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Abstract

Motivation: In cluster analysis, the validity of specific solutions, algorithms, and procedures
present significant challenges because there is no null hypothesis to test and no 'right answer'. It
has been noted that a replicable classification is not necessarily a useful one, but a useful one that
characterizes some aspect of the population must be replicable. By replicable we mean
reproducible across multiple samplings from the same population. Methodologists have suggested
that the validity of clustering methods should be based on classifications that yield reproducible
findings beyond chance levels. We used this approach to determine the performance of commonly
used clustering algorithms and the degree of replicability achieved using several microarray
datasets.

Methods: We considered four commonly used iterative partitioning algorithms (Self Organizing
Maps (SOM), K-means, Clutsering LARge Applications (CLARA), and Fuzzy C-means) and
evaluated their performances on 37 microarray datasets, with sample sizes ranging from 12 to 172.
We assessed reproducibility of the clustering algorithm by measuring the strength of relationship
between clustering outputs of subsamples of 37 datasets. Cluster stability was quantified using
Cramer's v2 from a kXk table. Cramer's vZ is equivalent to the squared canonical correlation
coefficient between two sets of nominal variables. Potential scores range from 0 to I, with |
denoting perfect reproducibility.

Results: All four clustering routines show increased stability with larger sample sizes. K-means and
SOM showed a gradual increase in stability with increasing sample size. CLARA and Fuzzy C-means,
however, yielded low stability scores until sample sizes approached 30 and then gradually increased
thereafter. Average stability never exceeded 0.55 for the four clustering routines, even at a sample
size of 50. These findings suggest several plausible scenarios: (I) microarray datasets lack natural
clustering structure thereby producing low stability scores on all four methods; (2) the algorithms
studied do not produce reliable results and/or (3) sample sizes typically used in microarray research
may be too small to support derivation of reliable clustering results. Further research should be
directed towards evaluating stability performances of more clustering algorithms on more datasets
specially having larger sample sizes with larger numbers of clusters considered.
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Introduction

Cluster analysis is a statistical approach used in micro-
array research that identifies genes within a cluster that are
more similar to each other than genes contained in differ-
ent clusters. By grouping genes that exhibit similarities in
their expression patterns, the function of those genes
which were previously unknown may be revealed. There
are two groups of clustering methods, hierarchical and
non-hierarchical. Non-hierarchical algorithms require the
number of clusters (k) be pre-specified. Non-hierarchical
algorithms can run multiple times with different values of
k. The user can then choose the clustering solution that is
logical to address the problem of interest.

If we consider each gene as a point in high dimensional
space, then "clusters may be described as continuous regions of
this space containing a relatively high density of points, sepa-
rated from other such regions by regions containing a relatively
low density of points. Clusters described in this way are some-
time referred to as natural clusters" [1].

Despite the use of cluster analysis in microarray research,
the evaluation of the "validity" of a cluster solution has
been challenging. This is due, in part, to the properties of
cluster analysis. Cluster analysis has no null hypothesis to
test and hence no right answer, which makes the testing of
the validity of specific solutions, algorithms, and proce-
dures difficult [2]. A second challenge encountered is that
genes may not "naturally” fall into clusters separated by
empty areas of the attribute space in genome expression
studies. Hence, genome-wide collections of expression
trajectories may lack a "natural clustering" structure in
many cases [1]. Third, the result of gene clustering may be
"method sensitive". That is, gene clustering depends on
several methodological choices, including the distance
metric used, the clustering algorithm, and the stopping
rule in the case of iterative partitioning methods. Hence,
it is important to evaluate the stability of any specific
derived cluster solution and the general performance of
clustering approaches.

