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Abstract: Acupuncture is one of the oldest traditional medical treatments in Asian countries. How-
ever, the scientific explanation regarding the therapeutic effect of acupuncture is still unknown. The
much-discussed hypothesis it that acupuncture’s effects are mediated via autonomic neural networks;
nevertheless, dynamic brain activity involved in the acupuncture response has still not been elicited.
In this work, we hypothesized that there exists a lower-dimensional subspace of dynamic brain
activity across subjects, underpinning the brain’s response to manual acupuncture stimulation. To
this end, we employed a variational auto-encoder to probe the latent variables from multichannel
EEG signals associated with acupuncture stimulation at the ST36 acupoint. The experimental results
demonstrate that manual acupuncture stimuli can reduce the dimensionality of brain activity, which
results from the enhancement of oscillatory activity in the delta and alpha frequency bands induced
by acupuncture. Moreover, it was found that large-scale brain activity could be constrained within a
low-dimensional neural subspace, which is spanned by the “acupuncture mode”. In each neural sub-
space, the steady dynamics of the brain in response to acupuncture stimuli converge to topologically
similar elliptic-shaped attractors across different subjects. The attractor morphology is closely related
to the frequency of the acupuncture stimulation. These results shed light on probing the large-scale
brain response to manual acupuncture stimuli.

Keywords: acupuncture; EEG; dimensionality; neural subspace; latent variables; attractor

1. Introduction

Acupuncture, an ancient practice in traditional Chinese medicine (TCM), is gradu-
ally being recognized throughout the world as an important modality of alternative and
complementary medicine [1,2]. The World Health Organization (WHO) and the National
Institutes of Health (NIH) have reported that acupuncture is an efficient treatment for vari-
ous conditions, such as addiction, headaches, myofascial pain, and lower back pain [3–6].
A number of available pieces of evidence have demonstrated that acupuncture may also
help with stroke rehabilitation [7]. However, the scientific explanation of acupuncture’s
effects is still unknown. Clinical and experimental studies have indicated that acupuncture,
as a complex somatosensory stimulation of the central nervous system, can mediate the
electrical activity of autonomous neuronal networks [8,9]. Furthermore, neuroimaging data
strongly suggest that widely distributed cortical and subcortical brain areas are recruited
during acupuncture stimulation [10,11]. For example, Bai et al. demonstrated that acupunc-
ture can increase activity in the amygdala, the perigenual anterior cingulate cortex (pACC),
the periaqueductal gray (PAG), and the hypothalamus [12]. Therefore, more attention has
been focused on probing brain activities during and after acupuncture stimulation.

In addition, an electroencephalogram (EEG) is an effective method for obtaining brain
electrical signals, and is able to record spontaneous cerebral activity with a time resolution
at the millisecond level. It has been widely used in clinical and experimental studies to
analyze brain activity associated with acupuncture stimulation. Methods of characterizing
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brain activity based on EEG recordings can be divided into two categories. The first
category is the statistical analysis of brain oscillatory activity, such as power spectral density,
complexity, and coherence [13–15]. For example, Tanaka et al. investigated the variance
of EEG power induced by acupuncture. They found that acupuncture could increase
EEG power in all frequency bands, and this increment remained after acupuncture [16].
Furthermore, Qi et al. quantified the approximate entropy (ApEn) of EEG signals and
confirmed the variance of ApEn in the prefrontal lobe, the posterior temporal lobe, and the
occipital lobe before, during and after acupuncture stimulation [17]. The other category
involves constructing a functional network based on various measurement of correlation
or synchronization [18,19]. Yu et al. constructed the functional network of acupuncture
EEG signals based on phase synchronization and found that acupuncture at ST36 can
significantly improve the synchronization of alpha rhythms and enhance the small-world
connection characteristics of the brain’s functional network [20,21].

Brain activity is a high-dimensional dynamical process that evolves over time, and
the data analysis methods above cannot be directly associated with brain dynamics, which
poses a challenge in probing the dynamic response of the brain to acupuncture stimuli.
As a usual feature of complex systems, the degrees of freedom traversed by its dynamics
are much lower than the number of units comprising the system [22]. The human brain is
such a complex system of numerous neurons coupled through synapses. Observations in
electrophysiological experiments have demonstrated that the brain has low dimensionality
at different levels, from macroscopic, to the mesoscopic and microscopic scales [23–25].
Based on this perspective, several neuroscientists have focused on investigating the low-
dimensional dynamics of brain. They suggest that a low-dimensional representation of
brain, known as “latent variables”, can afford a deeper understanding of the core principles
underpinning whole-brain patterns of neural activity [26–28]. For example, Cueva et al.
found that low-dimensional dynamics provide a mechanism for the brain to solve the
problem of storing information across time [29]. Abbaspourazad et al. extracted the low-
dimensional dynamics in both spiking and LFP recordings within the motor cortex during
reach-and-grasp tasks, and addressed that the multiscale, low-dimensional motor cortical
state dynamics accounted for the neural control of motor behaviors [30].

