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Background
Predicting a patient’s response to therapy using various types of information is essen-
tial for designing systematic treatments [1, 2]. Hepatitis C virus (HCV) infection and 
multiple sclerosis (MS) are representative diseases showing individual variations that 
require personalized therapy. Systematic therapies utilizing pegylated interferon-alpha 
and ribavirin are recommended for the treatment of HCV infection [3]. However, only 
about half of all cases displayed a sustained response to this therapy [4]. Patients with 
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HCV infection have reportedly exhibited serious neuropsychiatric side effects such as 
severe depression and psychosis [5]. Interferon-beta is the most widely used MS therapy 
to control disease symptoms [6]. However, this therapy did not prevent almost half of all 
patients from relapsing and even developing symptoms of brain disease, as observed in 
some cases [7]. To make appropriate decisions regarding therapeutic strategies, such as 
cancellation or fixation of long-term therapy, the therapeutic response associated with 
these diseases must be accurately predicted via time-course monitoring [8, 9]. Therefore, 
developing methods and markers that accurately predict individual therapeutic response 
is crucial for establishing successful long-term therapy.

Time-course gene expression profiling has advanced rapidly on account of time-course 
gene expression profiles collected from the same patient being more beneficial than 
those collected from the patient at a single time point [10, 11]. Methods that determine 
gene markers using time-course gene expression profiles are classified into two catego-
ries: statistical methods such as analysis of variance (ANOVA) [12, 13] and machine 
learning such as sparse modeling [14], decision trees [3], clustering [15, 16] and deep 
learning [17]. Many of these use standard problem settings to identify gene markers 
showing different time-course patterns between two groups, such as cases versus con-
trol. Detecting different patterns in time-course gene expression profiles is extremely 
beneficial for clarifying the biological processes involved. However, sometimes it may 
cause difficulties in predicting therapeutic response. For example, gene markers indicat-
ing a massive change between two late-term therapy groups may pose a challenge when 
it comes to making an accurate prediction for the first term. Conversely, gene markers 
that indicate significant early-term changes in treatment may make accurate late-term 
prediction difficult. Therefore, gene markers that accurately predict response to therapy 
at each observed time point are preferable for predictive purposes.

In predicting a long-term therapeutic response, prediction accuracy may be improved 
by incorporating patient information, which is repeatedly observed for a marker over 
time [18–20]. Rizopoulos et  al. [19] and Li et  al. [20] proposed a new method that 
dynamically updates predictive indicators as time points increase; they suggested that 
their method may improve prediction accuracy. However, these markers were not gene 
markers but aortic gradient levels [19] and brain imaging indices [20], which were also 
clarified as being useful by other studies. Therefore, the current study assumed that 
using more time points to profile a gene marker would lead to more accurate therapeutic 
response predictions.

Here, we propose a new prediction model and a gene selection method using time-
course gene expression profiles. This method is based on the hypothesis that improv-
ing the accuracy of predictions requires more information obtained from gene markers 
at multiple time points. Therefore, our prediction model was designed to consolidate 
information from multiple time points, and our gene selection method was designed 
to identify gene subsets as markers that predict therapeutic responses more accurately 
with increasing time points. Time-course microarray datasets collected from HCV and 
MS patients were used to evaluate the proposed method. In this evaluation, three types 
of experiments were performed as follows: (1) comparison with our proposed method 
and the conventional method; (2) hypothesis verification; and (3) function analysis of the 
gene subset selected by the proposed method.
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Methods
Our proposed method was designed to predict therapeutic response using multiple 
time-point data that would expectedly yield a higher level of accuracy than a predic-
tion based on single-point data. Our method is termed ‘the consolidating probabilities 
of multiple time points (CPMTP) method’. CPMTP consists of prediction procedure 
(CPMTPp) and gene selection procedure (CPMTPg). Section 2.1 introduced the theory 
of CPMTPp and CPMTPg. Section 2.2 described the numerical experiments.

Theory

This section described CPMTPp and CPMTPg in the Sections 2.2.1 and 2.1.2, respec-
tively. Briefly, CPMTPp is the procedure for predicting therapy response using a model. 
CPMTPg is the procedure for selecting genes.

Concept of CPMTPp

The CPMTPp design was based on the hypothesis that predictive accuracy is improved 
by consolidating information on the states of a patient at multiple time points. The gen-
eral problem setting for the prediction in which the response at future time point “ Tfinal ” 
was estimated as either “sensitive” or “not sensitive” using gene expression profiles is 
shown (Fig. 1). “Sensitive” meant that the patients responded well to therapy and recov-
ered from the disease, and “not sensitive” meant that patients could not recover from 
the disease with the therapy. The time points corresponding to gene expression profiles 
used for prediction by CPMTPp and conventional methods were different. In this paper, 
the time points used in each method are termed ‘checkpoint (CP).’ The CP of conven-
tional methods was a single time point “ tr(r = 0, . . . ,R) ” or the difference between the 
one-time point “ tr(tr ≤ Tfinal) ” and the previous time point “ t − 1 ” (Fig. 1a); it was, thus, 
mostly confined to two-time points. Meanwhile, the CPMTPp used the gene expression 
profiles corresponding to the first time point “ t0 ” to a time point “ t ” (Fig. 1b); here, more 
than two time points were used for predictive purposes. In this manner, the hypothe-
sis was implemented using CPMTPp by consolidating the probabilities of therapeutic 
response using gene expression profiles collected from multiple time points.

CPMTPp was used to calculate one probability of therapeutic response using time-
course microarray data (Fig.  2a). Firstly, CPMTPp was used to calculate a probability 
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Fig. 1  The concept of predicting therapeutic response using the conventional method and our proposed 
method; a The conventional method used single gene expression levels or differential gene expression levels 
between two time points. b Our proposed method used time-course gene expression profiles according to 
consolidated probabilities of multiple time points
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using the gene expression profile at a time point, “ tr ”. Secondly, the probability at “ tr ” and 
the prior probability from “ t0 ” to “ tr−1 ” was consolidated to calculate a more accurate 
probability. By repeating these two steps until “ r = R ,” the probabilities at multiple time 
points were aggregated into one probability (where “T” was the final time point that can 
be used for prediction).