According to McShane et al., "Clustering algorithms always
detect clusters, even in random data and it is imperative to con-
duct some statistical assessments of the strength of evidence for
any clustering and to examine the reproducibility of individual
clusters" [3]. Roth et al. defined stability as "the variability
of solutions which are computed from different data sets sam-
pled on the same source" [4]. It has been noted that a repli-
cable classification is not necessarily a useful one, but a
useful one that characterizes some aspect of the popula-
tion must be replicable [5]. The concept of a replicable
cluster is defined as reproducible across multiple sam-
plings from the same population. Thus, some methodol-
ogists have suggested that the wvalidity of clustering
methods could be defined as the extent by which they

yield classifications that are reproducible beyond chance
levels. Most recently, Tseng et al. [6] identified stability of
clusters in a sequential manner through an analysis of the
tendency of genes to be grouped together under repeated
resampling. Famili et al. [7] summarized the related work
as follows:

Zhang et al. [8]proposed a parametric bootstrap re-sampling
method (PBR) to incorporate information on variations in gene
expression levels to assess the reliability of gene clusters identi-
fied from large-scale gene expression data...Smolkin et al.
[9]assessed the stability of a cluster using their Cluster Stability
Score, by which a cluster's stability is calculated through clus-
tering on random subspace of the attribute space...Ben-Hur et
al. [10]proposed a stability-based re-sampling method for esti-
mating the number of clusters, where stability is characterized
by the distribution of pair-wise similarities between clusters
obtained from sub-samples of the data...Datta et al. | 11]formu-
lated 3 other validation measures using the left-out-one condi-
tion strategy to evaluate the performances of 6 clustering
algorithms...Giurcaneanu et al. [12]introduced a stability
index to estimate the quality of clusters for randomly selected
subsets of the data.

Clusters that produce classifications with greater replica-
bility would be considered more valid [5]. The objective
of this paper is to determine the performance of com-
monly used non-hierarchical clustering algorithms and
the degree of stability achieved using several microarray
datasets.

Methods

Data

Real datasets

We considered 37 real microarray datasets of various
kinds and from various sources (See Table 1). Most of
these microarray datasets were downloaded from Gene
Expression Omnibus (GEO) [13] - a public repository of
microarray datasets and few from other sources listed in
Table 1. We evaluated their stability performances on var-
ious non-hierarchical clustering algorithms. We included
datasets containing different experimental designs, such
as (1) time series: - samples under a particular condition
observed at various time points, (2) cross sectional: - sub-
sets of samples under various conditions, and (3) case-
control experiments: - i.e., case samples (having the prob-
lem/disease) and control samples (not having the prob-
lem/disease). These data are drawn from a variety of
species, tissue types, and laboratories.

Simulated datasets

We also evaluated stability performances on simulated
datasets for two major reasons: a) to validate our method-
ology of stability computation and b) to observe the sta-
bility behaviour with very large sample sizes which were
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Table I: List of microarray datasets considered for the study. Table | contains two columns of datasets. Each dataset is described by its
name, source, and sample size (n). Table | shows 39 datasets. The first 3 columns list 19 datasets and last three columns describe 18

datasets.
Name of the Source Samplesize (n) Name of the dataset Source Sample size (n)
dataset
GDS22 GEO 80 Leukemia dataset [30] 70
GDSI171 GEO 30 Medulloblastoma Data Set [31] 34
GDS184 GEO 30 Prostate Cancer dataset [32] 100
GDS232 GEO 46 Gaffney Head and Neck data [33] 60
GDS274 GEO 80 Affymetrix Hul33A Latin Square [34] 42
GDsS285 GEO 20 CNGl design experiment Unpublished 24
GDS365 GEO 66 Paired pre and post euglycaemic insulin clamp skeletal Unpublished 106

muscle biopsies

GDS465 GEO 90 GDsSI56 GEO 12
GDS331 GEO 70 GDS254 GEO 16
GDS534 GEO 74 GDS268 GEO 24
GDS565 GEO 48 GDsS287 GEO 16
GDs427 GEO 24 GDsS288 GEO 16
GDS402 GEO 12 GDS472 GEO 14
GDS356 GEO 14 GDS473 GEO 12
GDsS389 GEO 16 GDS511 GEO 12
GDsS388 GEO 18 GDS520 GEO 20
GDS352 GEO 12 GDS564 GEO 28
GDS531 GEO 172 GDS540 GEO 18
GDS535 GEO 12

not available in real datasets. We simulated 8 datasets
with 1200 genes and sample sizes ranging from n = 20 to
1000, where n is the number of subjects. All simulated
datasets were structured for 6 clusters (k = 6) with correla-
tion p set to (0.33)1/2 for all pairwise combinations of
genes within clusters and zero for all pair wise combina-
tions of genes in different clusters. In order to validate our
methodology, we would predict higher scores when we
extract 6 clusters in our fitted solutions. Simulated data-
sets also help us understand the stability behaviour for
values other than k = 6 (i.e., when we extract the wrong
number of clusters). Table 2 explains the details of simu-
lated datasets. We acknowledge that number of genes in
simulated datasets is smaller than real datasets. At larger
sample sizes (n = 250, 500, and 1000), simulating more
genes, producing clustering results and computing stabil-
ity becomes computationally prohibitive. The main pur-
pose of simulating datasets is to validate our methodology
i.e. to check if we get correct scores for the right number of
clusters (k = 6 in our case). For this purpose, 1200 genes
suffice.