Additionally, these latent variables are explanatory variables that are not directly
observed but can be identified from the data using dimensionality reduction methods.
These methods transform high-dimensional data into low-dimensional representations that
retain important features of interest [31]. The variational auto-encoder (VAE) method is
one of dimensionality reduction methods that consists of unsupervised neural networks, in
which latent variables can be learned from the original high-dimensional datasets [32]. VAE
is composed of an encoder and a decoder, the former is responsible for inferring the latent
variables, and the latter is designed to generate a new dataset based on latent variables.
This method shows good applicability in the study of brain activity. For example, Bi et al.
put forward a semi-supervised VAE method to probe low-dimensional representations
of ERPs, and found that the latent variables are of good applicability in brain-controlled
vehicles [33]. Furthermore, the knowledge of low dimensional dynamics extracted from
video-evoked cortical responses can predict its response with high accuracy, which has the
potential to explain the cortical response scientifically [34]. Li et al. utilized VAE to learn
the latent variables from the multichannel EEG signals and found that emotion recognition
achieves excellent performance based on the learnt latent variables [35].

At present, study on brain activity under acupuncture stimuli mostly focus on the
study of rhythm, complexity, synchronization, and functional networks. However, the
brain is a high-dimensional, complex system composed of numerous neurons, and the
response of the brain to acupuncture stimulation is associated with many distributed
coupled cortical areas. To solve the problem of high dimensionality, we proposed to apply
a dimensionality reduction method to probe the latent dynamics of brain activity associated
with acupuncture stimulation. Latent variables can not only reflect the lower-dimensional
features of brain activity, but can also yield clues about the underlying associated neural
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dynamics related to the intrinsic properties of external stimuli [36,37]. Specifically, we
adopted the VAE method to extract latent variables from the experimental acupuncture
signals, and further explored the brain activity associated with acupuncture stimuli.

Acupuncture is a complex interventional stimulation of the human body. Multiple
stimulation parameters, including the needle sensation, acupoint specificity, acupuncture
manipulation, and needle duration, have relevant influences on brain activity. Acupunc-
ture manipulation is a key factor that determines the therapeutic effect of acupuncture.
It is reported that acupuncture can reduce acute lower back pain for patients, and the
improvement critically depends on the acupuncture manipulation. Therefore, this work
focused on investigating the instant effect of acupuncture manipulation on brain activity.
It was found that the characteristics of latent dynamics are associated with acupuncture
manipulation. Overall, these results can provide a theoretical support for the selection of
an appropriate acupuncture frequency for patients in clinical settings, and the proposed
methods have potential in exploring the effects of acupuncture on brain activity.

This paper is organized as follows. In Section 2, the experimental acupuncture pro-
cedure and the corresponding method of analysis are introduced. In Section 3, the results are
presented. Finally, the discussion and conclusion are provided in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Experiment Design and EEG Recording

Twelve right-handed healthy subjects (7 female, 5 male, mean age 23 years, range
22–25 years), who had never been treated with acupuncture, participated in the acupunc-
ture experiment. They confirmed that they had not been taking any medication in the
past 30 days and had no history of mental illness. Participants were informed about the
needle stimulation in the acupuncture experiments and gave written informed consent to
participate in the experiment. The Institutional Review Board of Armed Police Logistics
College Affiliated Hospital approved our experimental protocol (LLKYPJ2010005).

In our experiment, acupuncture was administered manually at the ST36 (Zusanli)
acupoint on the left leg (shown in Figure 1a) by a licensed acupuncturist using a single-
use stainless steel needle of 0.2 mm in diameter and 40 mm in length. We adopt the
twirling-twisting method with different frequencies as the acupuncture manipulation
method. Specifically, the needle was twirled, mainly with the thumb forward, and the
twisting was within a range of 90–180◦ and at a certain frequency. The subjects were
randomly divided into three groups (four subjects in each group), which received manual
acupuncture stimulation with different twirling and twisting frequencies of 50 times/min,
100 times/min, and 150 times/min, respectively.