Similar to the Bayesian model [21, 22] and neural network [23], multiple logistic 
regression (MLR) models have been widely used to predict the response to therapy 
based on probability. This probability did not present a p-value in statistical tests but 
present how likely the patient is likely sensitive (or not sensitive). The probability at the 
first step, “ P(tr )logit , ” was calculated through MLR, like Eq. 1, using the difference of gene 
expression profile between “ tr ” and “ tr−1 ” (Eq. 2). However, these models used single or 
two time points to calculate the probability and did not use time-course data.

d
(tr )
j (j = 1, . . . , l) : different expression levels of the jth gene between two-time points “ tr ” 

and “ tr−1 ”. "l ” is the number of genes in a gene subset of logistic regression. The gene 
subset was selected from all the genes collected by microarray using CPMTPg.
w
(t)
j (j = 0, . . . , l) : the weight of jth gene as a feature in a gene subset. w(tr )

0  is a constant 
term at time point “ tr.”

x
(tr )
j  : jth gene expression levels at time point “ tr .” x(tr−1)

j  is the jth gene expression level at 
time point “ tr−1”.

(1)P
(tr )
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1

1+ e−(w
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Fig. 2  The flow of CPMTP; a CPMTPp was based on the hypothesis that information at multiple time points 
improves predicted accuracy. b CPMTPg select the gene subset used by the CPMTPp model
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In CPMTPp, the Bayesian theory was used to consolidate probabilities based on time-
course data [7]. The probability, “ Pt0∼t1 , ” was calculated by combining the probability at 
time point “ P(tr )logit ” and the probability at previous time points “ Pt0∼tr−1 ” (Eq. 3). As the 
previous time point did not exist ( r = 1 ), "Pt0∼t1 = P

(t1)
logit " was defined. Pt0∼tr0.5 and 

Pt0∼tr < 0.5 indicate sensitive and not sensitive responses, respectively (Eq. 4). From the 
above, CPMTPp could be used to predict response to therapy based on gene expression 
profiles at multiple time points.

P
(tr )
logit(tr = t0, . . . , tR) : A probability of sensitive (or not sensitive) response to therapy 

using gene expression profile at time point “ tr”.

Pt0∼tr (tr = t0, . . . , tR) : A probability of sensitive (or not sensitive) response to therapy 
using gene expression profile at time points “ t0 ∼ tR”.

Algorithm of CPMTPg

CPMTPg were used to select the gene subset of CPMTPp best suited for accurate predic-
tion using time-course microarray data. CPMTPg was used to decide the gene subset by 
optimizing the fitness function based on the probability “ Pt0∼tr ” used in CPMTPp. This 
function was designed with negative penalties for incorrect predictions. The CPMTPg 
flowchart, which consists of gene screening (step 1) and deciding on a gene subset (step 
2), is shown (Fig. 2b).

Step 1: Elastic net with stability selection eliminated genes with low impact on therapy 
responses, yielding a gene pool.

Step 2: The gene subset was selected from the gene pool via an optimization method.
Here, the gene expression profiles were composed as a data matrix (“l ” genes × “N  ” 

subjects × “R ” time points). Each subject was labeled as “sensitive” or “not sensitive” 
based on therapy responses.

Step 1: Screening step
Gene selection based on microarray data frequently suffers from the “ n ≫ p problem,” 

i.e., a large number of genes ( p ) compared to the small number of samples ( n ) [24]. Gene 
selection using univariate analyses causes an α-error by independent multiple tests. 
These p-values should be corrected via adjusting using methods such as the Bonferroni 
correction [25], Holm method, or Dunnett’s method [13]. However, sparse modeling 
enables the selection of genes without p-values.

The sparse modeling solved the “ n ≫ p problem” by considering a condition where 
only a few genes affect the phenomenon under focus [14, 15, 26]. We employed “Elastic 
net,” a sparse modeling method [27]. Elastic net selects a subset effectively from features 
with high multicollinearity. To eliminate genes with minimal impact on therapeutic 
responses, an Elastic net was applied to gene expression data at each time point.

(3)Pt0∼tr =
P
(tr )
logit ∗ Pt0∼tr−1

P
(tr )
logit ∗ Pt0∼tr−1 + (1− P

(tr )
logit) ∗ (1− Pt0∼tr−1)

(4)Predicted therapy response :=

{
sensitive

(
Pt0∼ tr ≥ 0.5

)

not sensitive (Pt0∼ tr < 0.5)
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Elastic net was used to select genes with non-zero weights, w(tr )
j , which are used for an 

MLR model according to Eq. 5. The genes with zero weights indicate that these genes 
were not selected as a gene subset for the MLR model. The Elastic net equation added 
regularized terms (the second and third terms of Eq. 5) to the general loss function, such 
as the least-squares method (the first term of Eq. 5) to optimize the weights. The second 
term prevents multicollinearity, and the third term selected features. Because the genes 
selected by Elastic net depended on the value of lambda in Eq. 5, deciding lambda was 
important to predict the response to therapy accurately.

w(tr ) = (w
(tr )
1 , . . . ,w

(tr )
l )

⊤
 : the weights of a logistic regression model at a time point”tr ” in 

Eq.  4. X (tr ) =

(
x
(tr )
1 , . . . , x

(tr )
l

)
; x

(tr )
j =

(
x
(1,tr )
j , . . . , x

(N ,tr )
j

)⊤
: the difference in jth gene 

expression levels at a time point between “ tr ” and “ tr−1 ”. y =
(
y1, . . . , yN

)
; yi ∈ {0, 1} : 

Therapy response of ith patient at time pointt . Ifyi = 1 , the therapy response presents 
“sensitive” If not, the therapy response presents “not sensitive.”J

(
X (tr ), y

)
 : Loss function 

of a logistic regression model using X (tr ) and y.� : A hyper-parameter that represents the 
weight of the regularized terms in Elastic Net.α(0 < α < 1) : A hyper-parameter that 
decides the assignment of the second and third terms.

