0.0337 
(standard deviation over 100 bootstrapped test sets 0.0149). Most notably, in patients who fall within the lowest 
14% of risk (GRACE score ≤ 87), the RLRVI model yields significant improvements in both the discriminatory 
performance (Fig. 1C) and HR (Fig. 1D) relative to the GRACE score.

Evaluating the relative importance of non-GRACE score features.  To determine the relative impor-
tance, over the standard GRACE score features, of each of the non-GRACE features in our model, we computed 
performance metrics for the RLRVI model when only the 8 GRACE score features plus one non-GRACE score 
feature was used as input. As the RLRVI model can accommodate 19 features as input, values for the remaining 
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10 features were estimated using the data imputation approach described in the methods section and in the 
Supplementary Materials. Adding each of the 11 non-GRACE score features to the 8 GRACE score features yield 
AUCs that are improved relative to the GRACE score values (Fig. 2).

RLRVI discriminatory ability using a subset of clinical features.  We sought to determine how the 
RLRVI model performs when the number of available clinical variables changes. If there are N < 19 features avail-
able, we could compute AUCs for the RLRVI model when only those N features are available, using data imputa-
tion to estimate the missing parameters. To determine what subsets of clinical features (if any) yield improvement 
when added to the established 8 GRACE score features, we considered all possible combinations of the remaining 
11 features, giving 2,047 possible models.

We trained and tested each feature combination over 10 bootstrap splits of the development set. Figure 3 
shows the AUC averaged over the 10 bootstrap splits for each possible feature combination. For all models, the 
RLRVI model provides improved discriminatory ability relative to the GRACE score with p < 0.003.

RLRVI performance on the validation set.  A validation set, which contains patients who were not used 
to develop either the RLRVI model or the original GRACE risk model, was used to further assess the model’s 
performance. Table 2 shows the distribution of patient characteristics in the development and validation sets.

The RLRVI model has improved discriminatory ability relative to the GRACE score (Fig. 4A) and offers 
statistically significant improvement in all HRs in the validation set except the UA subgroup (Fig. 4B). The 
two-category NRI on the validation set is 0.0191, however, the standard deviation over 100 bootstrapped test 
sets is high (0.0315). In the lowest risk patients, the RLRVI model also has improved discriminatory ability in all 
patient subgroups (Fig. 4C) and offers improved HRs in all but the UA subgroup (Fig. 4D). Parameters for the 
final model are listed in the Supplementary Materials.

Discussion
Risk stratification models that are used in clinical practice are often constructed using regression models that 
take a fixed number of clinical variables as input3–5,9,10. Variables that are thought to have prognostic significance 
are identified using a combination of expert opinion to first identify potential clinical characteristics followed by 
stepwise regression18. For example, the GRACE dataset – a registry derived from 94 hospitals across the globe 
– contains over 1400 clinical variables. In order to develop a risk model that could be used in clinical practice, a 
small subset of clinical variables (usually less than 50 features), which are typically available at presentation, was 
chosen based on published results from prior studies and expert clinical opinion5,12,13. Features in this list that had 
the greatest association with all-cause mortality were then selected and backward elimination was used to arrive 

Demographics Appears in GRACE Score?

  Age Yes

  Admission weight No

Medical History

  Congestive heart failure No

  Peripheral artery disease No

  Renal insufficiency No

Presentation Characteristics

  Systolic blood pressure Yes

  Pulse Yes

  Killip class Yes

  Cardiac arrest Yes

  ST segment deviation Yes

Medications, Chronic

  Warfarin No

  Medications, pre-hospital or within 1st 
24 hours

  Statin No

  Diuretic No

  Insulin No

  IV inotropic agent No

  Oral beta blocker No

  IV beta blocker No

Laboratory

  Initial creatinine Yes

  Initial positive enzymes Yes

Table 1.  Features selected by the bootstrap lasso. GRACE = Global Registry of Acute Coronary Events; 
IV = intravenous.
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at a regression model that included 14 features. A simpler model, which only uses 8 features that contain the most 
predictive information, was then provided for clinical use13.

As backward elimination, and, more generally stepwise regression, involves evaluating the performance of 
many models that contain different numbers of explanatory variables, the process becomes intractable when a 
large number of candidate variables are considered. For example, backward elimination using the 198 candidate 
variables we considered in this work would require training over 19,000 models to explore the different possible 
subsets of clinical variables. In these situations, expert knowledge forms an effective platform for limiting the 

Development Set Validation Set

Population size 43,063 6,363

  Low-risk (GRACE score ≤ 87) 13,205 1,665

Mortalities 3,078 (7.15%) 719 (11.3%)

  Low-risk (GRACE score ≤ 87) 316 (1.16%) 29 (1.74%)

Demographics

  Age (years) 66.1 (55.7–75.8) 68.2 
(57.1–77.6)

  Female 32.6% 33.9%

  Height (cm) 170 (162–175) 169 (161–175)

  Admission weight (kg) 77.0 (67.0–88.0) 77.0 
(67.2–87.2)