The experiment was carried out in a dark, quiet room. The participants were asked
to keep their eyes closed and stay awake to eliminate significant electromyoelectrical
disturbance. For each subject, the entire experiment lasted about 59 min. The experimental
procedure was carried out as follows (shown in Figure 1b): all subjects first rested for
10 min, then the acupuncture needle was inserted by the acupuncturist to a depth of 10 mm
at the ST36 acupoint until deqi. The needle was kept inserted without operation for 10 min,
referred to as the pre-acupuncture state (Pre-acu). Then, the twirling-twisting operation
was conducted for 3 min (acupuncture, Acu). After the operation, it was necessary to
keep the subject in a resting state for 10 min (post-acupuncture, Post-acu). This procedure
was repeated 3 times. Finally, after removing the needle, the acupuncturist finished
the experiment.
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Figure 1. The schematic diagram of the experimental operation. (a) Schematic diagram of the acupuncture experiment. 
Electroencephalographic signals evoked by manual acupuncture at the ST36 acupoint of healthy subjects were directly 
recorded in three states: pre-acupuncture, acupuncture, and post-acupuncture. (b) A timeline of the detailed experimental 
procedure of manual acupuncture manipulation and (c) the EEG signals recorded. 

EEG signals were recorded using a Neuroscan system with 19 Ag-AgCl electrodes, 
which were placed in accordance with the international standard 10–20 system. The ref-
erence electrode was located between electrodes A1 and A2, and the earlobe was used as 
the reference ground of the electrode. The data sampling frequency was 256 Hz, and the 
hardware filter passband was 0.5 Hz~100 Hz. Every subject selected a median of 1 min of 
EEG data of acupuncture for the elimination of the effect of the insertion or withdrawal of 
needle and other possible factors. For signal preprocessing, the noise in the EEG data was 
filtered out to extract effective data with a band-pass finite impulse digital filter with a 
band pass frequency ranging from 0.5 Hz to 30 Hz. Then, systematic effects which might 
be caused by referencing to a particular channel were removed by referencing the EEG 
data of each channel to the average of all channels. The EEG data after preprocessing are 
shown in Figure 1c. 

2.2. Measurement of Dimensionality 
Dimensionality, the minimal number of dimensions necessary to offer a precise rep-

resentation of neural activity, is defined as [38]: 
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Figure 1. The schematic diagram of the experimental operation. (a) Schematic diagram of the acupuncture experiment.
Electroencephalographic signals evoked by manual acupuncture at the ST36 acupoint of healthy subjects were directly
recorded in three states: pre-acupuncture, acupuncture, and post-acupuncture. (b) A timeline of the detailed experimental
procedure of manual acupuncture manipulation and (c) the EEG signals recorded.

EEG signals were recorded using a Neuroscan system with 19 Ag-AgCl electrodes,
which were placed in accordance with the international standard 10–20 system. The
reference electrode was located between electrodes A1 and A2, and the earlobe was used
as the reference ground of the electrode. The data sampling frequency was 256 Hz, and the
hardware filter passband was 0.5 Hz~100 Hz. Every subject selected a median of 1 min of
EEG data of acupuncture for the elimination of the effect of the insertion or withdrawal
of needle and other possible factors. For signal preprocessing, the noise in the EEG data
was filtered out to extract effective data with a band-pass finite impulse digital filter with a
band pass frequency ranging from 0.5 Hz to 30 Hz. Then, systematic effects which might
be caused by referencing to a particular channel were removed by referencing the EEG
data of each channel to the average of all channels. The EEG data after preprocessing are
shown in Figure 1c.

2.2. Measurement of Dimensionality

Dimensionality, the minimal number of dimensions necessary to offer a precise repre-
sentation of neural activity, is defined as [38]:

Dim(C) =
(Tr C)2

Tr C2 =
(∑i λi)

2

∑i λ2
i

, (1)

where C is the covariance matrix of the activity vectors, and λi is the ith eigenvalue of the
covariance matrix C. In this work, C is the covariance matrix of the electrical signals of 19
electrodes. Dim(C) ∈ [1, 19], where Dim(C)= 19 indicates that the activity of the brain is
independent and has equal variance, and Dim(C)= 1 demonstrates strongly correlated
brain activity.
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2.3. Method for Extracting Low-Dimensional Latent Variables

The variational auto-encoder (VAE) is a powerful deep learning method for extracting
the latent variables from data, which occurs in a feedforward manner, consisting of sym-
metrical networks: the “encoder” and “decoder” (as shown in Figure 2). More specifically,
the encoder is in charge of encoding the high-dimensional input into a low-dimensional
representation, and the decoder is in charge of reestablishing the input data on the basis of
the low-dimensional representation.
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Figure 2. Neural network architectures of VAE. The encoder is in charge of encoding the high-
dimensional input (x) into a low-dimensional representation (z), and the decoder is in charge of
reestablishing the input data (x) on the basis of the low-dimensional representation (z).