Stability selection was used to reduce the effect of lambda on feature selection [28, 29]. 
Stability selection performed Elastic net many times with various lambda values to sub-
sample sets via random sampling. A gene pool at each time point ( G(tr ) in Fig. 2b) was 
created based on the selected rate in repeated times at a lambda value. At step 1, the 
gene list ( G in Fig.  2b) consisted of genes belonging to gene pools at any of the time 
points “ {G(t0), . . . ,G

(tR)
} ”. In this step, some genes that affected prediction at each time 

point could be selected from a huge number of genes in the microarray data.
Step 2: Selecting a gene subset
In step 2 of CPMTPg, the gene subset for the CPMTPp model was selected from the 

gene pool “ G ” via optimization. For CPMTPg, the gene list ( L(t0∼tr ) in Fig. 2b) was cre-
ated by combinatorial optimization method.

This step was performed as follows:
	(i)	 The gene list ( L(t0∼tr ) in Fig. 2b) was selected from gene expression profiles at time 

points from “ t0 ” to “ tr ” via the optimization method.
	(ii)	 The subjects in the gene expression data were separated into two blocks.
	(iii)	 The CPMTPp model was constructed based on one block of data using the gene 

list L(t0∼tr ).
	(iv)	 The accurate rate of the model ( acc(t0∼tr ) in Fig. 2b) was calculated using the other 

block of data.
	(v)	 (ii) and (iv) were repeated for “ r = R.”
	(vi)	 The gene list showing the best accuracy rate was determined as the gene subset of 

CPMTPp.

(5)argmin
w(t)

J
�
X (tr ), y

�
+ �
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
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The fitness function of the optimization method was designed via probability consoli-
dated at multiple time points (Eq. 6). Equation 6 used the probability, “ P(s)

t0∼tr
 ,” and the 

number of accurate predictions in patients, “ Ntrue ,” as a reward, and the probability, 
“ P(q)

t0∼tr
 ,” and the number of patients with no incorrect predictions, “ NFalse ,” as a penalty. 

The absolute value of the difference between probabilities and “ 0.5 ” ( 
∣∣∣P(s)

t0∼tr
− 0.5

∣∣∣ and 
∣∣∣P(q)

t0∼tr
− 0.5

∣∣∣ in Eq. 6) presented a confidence level of the predicted therapy response. If 

probabilities P(s)
t0∼tr

 and P(q)
t0∼tr

 were closer to “0” or “1”, respectively, these values were 
higher. However, if these probabilities were closer to “0.5”, these values were lower. 
Therefore, the first and second terms of Eq. 6 are the mean values of the confidence lev-
els of accurate and incorrect predicted therapeutic responses, respectively. The optimi-
zation method selects the gene subsets with a CPMTPp that can accurately predict and 
display high confidence levels for the predicted response to therapy by maximizing the 
fitness function of Eq. 6.

Ntrue : Number of patients in whom the actual therapy response equaled the predicted 
one. Nfalse : Number of patients in whom the actual therapy response did not equal the 
predicted one. P(s)

t0∼tr
(s = 1, . . . , Ntrue) : Probability of sth patients that the actual therapy 

response equaled the predicted one. P(q)
t0∼tr

(q = 1, . . . , Nfalse) : Probability of qth patients 
that the actual therapy response did not equal the predicted one.

To determine the gene subset of CPMTPp from gene lists “{L(t0∼t1), . . . , L(t0∼tR)}”, 
the accurate rate “ acc(t0∼tr ) ” was calculated by the (ii)–(iv) flows. In these flows, leave-
one-out cross-validation was used. The number of patients in two blocks of data by this 
cross-validation was 1 for evaluation and “ N − 1 ” for the construction of the model. 
The accuracy rate was shown as the proportion of patients whose predicted therapeutic 
responses were accurate for evaluating the cross-validation. CPMTPg made it possible 
to construct a CPMTPp model that enabled accurate prediction at multiple time points 
using the gene list with the highest accuracy rate as the gene subset in CPMTPp.

Note that this step used Ridge as an optimization method for weights "w(tr )" in an MLR 
model (Eq. 1) to calculate “ P(s)

t0∼tr
 ” and “ P(q)

t0∼tr
 ” in Eq. 3. Ridge does not select genes and 

constructs the model to avoid multicollinearity. At “ α = 0 ” of Eq. 5, this equation is not 
Elastic net, but Ridge.

Numeric experiments

Three experiments were performed: (1) comparison with CPMTP (CPMTPp + CPMTPg) 
and a conventional method, (2) verification of our hypothesis, and (3) analysis of the 
gene subset selected by CPMTPg. This section describes the material, preprocessing, 
evaluation method, parameters, and implementation.

Material and preprocessing

Two sets of time-course microarray data were used for this evaluation. One dataset was 
collected from HCV patients treated with antiviral therapies, peginterferon and ribavirin 

(6)Fitness :=
1

Ntrue

Ntrue∑

s=1

∣∣∣P(s)
t0∼ tr

− 0.5
∣∣∣−

1

Nfalse

Nfalse∑

q=1

∣∣∣P(q)
t0∼ tr

− 0.5
∣∣∣
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(HCV dataset) [30]. The other was collected from MS patients treated with interferon-β 
(MS dataset) [31]. These datasets (GSE7123 and GSE24427) were opened on the GEO 
website [32].

The details of these datasets are shown (Table  1). The number of time points in 
the HCV dataset was six ( t0 to t5 ), and the difference in CP between CPMTPp and a 
conventional method is shown (Table 2). There were five MS datasets ( t0 to t4 ), and 
the difference in CP between CPMTP and a conventional method is shown (Table 3). 
Gene expression profiles were collected using the Affymetrix Human Genome U133A 
Array from peripheral blood mononuclear cells of patients, where the patients used 
for this evaluation were limited to those who could provide these at all time points.