  Medical History (%)

  Congestive heart failure 10.5 11.1

  Peripheral artery disease 9.7 9.2

  Angina 51.9 45.5

  Coronary Artery Bypass Graft (CABG) 12.6 11.9

  Myocardial Infarction (MI) 30.3 31.0

  Hypertension 62.1 61.6

  Hyperlipidemia 48.3 48.1

  Diabetes 25.1 26.3

  Percutaneous Coronary Intervention (PCI) 17.7 17.7

  Smoking 57.7 53.0

  TIA/Stroke 8.3 9.1

  Renal insufficiency 7.8 8.0

Presentation Characteristics

  Systolic blood pressure (mmHg) 140 (120–160) 140 (120–160)

  Pulse (bpm) 77 (65–90) 77 (65–90)

  Killip class I 83.3% 81.6%

  Killip class II 12.0% 12.6%

  Killip class III 3.9% 4.6%

  Killip class IV 0.8% 1.3%

  Cardiac arrest 1.7% 2.3%

  ST segment deviation 54.8% 53.1%

Medications (%)

  Oral beta blocker, pre-hospital acute or within 1st 24 hours in hospital 69.8 67.1

  Warfarin, chronic use 4.5 5.2

  Statin, pre-hospital acute or within 1st 24 hours in hospital 51.0 56.6

  Diuretic, pre-hospital acute or within 1st 24 hours in hospital 25.3 28.0

  Insulin, pre-hospital acute or within 1st 24 hours in hospital 14.3 16.0

  IV inotropic agent, pre-hospital acute or within 1st 24 hours in hospital 4.5 6.3

  IV beta blocker, pre-hospital acute or within 1st 24 hours in hospital 12.9 11.5

  Aspirin, within 1st 24 hours in hospital 90.3 86.6

  ACE Inhibitors, pre-hospital acute or within 1st 24 hours in hospital 47.6 47.4

Laboratory

  Initial creatinine (mg/dl) 1.0 (0.9–1.3) 1.0 (0.9–1.3)

  Initial positive enzymes 46.8% 50.7%

Table 2.  Population characteristics in the development and validation sets. Numbers for continuous variables 
are presented as the median with the interquartile range in parentheses. GRACE = Global Registry of Acute 
Coronary Events; CABG = coronary artery bypass grafting; MI = myocardial infarction; PCI = percutaneous 
coronary intervention; TIA = transient ischemic attack; IV = intravenous; ACE = angiotensin converting 
enzyme.
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number of potential variables, thereby a making comprehensive stepwise regression computationally tractable. 
While expert knowledge is a powerful resource that can be leveraged to identify the most important prognostic 
features, relying too heavily on expert opinion limits our ability to discover previously unappreciated character-
istics that have prognostic value. We therefore implemented a feature selection technique based on a machine 
learning method called BLR15. Unlike traditional stepwise elimination, BLR can accommodate large feature sets, 
thereby eliminating the need to use expert knowledge to pre-prune the feature set before feature selection. In 
the present study, BLR identified 19 prognostic features from our original list of 198 by constructing only 100 
models from 100 bootstrap rounds; i.e., one model for each bootstrap iteration. The fact that eight of the 19 
features identified by BLR also appear in the GRACE score further supports the validity of using this automated 
feature selection method to generate feature sets (Table 2). Moreover, one of these 19 features (chronic warfarin 
use), although available at patient presentation, was not considered in the full GRACE model that included ~48 
features that were identified by clinical experts, thereby demonstrating the ability of the method to discover new 
features with prognostic significance.

Figure 1.  RLR Performance on the Development Set. AUCs and six-month hazard ratios in the overall 
(a,b) and low-risk (GRACE < 87) subset (c,d) of the development set. Error bars show one standard error 
of the mean. * indicates p < 0.001. Numbers above the bars indicate mean values. AUC = area under the 
curve; GRACE = Global Registry of Acute Coronary Events; RLRVI = ridge logistic regression with variable 
inputs; STEMI = ST elevation myocardial infarction; NSTEMI = non-ST elevation myocardial infarction; 
UA = unstable angina.

Figure 2.  Evaluating the Relative Importance of non-GRACE Score Features. AUCs from adding one of 
the 11 non-GRACE score features at a time and imputing the remaining features. AUCs are averaged over 
100 bootstrapped test sets. Error bars show one standard error of the mean. All models show improved 
performance over the GRACE score with p < 0.001. AUC = area under the curve; GRACE = Global Registry 
of Acute Coronary Events; RLRVI = ridge logistic regression with variable inputs; Hx = History; Peri Vasc 
Dis = peripheral vascular disease; IV = intravenous; CHF = congestive heart failure.
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Although BLR, in general, facilitates the identification of a small set of features that can be used to build 
parsimonious risk stratification models, its effectiveness is limited in cases where features are highly correlated. 
For instance, given two important collinear features, BLR might select one in 50% of the bootstrap splits and 
the other in the remaining 50% of the splits. Moreover, as the method focusses on features that are consistently 
selected across different bootstrap splits, neither of these features would be identified as being important. While 
comprehensive stepwise regression avoids this problem by explicitly building models that include all possible 
feature combinations, it is associated with a significant computational cost when the number of potential features 
is large. Therefore, while BLR is not guaranteed to find all important clinical features, it does identify a subset of 
features that can be used to build effective risk stratification models. In this work, the model developed using only 
19 features – representing less than 10% of the features available within 24 hours of presentation – has similar per-
formance relative to the model developed using all 198 features. Models that utilize a parsimonious list of features 
are often easier to interpret and less likely to be over fit to a given training set.