Preprocessing of data

Microarray datasets may contain unobserved expression
levels termed, i.e., missing values. The first stage of our
preprocessing handled these missing values and then a
second stage standardized the variables to mean zero and
unit variance as explained below.

Missing values

If we represent microarray data as a matrix with rows rep-
resenting genes and columns representing chips or sam-
ples, we filtered out all rows which contained at least one
null expression or missing value because we do not know
the exact source(s) for the missing/null value observation.
Missing data can be due to array damage, transcription
errors, etc. Conventional algorithms for clustering require
complete datasets to run and extending these clustering
routines to accommodate missing data was beyond the
scope of our inquiry.

Standardization

Variables such as gene expression values measured on dif-
ferent scales can affect cluster analysis [14]. The main pur-
pose of standardization is to convert variables measured
on different scales to a unitless standard scale. One might
question the reason to standardize genes when microarray
dataset represents expression levels of various genes. But a
level of mRNA (messenger ribonucleic acid) expression
(for a given gene) responsible for triggering specific bio-
logical activity can be different for different genes. There-
fore each gene vector (expression values of a gene across
samples) may be a measurement made on a different
functional scale. To address this issue, we standardized
each gene vector (expression values of a gene across sam-
ples) and replaced expression values by Z scores before
clustering genes. Z scores were computed using the fol-
lowing formula [15-17]:
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Table 2: List of simulated microarray datasets. Table 2 show the
details of simulated datasets. Each of these datasets has
clustering structure k = 6 (six clusters) with correlation p set to
(0.33)'72,

Dataset Name Sample size Number of genes Clusters
Dataset| 20 1200 6
Dataset2 100 1200 6
Dataset3 200 1200 6
Dataset4 500 1200 6
Dataset5 1000 1200 6
Dataseté 40 1200 6
Dataset7 60 1200 6
Dataset8 80 1200 6
_ Igij _Igi
4= 5o,
8i
Where Z; = Z score computed for expression level
observed for gene i in sample/subject j, Igii = intensity

measured for gene i in sample j, and lg. = mean intensity

of gene i across samples, SDg, = standard deviation of

expressions of gene i across samples.

Clustering methods

There exist many clustering algorithms which take micro-
array datasets as input and produce clusters as output.
Some algorithms, particularly non-hierarchical algo-
rithms, require that the number of clusters (k) be pre-
specified, whereas others do not. Those that require k as
an input parameter can be run multiple times with differ-
ent values of k. The user can then choose the clustering
solution that seems best to address the problem of inter-
est. Our research suggests a statistical criterion for select-
ing the right number of clusters by quantifying stability
scores using Cramer's 12 from kXk contingency table. Since
this criterion takes the number of clusters (k) into
account, we restrict our attention to iterative partitioning
clustering methods. Most iterative partitioning methods
function in the following manner [5]:

1. Begin with an initial partitioning of the dataset into a
specified number of clusters (k) and thereafter compute
the centroids of these clusters.

2. Allocate each data point to the cluster that has the near-
est centroid (except Fuzzy C-means where data points
belong to a cluster that is specified by a membership
grade).

3. Compute the new centroids of the clusters. Clusters are
not updated until there has been a complete pass through
the data.

4. Alternate steps 2 and 3 until no data points change clus-
ters.

We consider the following four iterative partitioning
methods, which are commonly used in the literature. The
algorithms for them are freely available in R statistical
package.