Three steps were performed to preprocess gene expression data. Several probes 
were removed from the two datasets. As the probes had duplicate gene symbols in 
one dataset, one probe was selected by comparing median gene expression levels, and 
the other probes were removed. Probes with a gene symbol indicating a non-coding 

Table 1  Summary of time-course gene expression profiles collected from HCV and MS patients

The number of genes of both HCV and MS is 13513, but the types of genes are different from them. In this paper, symbols 
of time points were presented as “ t0 ”, “ t1 ”, “ t2 ” etc. The number of sensitive/not sensitive responders for the k-fold cross-
validation varies by block

The number of data HCV data MS data

Genes 13,513 13,513

Time-points t0(0 day), t1(1 day), t2(2 days)t3
(7 days), t4(14 days), t5
(28 days)

t0(first), t1 (second), t2
(1 month), t3(12 months), 
t4(24 months)

Sensitive/not sensitive responders Sensitive: 36
Not sensitive: 22

Sensitive: 16
Not sensitive: 9

Sensitive/not sensitive responders for stability 
selection

Sensitive: 28
Not sensitive: 17

Sensitive: 12
Not sensitive: 7

Sensitive/not sensitive responders for k-fold cross-
validation

Sensitive: 12
Not sensitive: 7–8

Sensitive: 10–11
Not sensitive: 6

Table 2  The difference in CPs between the conventional method and CPMTP in the HCV dataset

“#” and “*” were the time points of microarray data used by the conventional method and CPMTP, respectively

Time-point CP1 CP2 CP3 CP4 CP5

t0 # * * * * *

t1 # * # * * * *

t2 # * # * * *

t3 # * # * *

t4 # * # *

t5 # *

Table 3  The difference in CPs between the conventional method and CPMTP in the MS dataset

“#” and “*” were the time points of microarray data used by the conventional method and CPMTP, respectively

Time point CP1 CP2 CP3 CP4

t0 # * * * *

t1 # * # * * *

t2 # * # * *

t3 # * # *

t4 # *
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region or no gene symbol were also removed. Subsequently, log2 transformation and 
quantile normalization were performed on each dataset.

Conventional method

The MLR model was used as the prediction model for the conventional method. The 
features of the MLR model were based on the difference of gene expression profiles 
between “ t ” and “ t − 1 ”. The CPs of the MLR model for the HCV and MS datasets are 
shown in Tables 2 and 3, respectively.

Next, maSigPro was used for gene selection in the conventional method, which is 
frequently used for time-course microarray data analysis [25, 33, 34]. This method 
selects the gene subset which shows a time-course difference in gene expression pro-
files between two groups via p-values of a statistical test with the significant level of 
“ smaSigPro ”. This p-value was associated with F-statistic and was corrected by the linear 
step-up false discovery rate procedure. When the number of genes selected by maSigPro 
was over “ lmax ”, “ lmax ” genes were selected in ascending order of p-values.

Evaluation method

To compare CPMTPp + CPMTPg and MLR + maSigPro as the conventional method, the 
area under the curve (AUC) and accuracy were calculated using HCV and MS datasets. 
For this, k-fold cross-validation was performed. This method splits patients in the data-
set into “ k ” blocks. The k − 1 blocks were used for the model training, and the remaining 
1 block was used for evaluation. This procedure was repeated k times, and all data were 
used for evaluation at one time.

The receiver operating characteristic curves (ROCs) for each CP, which were calcu-
lated based on probabilities of CPMTPp + CPMTPg and MLR + maSigPro that were 
obtained via k-fold cross-validation, is depicted. The AUCs were calculated using these 
ROC curves. The difference between AUCs corresponding to CPMTPp + CPMTPg and 
MLR + maSigPro at each CP were compared using the DeLong test with significance 
levels “ sAUC”.

To compare with CPMTP and previous studies based on therapy responses estimated 
via k-fold cross-validation, the accuracies of CPMTPp + CPMTPg and MLR + maSigPro 
were calculated. The accuracies were calculated for each CP and each block for evalua-
tion in k-fold cross-validation. Based on the mean, maximum, and minimum values of 
these accuracies, CPMTPp + CPMTPg and MLR + maSigPro were compared.

In CPMTPp, it was assumed that the accuracy of the prediction model was improved as 
time points increased. The accuracies of the CPMTPp and MLR models were compared 
to verify this hypothesis. The gene selection methods of these models were CPMTPg. 
The mean, maximum, and minimum values of accuracies in CPMTPp + CPMTPg and 
MLR + CPMTPg were calculated using k-fold cross-validation using HCV and MS 
datasets.

The gene subset selected by CPMTPg was analyzed by ontology to research the func-
tion of genes in the biological process. DAVID [35] was used as an ontology analysis 
tool. Common terms (GO terms) that were associated with the genes of CPMTPg were 
decided using DAVID based on p-values below the significance level “ sDAVID ”. This 
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p-value was a modified Fisher exact p-value. Also, previous studies were investigated 
using GO terms as keywords.

Parameters and implementation

The therapeutic responses of patients were decided at the final time point 
of the datasets. The final time point in the HCV dataset was 28  days (“t5 ”) 
after the first therapy. In the HCV dataset, the types of therapy responses 
were categorized as "marked,” “intermediate,” and “poor”. A “marked” 
response was defined as “ decreasing RNA levels of HCV > 3.5 log10 IU/ml ” 
or no detected levels on day 28. An “intermediate” response was defined as 
“ decreasing 1.4 ≤ RNA levels of HCV ≤ 3.5 log10 IU/ml ” on day 28. A “poor” response 
was defined as “ decreasing RNA levels of HCV < 1.4 log10 IU/ml ” on day 28. How-
ever, for this evaluation, the "marked" and "intermediate" responses were considered 
as “good” results, as in previous studies [3]. Responses to therapy based on the MS 
dataset were decided by the occurrence of relapse up to 24  months (“t4 ”) after first 
therapy, and they were considered “good” or “poor”. In this paper, a “good” response 
was treated as “sensitive,” and a “poor” response was treated as “not sensitive.”