Figure 3.  RLRVI Discriminatory Ability Using a Subset of Clinical Features. AUCs averaged over 10 bootstrap 
splits of the development set for all possible combinations of the 11 non-GRACE score features selected by 
BLR. The red line and numbers indicate the number of features that were known and therefore not imputed. 
For example, the red 6 indicates that all points in that range were generated by models that had six of the non-
GRACE score features available; all possible combinations of 11 choose 6 are represented in this range. The 
performance of the GRACE score on the same 10 bootstrap splits is shown by the dashed line at the bottom of 
the plot. All feature combinations show improvement over the GRACE score with p < 0.003. AUC = area under 
the curve; GRACE = Global Registry of Acute Coronary Events.

Figure 4.  RLRVI Performance on the Validation Set. AUCs and six-month hazard ratios in the overall 
(a,b) and low-risk (GRACE < 87) subset (c,d) of the validation set. Error bars show one standard error 
of the mean. * indicates p < 0.007. Numbers above the bars indicate mean values. AUC = area under the 
curve; GRACE = Global Registry of Acute Coronary Events; RLRVI = ridge logistic regression with variable 
inputs; STEMI = ST elevation myocardial infarction; NSTEMI = non-ST elevation myocardial infarction; 
UA = unstable angina.
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The RLRVI model has improved discriminatory ability relative to the GRACE score and is better able to iden-
tify high risk patients as evidenced by the fact that high risk patients in the RLRVI model have higher Hazard 
Ratios relative to high risk patients in the GRACE model. While the overall improvement in discriminatory 
ability is modest, the greatest improvement occurs in patients that are at the lowest risk as defined by the original 
GRACE score, thereby demonstrating the prognostic power of the feature set on patients who are traditionally 
difficult to risk stratify. Indeed, the challenge of identifying high risk subgroups in patient cohorts that are tradi-
tionally thought of as being low risk is highlighted by our data. In the development set, 30% of patients fall into 
the low risk group and the corresponding death rate is 1.16% - significantly below the death rate in the entire 
dataset. However, failing to identify high risk patients in this low risk cohort would miss 10% of the total number 
of deaths. In this population the RLRVI model has improved discriminatory ability, and is better able to identify 
high risk patients as the HRs for the RLRVI are significantly larger than that of the GRACE score. This trend holds 
true in patients who present with STEMI or NSTEMI in both the development and validation datasets.

Although RLRVI uses 19 clinical features, data imputation allows the model to still yield predictive infor-
mation when only subset of the 19 clinical features are available. Traditional risk scores, by contrast, can only be 
used when all of the input variables are known. To make such traditional models broadly applicable, they must 
therefore rely on features that are universally available at the time of admission. Moreover, an added constraint 
for models developed before the wide spread adoption of electronic health information systems was that the 
input variables needed to be manually entered by the relevant health care provider. Risk models like the original 
GRACE score, were therefore constructed to balance both predictive power and ease of manual use. Our model, 
which accommodates a variable number of input parameters, allows one to supply as much information as avail-
able to maximize its predictive ability. Central to the success of our model is a data imputation approach that 
allows us to estimate values for clinical variables when any of the 19 model parameters are not input. Interestingly, 
our data suggests that high imputation accuracy is not needed to obtain improvement in the model’s predictive 
ability over the GRACE score (Supplementary Materials Fig. S1 and Fig. 2). Moreover, while adding any subset of 
the non-GRACE score features to the 8 GRACE features yields a model with improved discriminatory ability, to 
achieve an optimal result the features with the most prognostic value should be included, in accordance with the 
trend shown in Fig. 2. Given the advent of electronic health records, models that utilize a large number of features 
become realizable. For such approaches to be maximally useful, they must be applicable to patients who have 
missing values for some input parameters, and our approach provides an example of how this can be achieved 
using a simple imputation method.

Risk stratification remains a challenging problem in patients with cardiovascular disease. This work highlights 
one approach for finding subsets of patient features that have prognostic value. We demonstrate that BLR can 
identify a small subset of prognostic features from among a much larger set of possibilities. The risk model arising 
from these features has improved performance relative to the original GRACE score, most notably for patients 
who are classified as being low risk using the original GRACE model. Our model can be used with the 8 GRACE 
score features plus any subset of the non-GRACE score variables, thereby enabling risk assessment when only a 
subset of the model’s features is known. It is our view that this work presents a new platform for the development 
of powerful risk stratification metrics.
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