K-means

In K-means clustering, one decides on the number of clus-
ters and randomly assigns each gene to one of the k clus-
ters. If a gene is actually closer to the center of another
cluster, as assessed by variety of similarity metrics (i.e.,
Pearson's correlation or Euclidean Distance) the gene will
be assigned to the closer cluster. After assigning all genes
to the closest cluster, the centroids (centers of clusters) are
recalculated. After a number of iterations, the cluster cen-
troids will no longer change and the algorithm stops. The
K-means clustering is described in detail in [18]. However,
the efficient version of the algorithm is presented by Har-
tigan and Wong [19] which is implemented in R (publicly
available software). This version of K-means assumes that
it is not practical to require that the solution has minimal
sum of squares against all partitions, except when M
(number of genes to be clustered), N (number of chips or
samples) are small and k = 2. For details of this algorithm,
please refer [19].

Self Organizing Map (SOM)

Self Organizing Map (SOM) is a clustering algorithm [20]
used to map high dimensional microarray data onto a
two-dimensional surface. It is similar to K-means, but
instead of allowing of centroids to move freely in high
dimensional space, they are restricted to a two-dimen-
sional grid. Grid maps considered by usare 1 x 2, 1 x 3, 1
x4,1x5 1x6,1x7,1x8 1x9,1x10fork=2to10
respectively. We did not assess stability for other grid
structures to see if we obtain similar stability scores,
because assessing stability on 37 datasets with different set
of grid structures for k = 2 to k = 10 involves impractical
computations. The grid structure implies a relationship
between neighboring clusters on the grid. The resultant
map is organized in such a way that similar genes are
mapped onto similar clusters (nodes) or to neighboring
clusters. Hence, the arrangement of clusters reflects the
topological relationships of these clusters.

Clustering LARge Applications (CLARA)

The clustering algorithm PAM (Partition Around
Medoids) works effectively for small datasets but does not
scale well for large datasets [21]. To deal with large data-
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sets, a sampling-based method, called CLARA (Clustering
LARge Applications) can be used. CLARA [22] is carried
out in two steps. First it draws a sample of dataset, applies
PAM algorithm on the sample and finds k representative
objects of the sample. In PAM, one considers possible
choices of k representative objects and then constructs the
clusters around these representative objects. A set of k rep-
resentative objects is selected which gives minimum average
dissimilarity. PAM algorithm is explained in detailed in
[23].

Once the k representative objects are selected, then each
object not belonging to the sample is assigned to the near-
est of the k representative objects. This yields clustering of
the entire dataset and measure of quality of this clustering
is obtained by computing the average distance between
each object of the dataset and its representative object.
After five samples have been drawn and clustered, the one
is selected for which the lowest average distance was
obtained.

Fuzzy C-means

Fuzzy C-means is a data clustering technique wherein
each gene belongs to a cluster that is specified by a mem-
bership degree. Membership degrees between zero and
one are used instead of crisp assignments of the data to
clusters. This technique was originally introduced by Bez-
dek [24]. In our methodology we use crisp assignments of
genes to clusters. Hence, in Fuzzy C-means we assign every
gene to a unique cluster - the one showing maximum
degree of membership for that gene. One may question
why K-means is considered different from Fuzzy C-means
if we do not assign genes to more than one cluster in
Fuzzy C-means? In K-means [19], an early assignment to
a given cluster may preclude a gene from being considered
to any other cluster. Crisp assignment (in K-means algo-
rithm) may prematurely force a gene into a cluster. Fuzzy
C-means on other hand can be considered more "global"
where a gene is assigned to more than one cluster with
some membership degree (0 to 1) and then we convert the
fuzzy membership into crisp membership by assigning
the gene to a cluster showing maximum degree of mem-
bership. The above two approaches may produce different
clustering solutions and hence Fuzzy C-means without
fuzziness is not same as K-means.

Similarity Metric

The similarity metric allows us to compute the distance
between two objects to be clustered. Two of the more
common similarity metrics are: Pearson's correlation coef-
ficient and Euclidean distance. A correlation coefficient
evaluates the direction of change between two expression
profiles. It is described as a shape measurement, which is
insensitive to differences in magnitude of the variables.
The value of correlation coefficient ranges from -1 to +1,

and values of zero indicate a random relationship
between profiles [5]. Euclidean distance is a dissimilarity
measure, that is, a high distance implies low similarity
and measures both magnitude and direction of change
between two expression profiles. It can be shown that cor-
relation and Euclidean distance are equivalent after stand-
ardization [16]. For our studies, we use Euclidean distance
which can be calculated as:

N
- 211/2
di =13 (g~ &)1
k=1
Where, dj; is the distance between genes i and j (across N
samples), and g, is the gene expression value of the kth

sample/subject for the ith gene.