The parameters of Step 1 in the CPMTPg are as follows. Stability selection was 
repeated 100 times. Stability selection selected 80% of patients from each “sensitive” 
and “not sensitive” category as the sub-sample set (Table  1). Lambda values corre-
sponding to repetition were created based on the exponential function from log10−3 
to log3 . The alpha value of Elastic net in Stability selection was “ 0.5”.

The parameters of Step 2 in the CPMTPg were as follows. A genetic algorithm (GA) 
was utilized as the optimization method. GA is a heuristic optimization method that 
has been frequently utilized as a gene selection method for microarray data [24, 36, 
37]. GA repeats single-point crossover, ranking selection, and mutation at each gen-
eration. The number of generations was 50, and the population size of each genera-
tion was “20.” The phenotype of GA is a binary presented as either to select or not 
select candidate genes. Note that the maximum number of genes selected for each 
population was 10 and that the population for the first generation was created by ran-
dom sampling. To create the next generation, a single-point crossover was generated 
twice in the population, and mutation was performed on 20% of the population. The 
mutation reversed the select or not select process at a randomly chosen locus in the 
population. Based on the fitness values in Eq. 6, ranking selection identified the top 
40% and the bottom 10% of the total population as the next generation.

The parameters of the numeric experiment are as follows: “k = 3” in k-fold cross-
validation, and the rate of patients whose therapy responses were “sensitive” or “not 
sensitive” was the same for all blocks (Table  1). The parameters of maSigpro were 
“ smaSigPro = 0.05 ” and “ lmax = 10 The significance level of the DeLong test and DAVID 
were “ sAUC = 0.05 ” and “ sDAVID = 0.05, ” respectively.

The implementation language was R-Language (ver. 3.6.0). Quantile normalization, 
Elastic net, and maSigPro were used by limma (ver. 3.40.6), glmnet (ver. 2.0-18), and 
maSigPro (ver. 1.56.0) packages, respectively. Stability selection and GA were imple-
mented by the authors. The source codes used in this paper will be made available 
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upon request. The pseudo code of CPMTP was added in Additional file 1: Figure S1, 
Additional file 2: Figure S2, and Additional file 3: Figure S3.

Results
A threefold cross-validation was performed for each HCV and MS dataset. In 
MLR + maSigPro and CPMTPp + CPMTPg, AUCs, as well as mean maximum and mini-
mum values of accuracies, were calculated based on the results of cross-validation. The 
mean, maximum, and minimum values of accuracies for MLR + CPMTPg were calcu-
lated. Moreover, genes selected via the CPMTPg were analyzed.

The ROC curves and AUCs of MLR + maSigPro and CPMTPp + CPMTPg generated 
using the HCV dataset are shown (Fig. 3). Accordingly, the AUCs of MLR + maSigPro 
were 0.71 ( CP1 ), 0.75 ( CP2 ), 0.76 ( CP3 ), 0.75 ( CP4 ), and 0.76 ( CP5 ), respectively. The 
AUCs of CPMTPp + CPMTPg were 0.89 ( CP1 ), 0.90 ( CP2 ), 0.90 ( CP3 ), 0.90 ( CP4 ), and 
0.90 ( CP5 ), respectively. The p values of the DeLong test were 0.03 ( CP1 ), 0.06 ( CP2 ), 
0.07 ( CP3 ), 0.05 ( CP4 ), and 0.06 ( CP5 ), respectively. The AUCs of CPMTPp + CPMTPg 
at all CPs were higher than the AUCs of MLR + maSigPro, and several time points 
showed a significant difference between these AUC values.

ROC curves and AUCs of MLR + maSigPro and CPMTPp + CPMTPg generated using 
the MS dataset are shown (Fig. 4). The AUCs of MLR + maSigPro from CP1 to CP4 were 
0.76, 0.78, 0.79, and 0.79, while those of CPMTPp + CPMTPg were 0.94, 0.85, 0.91, and 
0.93, respectively. The p-values of the DeLong test from CP1 to CP4 were 0.14, 0.68, 
0.38, and 0.30. All AUCs of CPMTPp + CPMTPg were not significantly higher than 
those of MLR + maSigPro.

The accuracies calculated by MLR + maSigPro and CPMTPp + CPMTPg using the 
HCV dataset are shown (Fig. 5a). The mean accuracies of MLR + maSigPro from CP1 
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to CP5 were 74.4%, 63.7%, 61.9%, 62.0%, and 72.5%, respectively. The mean accura-
cies of the CPMTPp + CPMTPg were 82.8%, 82.8%, 82.8%, 82.8%, and 82.8%, respec-
tively. The minimum and maximum values for the accuracies of MLR + maSigPro 
from CP1 to CP5 were 55.0% and 89.4%, 63.1% and 65.0%, 52.6% and 70.0%, 57.8% 
and 65.0%, and 65.0%, and 84.2%, respectively. The minimum and maximum accu-
racies of CPMTPp + CPMTPg from CP1 to CP5 were 80.0% and 84.2%, 75.0% and 
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were mean, maximum, and minimum values of accuracies by threefold cross-validation, respectively. a Using 
HCV dataset. b Using MS dataset
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89.4%, 75.0% and 89.4%, 75.0% and 89.4%, and 75.0% and 89.4%, respectively. The 
mean values of CPMTPp + CPMTPg were higher than those of MLR + maSigPro for 
all CPs. The maximum values for CPMTPp + CPMTPg, with the exception of CP1, 
were higher than those for MLR + maSigPro, while the minimum values at CPs were 
higher than those for MLR + maSigPro.