Considering the dataset χ = {x(t)}N
t=1 of variable x, the VAE assumes that one

random process involving an unobservable latent variable z generates all the data, which
are produced from one prior distribution pθ(z), thus x is determined by the conditional
distribution pθ(x|z ) [35]. According to the Bayesian theory, the “decoder” network is in
the form:

x ∼ pθ(x|z )pθ(z), (2)

and the “encoder” network is of the form:

pθ(z) ∼ qφ(z|x )p(x). (3)

The optimization function is defined based on minimizing the difference between the
reconstructed data (output) and the original data (input), which is of the form:

maxEqφ(z|x)[log pθ(x|z )]− DKL
(
qφ(z|x )‖pθ(z)

)
. (4)

According to the Monte Carlo estimation method, the first term in the equation above
is calculated through sampling L times as follows:

Eqφ(z|x)[log pθ(x|z )] = 1
L

L

∑
l=1

log pθ(x(t)|zl(t) ) (5)

The KL divergence of the approximate posterior qφ(z|x ) from the true prior pθ(z) is

computed through−DKL
(
qφ(z|x )‖pθ(z)

)
= 1

2

J
∑

j=1

(
1 + log

(
σ2

j (t)
)
− µ2

j (t)− σ2
j (t)

)
, where

J is the dimensionality of z.
We utilized stochastic gradient descent and a back-propagation method to optimize

the unknown parameter θ and the latent variable z by minimizing the difference between
the output data and the input data. In this work, the 3-min-long dataset under different
states was cut into 18 10-s-long data segments; thus, the number of samples for one segment
is 2560. Hence, the batch size for unsupervised VAE learning is set as 20 to balance the
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training speed. The VAE approach was realized through the Deep Learning Toolbox in
Matlab (R2021b).

3. Results
3.1. The Oscillatory Properties of Brain Activity Evoked via Manual Acupuncture Stimulation

Brain activity is composed of high-dimensional complex oscillatory activity with rich
rhythmic information. Therefore, the power spectrum density (PSD) of EEG signals was
first investigated using the Welch method. Before acupuncture, the energy reaches two
peaks near 1.2 Hz and 10 Hz, and the energy is mainly concentrated in the low-frequency
band (1.2 Hz, the delta frequency band), as shown in Figure 3a. In the acupuncture state,
the tendency of the energy distribution is similar to the pre-acupuncture state, but with
a significant increment in energy in the delta and alpha frequency bands compared with
the state before acupuncture. The results show that acupuncture at ST36 could affect the
neural oscillatory activity, especially in the delta and alpha frequency bands.
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Figure 3. Brain activity associated with manual acupuncture stimulation. (a) Power spectrum char-
acteristics of EEG data under different states. (b) PSD distribution in different frequency bands.
p < 0.05 (*) and p < 0.01 (**) represent significant difference levels between pre-acupuncture and
acu-puncture states. (c,d) Topographic map showing the variance of the PSD distribution between
ac-tivity during and before different acupuncture manipulation states in (c) delta and (d) alpha
fre-quency bands. Acupuncture can significantly affect the oscillatory activity in the delta and alpha
frequency bands within EEGs. This variance is increased in the frontal and parietal lobes.
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We further computed the average energy distribution across four sub-bands (delta,
theta, alpha and beta), as shown in Figure 3b. Particularly, the energy in the delta frequency
band was higher when the manipulation frequency was 50 times/min and 100 times/min.
This phenomenon implies the emergence of resonance induced by acupuncture. As shown
in Figure 3a,b, the neural activity oscillates at an inherent frequency (about 1.2 Hz). When
the frequency of external stimulation comes close to this inherent frequency, the phe-
nomenon of resonance occurs; thus, the oscillatory response in the delta band is amplified.
The results indicate that the neural system may encode and transmit the acupuncture stim-
ulus through resonance. Scientific studies have documented the experimental occurrence
of resonance in electrical processes of the human brain, as recorded by EEG, elicited by
mechanical tactile stimuli [39]. It can be inferred that resonance is one of the mechanisms
by which the neural system encodes acupuncture stimulation.

In order to investigate the resonance effect of acupuncture on neural oscillations across
brain regions, we calculated the PSD variance (the difference in the PSD value between the
acupuncture state and the pre-acupuncture state). Figure 3c,d present the PSD variance
in two typical frequency bands (delta and alpha). In the delta frequency band, energy in
the frontal and parietal lobes is increased, especially in the left frontal lobe and the right
parietal lobe. In the alpha frequency band, the energy is increased under acupuncture
stimulation, except for the manipulation at 50 times/min. The findings obtained here are
consistent with other experimental reports based on fMRI and PET data. Xiang et al. found
that the brain regions that responded to acupuncture at ST36 only (specifically) were the
inferior parietal lobe, the middle inferior gyrus, the posterior lobe of cerebellum, and the
angular gyrus [40].