Pearson's correlation coefficient can be defined as:

N _ _
> (i —8) (8 —8;)
=

dij =

N _ N —
1S (e =& TS (g3 —8))"1?
k=1 k=1
Where 8_1 is the mean intensity of gene g; across samples.

Method used to compute cluster stability

We quantify stability/replicability using Cramer's 12 .
Cramer's 12 makes use of y2 statistics. If we classify data by
two systems simultaneously, the result is a two-way con-
tingency table. One can analyze data of this type using the
classic y2 test, an inferential test of the null hypothesis,
which states there is no association between the two clas-
sification schemes (for details, refer [25]). One can also
compute measures that quantify the degree of association
in such tables [26]. One such measure, Cramer's 12 is the
squared canonical correlation between two sets of nomi-
nal variables that define the rows and columns of the con-
tingency table. It indicates the proportion of variance in
one classification scheme that can be explained or pre-
dicted by the other classification scheme [25]. It ranges
from O to 1, with 0 indicating no relationship and 1 indi-
cating a perfect reproducibility.

2

Cramer’s 12 = _X
N(k-1)

Where »2 = is the ordinary 2 test statistic for independ-
ence in contingency tables [27], N = the number of items
cross classified (i.e., total number of genes to be clus-
tered), and k = the smaller of rows or columns in a two
way contingency table, in our case, k is the number of
clusters extracted.
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Repeat 3
times

Figure |
Algorithm: cluster stability computation. Cluster stability score S(x,k) is computed for every "k"(number of clusters) and

every pair of sub-sampled set of sample size "x".
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Algorithms and implementation

We implemented the algorithms explained in this section
using R, a computer language designed for statistical data
analysis. All four clustering techniques are implemented
in R.

Approach to compute cluster stability

This approach is depicted in Figure 1. Let us assume that
we have a microarray dataset with "S" subjects and "N"
genes. We split this dataset into two halves - "left" and
"right" datasets - each containing half (S/2) the number
of subjects and N genes (algorithm for splitting the dataset
is explained in detail below). We then resample the left

S . S
dataset 3 —2 times and create 3 —2 samples. Each sam-

ple is created without replacement but it is replaced to cre-
ate a next sample of higher sample size. For example, a
sample of sample size 3 is created by randomly selecting
3 subjects without replacement from the left dataset. Then
anew sample of sample size 4 is created by drawing (with-
out replacement) one additional case/subject from those
remaining in the left dataset. The above procedure is

S . . o
repeated 37 2 times each time adding in new case to the

. S .
existing subsample to create 3 —2 samples with sample

sizes ranging from 3 to S/2 respectively. Similarly we resa-

S
mple from the right dataset and create 5 —2 samples.

Thereafter, all samples of the left dataset and right dataset
are clustered with k number of clusters (k ranging from 2
to 10). We then generate kXk contingency tables for each
pair of samples — one sample from left and another from
the right dataset, both having same sample size x (x ranges
from 3 to S/2). A cluster stability score S(x,k) is then quan-
tified using Cramer's 12 for every kXk table. The random
selection of subjects (columns of microarray datasets) to
create samples may affect clustering solutions produced
on those samples which, in turn, may produce stability
scores by chance. As shown in Figure 1, this procedure is
repeated thrice. Stability scores S(x,k) are computed thrice
on each dataset and averaged to produce more reliable
results.

Algorithm to split dataset into two halves

A microarray dataset contains subjects observed under dif-
ferent conditions or time points. Blindly splitting a data-
set into two halves may create "left" and "right" datasets
that contain subjects observed under different conditions
or contain unequal proportions of subjects observed
under different conditions. Hence, in order to create "left"
and "right" datasets containing same proportions of sam-
ples observed under different conditions we used the algo-
rithm noted in the example contained in Figure 2. If we

Input: Microarray dataset of “S” samples containing 2 classes (conditions) of
samples observed under two different conditions (ie, case and control) with “C”
case samples and “N” control samples (where C + N = S). So notionally we
have:

X {dataset with S samples}, Xcase = X {C case samples}, Xcontrol = X {N
control samples}, Xcase U Xcontrol =X

Output: XLeft {left dataset}, XRight {right dataset}

Require: Z-transforming routine (explained in “Systems and Methods”
section): Z-transform (X) {replace expression values of dataset X by Z scores}
Steps:

1 | Z Xcase = Z-transform(Xcase) {standardized lean set Z Xcase contains C
samples}

2 | Z_Xcontrol = Z-transform(Xcontrol) {standardized obese set Z_Xcontrol
contains N samples}

3 | Divide Z_Xcase into 2 sets: Z Xcasel and Z_Xcase2 each containing C/2
samples.

4 | Divide Z_Xcontrol into 2 sets: Z_Xcontroll and Z_Xcontrol2 each containing
N/2 samples.

XLeft=Z7_Xcasel UZ_Xcontroll {left dataset XLeft contains S/2 samples}
6 | XRight=Z Xcase2 UZ_ Xcontrol2 {right dataset XRight contains S/2
samples}

w

Figure 2

Pseudo code of algorithm: Splitting dataset. This algo-
rithm explains steps involved in splitting a hypothetical data-
set of sample size S containing samples observed under 2
conditions (say lean, obese) into left and right datasets.

assume a dataset of "S" subjects observed under two dif-
ferent conditions (say case and control), then after apply-
ing this algorithm (Figure 2) we produce "left" and "right"
datasets (each containing S/2 subjects) having same pro-
portions of case to control subjects and expect a clustering
algorithm to produce identical clustering solutions on
both "left" and "right" datasets.

Results
We evaluated stability performances on 37 real microarray
datasets (Table 1) and 8 simulated datasets (Table 2).

Results on real datasets

Stability results produced on a real dataset (n = 16, where
n is number of subjects in dataset) with the SOM algo-
rithm are shown in Table 3. Each cell of Table 3 represents
the stability score computed for the value of k and the pair
of samples. We produced 37 output tables for 37 real data-
sets of various sample sizes. Real datasets may have differ-
ent cluster structures. Hence, for every output table
produced on a given dataset, we selected a column k
which gives a maximum summation of stability scores
across sample sizes and consider it (k) as the best cluster-
ing structure for that dataset. We selected 37 columns of
scores from 37 real datasets and merged them into one
column by averaging scores across columns (k) for same
sample sizes. The resultant column of scores represents
the stability curve for that clustering algorithm across
sample size. Figure 3 plots stability scores (summarized
on 37 real datasets) with respect to sample size for all four
clustering routines. All four methods showed increasing
stability with increasing sample size. K-means and SOM
showed a gradual increase in stability with increasing
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Table 3: Table showing stability results produced on a real dataset of sample size 16. Table 3 shows stability scores produced on a
given dataset of a sample size of n = 1 6. We split the dataset into two halves each containing 8 subjects. The left dataset is resampled
6 times producing 6 samples of sample sizes 3 to 8, respectively. Similarly the right dataset is resampled to produce 6 samples. We
measured the strength of the association between the clusters produced on every pair of samples (one sample from left and other
from right dataset both of same sample size) using Cramer's v2. Columns in the table represent number of clusters (k) and rows
represent sample sizes. Stability score quantified for k = 10 and sample size 8 is 0.3699. This table shows there is 37% agreement
between the clusters produced (k = 10) on pair of samples (a sample from left dataset and other from right dataset both of sample size

8).

K (CLUSTERS)

2 3 4 5 6 7 8 9 10
SAMPLESIZE 3 05883 0.47091 0.4503 0.4028 0.3809 0.3600 0.3313 0.3107 0.2992
4 05799 0.48045 0.4244 0.3894 0.365 0.3469 0.3132 0.297 0.2858
5 05738 0.48296 0.4297 0.3982 0.3644 0.3430 0.3195 0.3013 0.2790
6 0.6433 0.54638 0.5142 0.4727 0.4405 0.4066 0.3817 0.3616 0.3396
7 06534 0.54821 0.5250 0.4826 0.4462 04211 0.3915 0.3679 0.348
8 06759 0.58447 0.5520 0.5045 0.4700 0.4592 0.4160 0.3975 0.3699