The accuracies of MLR + maSigPro and CPMTPp + CPMTPg for the MS dataset are 
shown (Fig. 5b). The mean accuracies of MLR + maSigPro from CP1 to CP4 were 75.4%, 
68.5%, 71.7%, and 83.3%, respectively. The mean accuracies of CPMTPp + CPMTPg 
were 83.7%, 83.7%, 87.9%, and 87.9%, respectively. The minimum and maximum accu-
racies of MLR + maSigPro from CP1 to CP4 were 62.5% and 88.8%, 55.5% and 75.0%, 
62.5% and 77.7%, and 75.0%, and 100.0%, respectively. The minimum and maximum 
accuracies of the CPMTPp + CPMTPg were 75.0% and 88.8%, 75.0% and 88.8%, 87.5%, 
and 88.8%, and 87.5% and 88.8%, respectively. The mean values of CPMTPp + CPMTPg 
were higher than those of MLR + maSigPro for all CPs. The CPs with maximum values 
for CPMTPp + CPMTPg that were higher than those of MLR + maSigPro were CP2 and 
CP3; however, the minimum values of CPMTPp + CPMTPg at all CPs were higher than 
those of MLR + maSigPro.

The accuracies of MLR and CPMTPp estimated using the gene subset selected from 
the HCV dataset via CPMTPg are shown (Fig. 6a). The mean values of accuracies esti-
mated by MLR + CPMTPg were 82.8 ( CP1 ), 60.3 ( CP2 ), 63.8 ( CP3 ), 62.1 ( CP4 ), and 
62.1 ( CP5 ), respectively. The minimum and maximum values of accuracies estimated by 
MLR + CPMTPg were 80.0% and 84.4% ( CP1 ), 57.8% and 63.1% ( CP2 ), 60.0% and 68.4% 
( CP3 ), 60.0% and 63.1% ( CP4 ), and 60.0% and 63.1% ( CP5 ), respectively. The mean, max-
imum, and minimum values of accuracies estimated by CPMTPp + CPMTPg were the 
same as those shown in Fig. 5a. The accuracy of MLR + CPMTPg at CP1 was highest, 
while the accuracies for the other CPs decreased. On the other hand, the accuracy of 
CPMTPp + CPMTPg did not change with the increase in CPs.

MLR and CPMTPp were compared for accuracy using the MS subset (Fig. 6b). The 
gene subsets of MLR and CPMTPp were common. The mean values of the accuracies 
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HCV dataset. b Using MS dataset



Page 14 of 20Fukushima et al. BMC Bioinformatics          (2021) 22:132 

of MLR + CPMTPg were 83.7 ( CP1 ), 72.2 ( CP2 ), 84.2 ( CP3 ), and 67.5 ( CP4 ), respec-
tively. The minimum and maximum values of accuracies of MLR + CPMTPg were 
75.0% and 88.8% ( CP1 ), 66.6% and 75.0% ( CP2 ), 75.5% and 100.0% ( CP3 ), and 62.5% 
and 77.7% ( CP4 ), respectively. The mean, maximum, and minimum values of accu-
racies of CPMTPp + CPMTPg were the same as those shown in Fig.  5b. The accu-
racy of MLR + CPMTPg at “ CP1 ” were different at each CP. The accuracy of 
CPMTPp + CPMTPg slightly improved as CPs increased.

The mean accuracies of CPMTPp + CPMTPg using the HCV dataset were not 
changed as time progressed (Fig.  6a). However, mean accuracies of the MS dataset 
improved slightly with increasing time (Fig. 6b). Further, the maximum and minimum 
values either did not change or improved slightly. Thus, in contrast to our hypothesis, 
the accuracies estimated using the two datasets either did not change or improved 
slightly with increasing time.

In the HCV dataset, 30 genes were selected by CPMTPg as the gene subset for the 
logistic regression model from the learning data on threefold cross-validation. The 
GO terms of the HCV dataset, which were determined by these genes, generated 4 
clusters. The 10 GO terms had significant p-values (Table 4). “Repeat: 1”, “Repeat: 2” 
and “Repeat: 3”, which belonged to the same cluster and were selected by the same 
genes, were not terms associated with gene function. “Proteinaceous extracellular 
matrix,” “Disulfide bond,” and “Extracellular matrix” belonged to the same cluster, 
which was not the top cluster. “Disease mutation,” “Polymorphism,” “Visual percep-
tion,” and “Positive regulation of transcription, DNA-templated” did not belong to 
any cluster.

Twenty-six genes were selected by CPMTPg using the MS dataset, where 4 were 
selected twice in threefold cross-validation. The GO terms of the MS dataset were 
decided according to these genes, and 3 clusters were constructed (Table 5). The GO 

Table 4  Selected GO terms in HCV dataset

These terms have lower p values than 0.05 (significance level). Thirty-one GO terms belong to four clusters. On the other 
hand, 13 GO terms do not belong. The clusters were generated during the GO analysis

GO term Genes Count p value Cluster

Repeat:3 ADAM30, GFRA1, PSRC1 3 0.036 #1

Repeat:1 ADAM30, GFRA1, PSRC1 3 0.046 #1

Repeat:2 ADAM30, GFRA1, PSRC1 3 0.047 #1

Proteinaceous extracellular matrix EFEMP1, WNT5A, KERA, OLFML2B 4 0.007 #2

Disulfide bond ADAM3, EFEMP1, GFRA1, KLRC4-KLRK1, 
WNT5A, CACNA1A, IGLL1, KERA, OLFML2B, 
PRPH2

10 0.026 #2

Extracellular matrix EFEMP1, WNT5A, KERA 3 0.045 #2

Disease mutation EFEMP1, WNT5A, ACAT1, CACNA1A, CCND2, 
IGLL1, KERA, PRPH2, KCNK3, SRD5A2

10 0.039 Not belong

Polymorphism AKAP5, ADAM30, EFEMP1, GFRA1, KLRC4-
KLRK1, MAGEA10, ACAT1, CACNA1A, 
CAMTA1, CCND2, EIF3F, IGLL1, MED24, 
OLFML2B, OGDHL, PRPH2, PSRC1, PCDHGA3, 
SRD5A2, ZNF43, ZNF512B, ZNF711

22 0.030 Not belong

Visual perception EFEMP1, KERA, PRPH2 3 0.036 Not belong

Positive regulation of transcrip-
tion, DNA-templated

WNT5A, MED24, PSRC1, ZNF711 4 0.040 Not belong
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terms with significant p-values are shown (Fig. 5). “Fatty acid metabolism” belonged 
to the cluster, while “Nucleus” and “protein binding” did not belong to any cluster.