3.2. Dimensionality of Brain Activity

Recent research has investigated the dimensionality of neural ensembles from the sen-
sory cortex of alert rats during periods of ongoing and stimulus-evoked activity, and found
that stimuli could reduce the dimensionality of cortical activity [38]. Acupuncture is an
external stimulation to the sensory system. It is of great importance to investigate whether
the dimensionality of neural activity is affected by acupuncture. Figure 4a computes the
dimensionality across all trials in the empirical dataset before and during acupuncture.
The average dimensionality of brain activity in the pre-acupuncture state was larger than
that in the acupuncture state. Moreover, the value of the dimensionality increased with
an increase in the manipulation frequency. The dimensionality was minimal when the
manipulation frequency was 50 times/min.
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Figure 4. Dimensionality of brain activity. (a) Dependence of dimensionality of brain activity on
acupuncture manipulation. (b) Dependence of dimensionality of brain activity in different sub-bands
on acupuncture manipulation. Acupuncture can reduce the dimensionality of brain activity, especially
with the manipulation at 50 times/min. The dimensionality in the delta and alpha frequency band
was lower than that in the other two bands.
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Furthermore, the dimensionality of neural activity in each sub-frequency band is ex-
plored in Figure 4b. The dimensionality in the delta and alpha frequency bands was smaller
than that in the theta and beta frequency bands. In the delta and alpha frequency bands,
the dimensionality was minimal when the manipulation frequency was 50 times/min,
whereas in the theta and beta frequency bands, the dimensionality was maximized by
acupuncture stimulation with a manipulation frequency of 100 times/min. Indeed, the
oscillatory activity was more coherent in the delta and alpha frequency bands. It can be
inferred that the enhancement of the correlated activity in the delta and alpha frequency
bands induced by acupuncture could reduce the dimensionality of brain activity.

3.3. Low-Dimensional Dynamics of Brain Activity

Acupuncture’s effects are higher-order processes that are produced by the collab-
orative involvement of various latent brain factors, including different brain areas and
physical or functional brain networks [41]. For example, Dhond et al. have confirmed
that acupuncture may exert its therapeutic effects on pain by modulating a distributed
network of brain areas involved in sensory, autonomic, and cognitive/affect processing,
including endogenous antinociceptive limbic networks, as well as cognitive and affective
control centers within the prefrontal cortex and the medial temporal lobe [10]. Moreover,
the relationships between acupuncture analgesia and attentional mechanisms have been
gradually revealed [42]. As EEG results are an external manifestation of the latent brain
factors’ activities, it is of great importance to probe the low-dimensional dynamics of brain
activity associated with acupuncture stimulation based on multichannel EEG signals.

We employed the VAE method to extract the low-dimensional latent variables from
the EEGs recorded before and during acupuncture. First, the reconstruction performance
of VAE under different assumed numbers of latent variables was investigated. The re-
construction performance was quantified as the mean correlation between the original
and reconstructed EEG channel signals. As shown in Figure 5, the performance gradually
improved with an increasing number of latent variables for all subjects. When the number
of latent variables was greater than three, the model was able to obtain a reconstruction
performance of more than 80% on the EEG dataset.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 15 
 

bands, the dimensionality was minimal when the manipulation frequency was 50 
times/min, whereas in the theta and beta frequency bands, the dimensionality was max-
imized by acupuncture stimulation with a manipulation frequency of 100 times/min. Indeed, 
the oscillatory activity was more coherent in the delta and alpha frequency bands. It can be 
inferred that the enhancement of the correlated activity in the delta and alpha frequency bands 
induced by acupuncture could reduce the dimensionality of brain activity. 

3.3. Low-Dimensional Dynamics of Brain Activity 
Acupuncture’s effects are higher-order processes that are produced by the collabora-

tive involvement of various latent brain factors, including different brain areas and phys-
ical or functional brain networks [41]. For example, Dhond et al. have confirmed that ac-
upuncture may exert its therapeutic effects on pain by modulating a distributed network 
of brain areas involved in sensory, autonomic, and cognitive/affect processing, including 
endogenous antinociceptive limbic networks, as well as cognitive and affective control 
centers within the prefrontal cortex and the medial temporal lobe [10]. Moreover, the re-
lationships between acupuncture analgesia and attentional mechanisms have been grad-
ually revealed [42]. As EEG results are an external manifestation of the latent brain factors’ 
activities, it is of great importance to probe the low-dimensional dynamics of brain activity 
associated with acupuncture stimulation based on multichannel EEG signals. 