sample size. CLARA and Fuzzy C-means, however, main-
tained low stability scores until a sample size of 30 was
attained. Stability scores then gradually increased after
this threshold. K-means and SOM showed superior stabil-
ity scores as compared to CLARA until the sample size
attained n = 30. It is interesting to note that average stabil-
ity achieved is not greater than 0.55 for all four clustering
routines even when at sample size of n = 50 is attained.
These results suggest that microarray datasets may lack
natural clustering structure, thereby producing low stabil-
ity scores on all four clustering methods. Alternatively, if
we consider the 90t percentile of scores across 37 selected
columns (k) (37 columns of scores from 37 real datasets)
for similar sample sizes to represent stability coefficients
produced on datasets having clustering structure, we then
observe scores between 0.7 and 0.8 until a sample size of
n = 50 for the four clustering algorithms is achieved.

Results on simulated datasets

All 8 simulated datasets have the same clustering structure
(k = 6) and the same correlation p set to (0.33)'/2 within
a cluster. Thus, (as expected) all datasets show high scores
on k = 6 and low scores on other values of k. In simulated
datasets, we merged all 8 output tables produced on 8
datasets into one output table with each cell computed as
the mean of all the corresponding cells in 8 tables thereby
producing the distribution of scores for each value of k (k
ranging from 2 to 10) across sub-sampled space. The final
output table manifests the stability behavior of the clus-
tering algorithm for various values of clusters (k) consid-
ered. In simulated datasets, we produced a final output
table of scores for each k (2 to 10) across sub-sampled
space. We plotted stability results for various values of k
across sample sizes as shown in Figure 5. As expected,
maximal stability was achieved for the correct number of
clusters k = 6 in all four clustering routines thereby vali-
dating our methodology and programming. However, as

we deviate from k = 6, we observed a decline in stability
scores. This phenomenon can be clearly observed in
CLARA, K-means and Fuzzy C-means (Figure 5). Hence,
scores observed on k = 7 were always higher than that on
k = 2, since k = 7 is nearer to k = 6 (Figure 5). Figure 4
shows results on simulated datasets for k = 6. We observed
the following differences in stability behaviors among the
four clustering algorithms.

¢ Different algorithms showed different stability behav-
iors until sample size reached n = 100. K-means showed
high stability at smaller sample sizes as compared to the
other methods.

Real datasets

€
2
é —e—SOM
2 —a—Kmeans
E‘ Fuzzy C-means
3 Clara
8 01
»

0

SR IRCHE I R

Sample Size
Figure 3

Cluster Stability results. Stability scores for various val-
ues of k (2 to 10) are computed on all 37 datasets. For each
dataset, we selected a column (k) showing maximum summa-
tion of scores across sample size. Finally all 37 columns
selected on 37 datasets were merged into one resultant col-
umn representing stability scores with respect to sample size
for that clustering routine.
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Simulated datasets for rho = sqrt(0.33) and k=6
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Figure 4

Cluster Stability results on simulated datasets for k =
6. Datasets are simulated with a clustering structure k = 6 (6
clusters). The above figure shows high stability scores
observed for k = 6 on all four clustering routines.

¢ K-means, Fuzzy C-means and SOM showed fluctuation
in scores even at large sample sizes, whereas CLARA
showed consistent behavior (constant level of scores) at
larger sample sizes.

e CLARA maintained 100% stability for larger sample
sizes (300-500) whereas, SOM and Fuzzy C-means failed
to reach 100% stability, even at large sample sizes. K-
means showed stability scores between 0.7 and 1.0 most
of the times for larger sample sizes.

Figure 4 suggests that K-means shows replicable perform-
ance than other non-hierarchical clustering algorithms
considered (SOM, CLARA and Fuzzy C-means). Also,
CLARA is a good choice for datasets of larger sample sizes.

Discussion

We determined the performance of commonly used non-
hierarchical clustering algorithms and the degree of stabil-
ity achieved using several microarray datasets. We
assessed cluster stability as a measure of replicability. We
agree that replicability is not the only criteria for measur-
ing cluster stability. However, a useful classification that
characterizes some aspect of population must be replica-
ble [2]. The most critical finding of this research was low
stability achieved for all four clustering algorithms even at
the elevated sample sizes of n = 50. This suggests that in
general, given sample sizes up to 50, if the clustering algo-
rithms we studied are applied, it is highly questionable
that the results obtained will be meaningful. The extent to
which these results apply to other clustering algorithms
remains open to question, but we believe that the "burden
of proof" is now on those who use clustering algorithms
on microarray data and claim that such analysis produce
replicable results.