Discussion
AUCs and accuracies calculated using our proposed method (CPMTPp + CPMTPg) 
were compared with those calculated using the conventional method (MLR + maSig-
Pro) via threefold cross-validation. The results of both AUCs (Fig. 4) and accuracies 
(Fig.  5) suggested that our method could predict response to therapy accurately at 
multiple time points compared to the conventional method.

The AUCs of CPMTPp + CPMTPg were higher than those of MLR + maSigPro 
for all CPs in both the HCV and MS datasets (Figs. 3, 4). However, CPs that showed 
significant differences were “ CP1 ” and “ CP4 ” in the HCV dataset, while the differ-
ences in the MS dataset were not significant for any CP. This is due to the insuffi-
cient number of patients to perform the DeLong test, especially in the MS dataset, 
where the patient number was 25 . Almost all CPs did not show a significant differ-
ence; however, a common trend in both HCV and MS datasets was that the AUCs of 
CPMTPp + CPMTPg were higher than those of MLR + maSigPro at all CPs.

According to Fig. 5, the mean accuracies of CPMTPp + CPMTPg were higher than 
those of MLR + maSigPro at all CPs, an observation common to both datasets. More-
over, the mean accuracies of CPMTPp + CPMTPg at each CPs were higher than the 
“ 72.4% ” cited in the reference [3] using the same HCV dataset. In the MS dataset, the 
mean accuracies of CPMTPp + CPMTPg at all CPs were also higher than the “ 78.0% ” 
cited in the reference [15].

In addition, the accuracies of CPMTPp + CPMTPg were confirmed for the artificial 
data. The results are shown in Additional file 4: Figure S4. The mean accuracies were 
more than 90.0% at all CPs.

CPMTPp was designed based on the hypothesis that more accurate prediction was 
dependent on data from more time points. However, the results of the comparison 
between MLR and CPMTPp (Fig. 6) did not support this hypothesis, although it indi-
cated that CPMTPp continued to maintain accuracies as time points increased.

The accuracies of MLR, which did not consolidate the probabilities at multiple 
time points in the HCV and MS datasets, are shown (Fig. 6). In the HCV dataset, the 
top CP, which corresponded to the highest mean accuracy of MLR + CPMTPg, was 
“ CP1 ”, after which the mean values corresponding to “ CP2–CP5 ” decreased (Fig. 6a). 

Table 5  Selected GO terms for MS dataset

These terms have lower p values than 0.05 (significance level). Twenty-eight GO terms belong to three clusters. On the other 
hand, 21 GO terms do not belong. The clusters were generated during the GO analysis

GO term Genes Count p value Cluster

Fatty acid metabolism NDUFAB, ACAA2, ALOX15 3 0.008 #1

Nucleus LARP6, RBM47, CENPO, ESRRA, MTDH, MORF4L1, PA2G4, 
RSL24D1, ZBED1, ZNF516, ZNF614

11 0.033 Not belong

Protein binding NDUFAB1, ACAA2, ALOX15, CENPO, ESRRA, MTDH, MAT2A, 
MORF4L1, PA2G4, RSL24D1, SERPINA, TRPC3, TRPM8, 
ZBED1, ZNF614

15 0.047 Not belong
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The mean accuracies of MLR + CPMTPg for various CPs of the MS dataset appeared 
to be uncorrelated (Fig. 6b). The trends were also different regarding the maximum 
and minimum values. When the probabilities at multiple time points were not used 
for prediction as time points increased, the accuracies did not change or improve as 
in CPMTPp but were reduced or disjointed.

The above results indicated that prediction using more time points (CPMTPp) did 
not contribute to improved accuracy. However, MLR, which did not consolidate the 
probabilities of multiple time points, used the same subset of genes as CPMTPp, and 
its accuracy tended to decrease or fluctuate over time points. This trend was not 
changed by the gene selection method for maSigPro (Additional file  5: Figure S5). 
Therefore, it was found that the accuracies of CPMTPp contributed to maintaining 
accuracies as time points were processed, in contrast to MLR.

The gene subsets selected by CPMTPg were analyzed, and GO terms were 
extracted from the DAVID database (Tables 4, 5). Genes associated with terms that 
reportedly played an important role in diseases were discovered by reviewing previ-
ous studies that cited significant GO terms.

The GO terms (Table 4) included those that were reportedly associated with HCV 
infection. The extracellular matrix has been reported to develop progressive hepatic 
fibrosis and cirrhosis in 20% to 30% of HCV patients [38]. Previous studies have 
suggested that angiotensin II [38] and fibrogenic cytokines [39] contributed to the 
production of extracellular matrix in the liver. It was reported that excessive accu-
mulation of extracellular matrix components, such as fibrillar type I and III colla-
gens, fibronectin, and laminin, is a feature of liver fibrosis [40, 41]. Another study 
reported that the accumulation of extracellular matrix in liver fibrosis might impair 
the signaling of interferon used as therapy [40]. Regarding disulfide bonds, it was 
reported that a disulfide bond core protein complex might constitute the nucleocap-
sid-like particle of HCV [42].