We employed the VAE method to extract the low-dimensional latent variables from 
the EEGs recorded before and during acupuncture. First, the reconstruction performance 
of VAE under different assumed numbers of latent variables was investigated. The recon-
struction performance was quantified as the mean correlation between the original and 
reconstructed EEG channel signals. As shown in Figure 5, the performance gradually im-
proved with an increasing number of latent variables for all subjects. When the number 
of latent variables was greater than three, the model was able to obtain a reconstruction 
performance of more than 80% on the EEG dataset. 

 
Figure 5. The reconstruction performance of VAE using different numbers of latent variables. The 
reconstruction performance increased with the enlargement of the latent variable number. 

We further examined the dynamic properties of these latent variables extracted from 
the EEG dataset. For each acupuncture stimulation, we plotted the top 3 dimensions of 
latent variables in Figure 6. It was shown that all units in each acupuncture manipulation 
operation contributed to a span, which is known as a latent dynamic space. Each latent 
dynamic space captured a population-wide activity pattern. For different subjects, the la-
tent factors of different states still formed a latent dynamic space, but they had different 

Figure 5. The reconstruction performance of VAE using different numbers of latent variables. The
reconstruction performance increased with the enlargement of the latent variable number.

We further examined the dynamic properties of these latent variables extracted from
the EEG dataset. For each acupuncture stimulation, we plotted the top 3 dimensions of
latent variables in Figure 6. It was shown that all units in each acupuncture manipulation
operation contributed to a span, which is known as a latent dynamic space. Each latent
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dynamic space captured a population-wide activity pattern. For different subjects, the
latent factors of different states still formed a latent dynamic space, but they had different
planes (Figure 6b). To test whether the neural latent dynamic spaces corresponded to
different manipulation frequencies, we set the latent dynamic space formatted by the
pre-acupuncture period as the reference plane (or null plane), and computed the angles
between each plane (induced by each different acupuncture stimulation) and the reference
plane. The measurement is depicted in Figure 6c. The statistical results shown in Figure 6d
demonstrate that although the planes of different individuals varied, the angles between
them and the reference plane remained unchanged with different subjects. Moreover, the
angle (θ) linearly depends on the manipulation frequency with a high goodness of fit
of 0.78.
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Figure 6. Latent variables in a 3-dimensional plane. (a) Different states of one subject. (b) Four
ran-dom selected subjects in the pre-acupuncture period. Each color trace corresponds to a single
trial. (c) Illustration of the variance of the latent dynamic space, where the angle between reference
plane (pre-acupuncture state, orange) and acupuncture state (50 times/min, blue) was measured as θ.
(d) Relationship between acupuncture manipulation and the plane included angle. Using VAE, the
low-dimensional subspace of brain activity can be identified. The characteristics of the subspaces
were determined by individuals and acupuncture stimulations.

In addition, we inspected the dynamics of the top three latent variables in each
latent dynamic space, as shown in Figure 7. It was evident that the units representing
time-varying activity in the neural space converged to an ellipse (defined as an attractor).
The trajectory was mostly confined to the latent neural space, a plane shown in Figure 7
and spanned by the acupuncture modes p1 and p2. The arrow in each figure reflected
the direction of the trajectory as it evolved over time. Intuitively, the long axes of the
elliptic attractor increased. We computed the mean distance of the long and short axes
across different trials and plotted them in Figure 8a. The quantitative results confirmed
that the variance trends were influenced by different acupuncture manipulations. A one-
way analysis of variance (ANOVA) was applied to determine whether there were any
statistically significant differences in the attractors between acupuncture states. The index
p was calculated based on the mean and variance of the length of the long and short axes
of the elliptic attractors in each state. Table 1 indicates that the long and short axes of the



Sensors 2021, 21, 7432 10 of 15

attractor in each state had significant differences, where p < 0.05 (*) and p < 0.01 (**) stand
for their significance levels in statistical analysis. Furthermore, the difference between p1
and p2 was calculated between any two states in Table 2. The maximum p-value was on the
order of 10−3, far less than 0.01. The obtained results confirmed the statistically significant
differences of the attractors.
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Figure 8. Statistical analysis of attractors of different states. (a) Dependence of long and short axes on manipulation
frequency. (b) Cluster of manipulation operation based on attractors. The statistics of attractors can be discriminants for
different brain states.