Figure 3 and Figure 4 suggest that K-means shows replica-
ble performance than other clustering algorithms consid-
ered (SOM, CLARA and Fuzzy C-means). K-means and
SOM showed similar behavior in real datasets because
they are closely related to each other. In K-means, centro-
ids move freely in multidimensional space while they are
constrained to a two-dimensional grid in SOM [28]. In
SOM, the distance of each input from all reference vectors
is considered, instead of just the closest one, weighted by
the neighborhood kernel [29]. Thus, the SOM functions
as conventional clustering algorithm if the width of the
neighborhood kernel is zero [29]. Low stability achieved
on all four clustering routines may also suggest that
microarray datasets, in general, lack natural clustering
structure. We do not claim that these results can predict
the exact stability nature of a given dataset of a specific
sample size, since these are generalized on a large number
and variety of datasets. Nonetheless, the researcher should
consider performing cluster analysis on large sample sizes
to obtain more stable clustering solutions. Our research
suggests a statistical criterion for selecting an appropriate
number of clusters (k) for a given microarray dataset. This
may be accomplished by computing Cramer's 12 on vari-
ous values of k and selecting that value of k which pro-
vides a maximum stability score for a given dataset.

We also evaluated stability performances on simulated
datasets. Simulated datasets helped us understand the sta-
bility behavior at large sample sizes (300-500). Datasets
were structured for 6 clusters with a correlation of (0.33)Y/
2 within clusters. All four clustering algorithms showed
similar stability behavior in real and simulated datasets
until sample sizes attained n = 50. K-means showed
greater stability scores as compared to other methods at
smaller sample sizes in both real and simulated datasets,
indicating that K-means appear to be a better choice for
datasets of smaller sample sizes. K-means and CLARA
maintained 100% stability for large sample sizes (300-
500), whereas SOM and Fuzzy C-means showed stability
scores below 1, even at larger sample sizes (refer Figure 5).

Our methodology to compute stability used crisp assign-
ments of genes to clusters. Hence, in Fuzzy C-means we
assigned every gene to a cluster showing maximum degree
of membership. We acknowledge that the above process
of crisp assignment may affect the stability scores pro-
duced in Fuzzy C-means and hence expect it to produce
low scores before hand. In SOM, we found that the choice
of two-dimensional grid structure influences the stability
scores produced on simulated datasets. For a same
number of clusters (k) considered, we can create a two-
dimensional grid in more than one way. Choosing the
right grid structure for a given value of k to produce stable
clustering solutions is beyond the scope of this paper and
will address it in future investigations. Currently we limit
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Clara: rho =sqrt(0.33) & k=2 to 10 K-means: rho = sqrt(0.33) & k=2 to 10
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Cluster Stability results on simulated datasets for k = 2 to k = 10. Stability scores for various values of k (2 to 10) are
computed on all the 8 simulated datasets. For each dataset, we generate an output table of scores (explained in Algorithms

section). We merge all the 8 output tables produced into one table with each cell computed as average of corresponding cells
in 8 tables. Finally scores are plotted for all k values with respect to sample size. For cleaner visualization purposes, we do not
show stability curves for all k values in figure 5c and figure 5d. a Scores plotted for CLARA for each k (2—10). b Scores plotted
for K-means for each k (2—10). ¢ Scores plotted for Fuzzy Cmeans for each k (2—10). d Scores plotted for SOM for each k (2—

10).

the value of k (clusters) to 10; hence, if a real dataset has
natural clustering structure for k greater than 10 (say k =
17), then this observation is not captured. We will con-
sider measuring stability scores for higher values of k as an
extension of this research. In conclusion our research sug-
gests several plausible scenarios: (1) microarray datasets
may lack natural clustering structure thereby producing
low stability scores on all four methods; (2) the algo-
rithms studied may not be well suited to producing relia-
ble results and or (3) sample sizes typically used in
microarray research may be too small to support deriva-
tion of reliable clustering results.
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