The GO terms (Table 5) included those reported to be related to MS. It was sug-
gested that “Fatty acid metabolism” may be a target for MS therapy since inhibition 
of carnitine palmitoyltransferase 1 (CPT-1), which is the rate-limiting enzyme in 
the beta-oxidation of fatty acids, contributes to a reduction in disease severity [43]. 
Especially, it was reported that when ALOX15, which encodes a fatty acid metabo-
lizing enzyme, became functionally inactive, MS patients experienced more severe 
symptoms than when ALOX15 was active [44, 45].

The results of these numerical experiments using HCV and MS datasets suggested 
that CPMTP, our proposed method, may predict responses to therapy more accu-
rately than the conventional method at multiple time points. Besides, CPMTP was 
able to select genes with functions associated with diseases from time-series micro-
array data.

CPMTP could be applied to gene expression data with arbitrarily selected multi-
ple time points, and increasing time points did not affect the prediction model of 
CPMTP. CPMTP could be performed beyond the last time-point of treatment; how-
ever, it required validation. CPMTP could be applied to RNA-seq data and other 
gene expression data, which used a normalization similar to log2 fold-change and 
quantile normalization. When the proposed method is applied to the relatively large 
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database, parameters and optimization methods, such as number of genes, number 
of samples, and number of time points, should be carefully considered.

Conclusion
In individual patients showing specific therapeutic effects or occasional side effects, 
it is essential to accurately predict response to therapy using gene markers to deter-
mine a therapeutic strategy, such as changing or stopping therapy. Here, we propose 
a new prediction model and gene selection method termed CPMTP, which comprises 
a prediction component (CPMTPp) and selection component (CPMTPg). CPMTP 
was based on the hypothesis that more information related to time points provided a 
more accurate therapeutic response prediction. To enable CPMTPp incorporate more 
information from multiple time points, an overall probability of deciding a therapy 
response was estimated by consolidating the probabilities calculated at each time 
point, using the Bayesian theorem. CPMTPg selected the gene subset for use in the 
CPMTPp model via the optimization method, which was set as the fitness function of 
the consolidated probability.

CPMTP was evaluated using time-course gene expression profiles from HCV and MS 
patients in terms of accurate prediction, validation of the hypothesis, and gene function. 
These results suggested that CPMTP (CPMTPp + CPMTPg) predicted response to ther-
apy accurately at all observed points compared to the conventional method. However, as 
opposed to our hypothesis, the predicted accuracy of CPMTPp was not improved but 
only retained as time points increased. Further, the gene subset selected by CPMTPg 
may be related to HCV and MS, according to analyses conducted by previous studies 
investigating the key GO terms associated with the gene subsets.

The above findings indicated that CPMTP might enhance long-term therapeutic pro-
cedures by accurately predicting response to therapy at multiple time points. Moreover, 
gene subsets identified by CPMTP may be useful as gene markers of disease progression. 
Thus, CPMTP may not only resolve difficulties associated with predicting response to 
therapy in HCV and MS patients but may also apply to the resolution of other clinical 
issues of a similar nature.
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Additional file 1: Figure S1. The pseudo-code of CPMTPp. This code predicted a therapy response of a patient. 
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CPMTPg. X (tr ) =

(
x
(tr )
1

, . . . , x
(tr )

l

)
; x

(tr )
j

=

(
x
(1,tr )
j

, . . . , x
(N,tr )
j

)⊤
(j = 1, . . . , p) : gene expression levels of “ p ” 

genes × “N ” subjects at time point “ tr ”. y(i)(i = 1, . . . ,N) : the therapy response of the ith patient. �(k)(k = 1, . . . , K) : the 

k
th values of lambda in Elastic Net in Stability Selection. The G was the gene pool having genes selected by step1 of 

CPMTPg.
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Additional file 3: Figure S3. The pseudo-code of CPMTPg:step2. This code created a gene pool by the step1 of 

CPMTPg. X (tr ) =

(
x
(tr )
1

, . . . , x
(tr )

l

)
; x

(tr )
j

=

(
x
(1,tr )
j

, . . . , x
(N,tr )
j

)⊤
(j = 1, . . . , p) : gene expression levels of “ p ” 

genes × “N ” subjects at time point “ tr ”. y(i)(i = 1, . . . ,N) : the therapy response of the ith patient. �(k)(k = 1, . . . , K) : the 

k
th values of lambda in Elastic Net in Stability Selection. The G was the gene pool having genes selected by step1 of 

CPMTPg. The Gsubset was the gene subset of CPMTPp.

Additional file 4: Figure S4. Results of CPMTPp + CPMTPg using artificial data. The artificial gene expression data 
(1000 genes × 40 subjects × 5 time points; “#” in this figure means “number”) was created. This data subjects were 
20 sensitive and 20 not sensitive responders. Gene expression levels of “Gene1”, “Gene2”, and “Gene3” were created 
by adding noise following a normal distribution (center:0; standard deviation:0.5) to each baseline. The baseline 
of “Gene1” had the different rising/ falling trends of gene expression levels between sensitive and not sensi-
tive responders at all time points, while the baseline of “Gene2” and “Gene3” had it at a part of time points. Gene 
expression levels of the other genes were created by uniform distribution (maximum:1; minimum:5). To evaluate 
CPMTPp + CPMTPg, the threefold cross-validation was performed using this artificial data. As a result, CPMTPg 
selected “Gene1” from all genes as the gene subsets at all validation. These mean accuracies were 92.8%(CP1:t0 ∼ t1 ), 
97.6%(CP2:t0 ∼ t2 ), 100%(CP3:t0 ∼ t3 ), and 100%(CP4:t0 ∼ t4 ), respectively. The accuracy at the early term was higher 
than 90%, and this value increased along with the time progressing. Similar trends were observed using actual 
datasets in this paper.

Additional file 5: Figure S5. Accuracies of MLR + maSigPro versus CPMTPp + maSigPro. The bars, top whisker, and 
bottom whisker represent mean, maximum, and minimum values of accuracies by threefold cross-validation, respec-
tively. a HCV dataset. b MS dataset.
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