Table 1. ANOVA 1 analysis for comparison of the length of the long and short axes in different states.

Axis Pre-Acu 50 Times/Min 100 Times/Min 150 Times/Min

p1 vs. p2 1.65× 10−33 5.08× 10−29 1.00× 10−27 3.07× 10−17
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Table 2. ANOVA 1 analysis for comparison of the length of the long and short axes in different states, respectively.

Axis Pre-Acu vs. 50
Times/Min

Pre-Acu vs. 100
Times/Min

Pre-Acu vs. 150
Times/Min

50 Times/Min vs.
100 Times/Min

50 Times/Min vs.
150 Times/Min

100 Times/Min vs.
150 Times/Min

p1 8.05× 10−13 1.89× 10−28 1.46× 10−29 1.28× 10−3 8.28× 10−7 2.61× 10−3

p2 1.34× 10−3 1.72× 10−10 7.20× 10−28 8.52× 10−3 2.03× 10−26 9.15× 10−24

Based on the different statistical characteristics of the attractors, the neural dynamics
of different trials induced by different acupuncture manipulation conditions were clustered
(as shown in Figure 8b). In order to automatically classify different states, four machine
learning models—a support vector machine (SVM), the k-nearest neighbor (KNN) method,
linear discriminant analysis (LDA), and decision trees (DTs)—were constructed. The length
of the long and short axes extracted from the low-dimensional attractors were considered
for the training of the classifier model. The average accuracy of the acupuncture classifi-
cation was calculated by means of five-fold cross validation, conducted 10 times. Table 3
compares the mean classification accuracy obtained for these machine learning models.
It indicates that all these four models were able to achieve more than 95% classification
accuracy. This result suggests the universality of the proposed classification scheme based
on the statistical characteristics of the attractors. Furthermore, the performance of LDA
was better than that of the other three classifiers.

Table 3. Mean classification accuracy for various machine learning models.

Model SVM KNN LDA DT

Accuracy 97.5% 97.5% 98.8% 95.0%

4. Discussion

The present study was aimed at probing the low-dimensional dynamics of brain
activity associated with acupuncture at the ST36 acupoint with different manipulation fre-
quencies. Specifically, we studied the changes in the power spectrum of brain activity before
and during acupuncture stimulation. We extracted the neural subspace and characterized
the relationship between acupuncture stimuli and low-dimensional dynamics.

Using a manual acupuncture paradigm, in conjunction with brain electroencephalog-
raphy (EEG) signal recording, we observed that acupuncture episodes were associated with
increased spectral power in the delta and alpha frequency bands compared to episodes of
resting, especially in the delta frequency band. This phenomenon suggests that stochas-
tic resonance is a way in which the brain processes periodic acupuncture stimulation.
Stochastic resonance is commonly understood to be the enhancement of the response of a
nonlinear system in cases where the frequency of the external input is close to its intrinsic
oscillatory frequency, with the help of noise [43,44]. Noise, which is ubiquitous in the
brain, comes from synaptic transmission, channel gating, ion concentrations, and mem-
brane conductance, and is possibly involved in stochastic resonance phenomena [45,46].
In the acupuncture experiment, when the stimulation frequency was close to the intrinsic
frequency of the cerebral oscillations (the delta frequency band), the rhythmic activity of
the cerebral oscillation was enhanced. This enhancement was mainly concentrated in the
parietal lobe, which is associated with the somatosensory area. Resonance in the central
nervous system of mammalians may account for their higher brain functions, such as hu-
man tactile sensations, visual perception, and animal feeding behavior [47,48]. In this study,
we preliminarily found a resonant response of the brain to acupuncture stimulation. More
experimental and analytical studies will be carried out to investigate the potential benefits
of stochastic resonance in acupuncture information processing in the neural system.

Additionally, we found that acupuncture stimuli could reduce the dimensionality of
the neural electrical response of the cerebral cortex. At present, the study of dimensionality
in neural systems has attracted extensive attention [49–51]. Dimensionality analysis has
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been employed for various tasks and across neural systems [31,52]. For example, Rigotti
et al. studied the relationship between the dimensionality of an evoked activity and task
complexity, and suggested that the evoked dimensionality roughly amounted to the num-
ber of task conditions [53]. Acupuncture is a complex stimulation comprising multimodal
sensory stimulations, including temperature, pressure, and noxious stimulations. Differ-
ent manual acupuncture manipulations, such as lifting, thrusting, and twisting, contain
different stimulating parameters, thus generating different responses to acupuncture [54].
The study of the dimensionality of brain activity under acupuncture stimuli will help to
reveal the mechanisms underlying different acupuncture manipulations. Setting up an
accurate experimental and theoretical connection between dimensionality and acupuncture
manipulations, supported by an understanding of neural activity, is a significant question
for further studies.

In this work, VAE was an efficient approach for reducing dimensionality and extracting
latent variables from multichannel EEG signals. Essentially, the VAE adopted in this work
was carried out in a feedforward manner, and this oversimplification of the network
structure may result in lower effectiveness of VAE when the input becomes complex. One
possible solution to this problem is to combine the recurrent network and VAE frameworks,
which has been gradually applied in research on image recognition. In addition, the
small world is a type of recurrent network with a smaller average transmission delay and
more robust network connectivity. The combination of a small world network and the
VAE framework may improve the processing performance for high-dimensional complex
datasets and reduce the training time required.

Furthermore, using a dimensionality reduction method, we obtained a neural subspace
of brain activity and found that the low-dimensional dynamics converged to topologi-
cally similar elliptic-shaped attractors. The brain state (pre-acupuncture or undergoing
acupuncture with different manipulation frequencies) can be well classified based on the
statistical characteristics of these attractors. The elliptical attractors implied characteristics
of continuous fluctuation of the brain, which may result from internal variability (noise)
and external stimuli. In a previous study [55], we observed fluctuations in the scaling of
neural activity in a spontaneously active brain circuit. Olguin-Rodriguez et al. have inves-
tigated characteristic fluctuations around stable attractor dynamics extracted from highly
nonstationary EEG recordings [56]. On the other hand, researchers have demonstrated
that the dynamical regime of the sensory cortex converges to stable dynamics around a
single stimulus-tuned attractor [57]. The attractor dynamics are not only associated with
the properties of stimuli, but are associated with brain function. Finkelstein et al. showed
that communication between brain regions can be gated via attractor dynamics, which
control the degree of commitment to an action [58]. Therefore, it is of great importance to
investigate the attractor dynamics of brain activity evoked by acupuncture stimuli, which
will shed light on revealing the action mechanism of acupuncture.

Typical neural responses are shaped both by internal dynamics and various external
stimuli. Even when exposed to the same external stimulation, different subjects responded
differently, as their inherent internal dynamics are not quite the same. Consequently, the
characteristics of low-dimensional dynamics extracted from multichannel EEG signals
vary between individuals. Although differences between subjects and latent variables are
informative for classification, there is still a key limitation of the proposed method, in that it
cannot directly extract the stimulus-related variables from neural responses. Acupuncture
can be regarded as a specific somatosensory stimulation on the acupoint, and can mediate
the function of the human body via the nervous system. Furthermore, the VAE method
neglects information about the relevant experimentally controlled variables. Therefore, in
order to better probe the relationship between brain activity and acupuncture stimulation,
we will decompose the acupuncture-evoked information from EEG signals, and further
characterize the low-dimensional dynamics of acupuncture-evoked signals in the next step
of our research. This further research will help to reveal the essential role of acupuncture.
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As a complementary therapeutic treatment, acupuncture could improve symptoms
in various neural diseases, such as depression, stroke rehabilitation, and Parkinson’s
disease [59–61]. Increasingly, clinical experiments have shown that the effectiveness of
acupuncture is related to changes in brain activity. For example, Chae et al. documented a
significant improvement in the motor function of PD patients after acupuncture treatment.
The putamen and the primary motor cortex were activated when patients with PD received
acupuncture treatment and these activations correlated with individual enhanced motor
function [62]. Moreover, it was found that acupuncture can reduce drug addiction via direct
activation of brain pathways [63]. In this work, we confirmed that acupuncture can affect
the characteristics of the latent neural subspace. For different neural diseases, we proposed
that abnormal brain activity may be reflected by the characteristics of this subspace as well.
In future works, we will conduct further clinical experiments to validate the relationship
between these latent neural dynamics and the therapeutic effects of acupuncture. These
results can provide a theoretical support for the selection of appropriate acupuncture
frequencies for patients in clinical settings, and the proposed methods have potential in
relation to exploring the effects of acupuncture on brain activity.

5. Conclusions

In this work, the low-dimensional dynamics of brain activity associated with acupunc-
ture stimuli was probed. We found that manual acupuncture stimuli can reduce the
dimensionality of brain activity, which results from the enhancement of oscillatory activity
in the delta and alpha frequency bands induced by acupuncture. Moreover, it was found
that large-scale brain activity could be approximated through the dynamics of a relatively
simple attractor contained within a low-dimensional neural space, and the attractor’s
morphology was closely related to the frequency of acupuncture stimulation. These results
shed light on the large-scale brain response to manual acupuncture stimuli.
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