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The proviral integration site for Moloney murine leukemia virus (PIM) ser-

ine/threonine kinases have an oncogenic and prosurvival role in hematolog-

ical and solid cancers. However, the mechanism by which these kinases

drive tumor growth has not been completely elucidated. To determine the

genes controlled by these protein kinases, we carried out a microarray

analysis in T-cell acute lymphoblastic leukemia (T-ALL) comparing early

progenitor (ETP-ALL) cell lines whose growth is driven by PIM kinases to

more mature T-ALL cells that have low PIM levels. This analysis demon-

strated that the long noncoding RNA (lncRNA) H19 was associated with

increased PIM levels in ETP-ALL. Overexpression or knockdown of PIM

in these T-ALL cell lines controlled the level of H19 and regulated the

methylation of the H19 promoter, suggesting a mechanism by which PIM

controls H19 transcription. In these T-ALL cells, the expression of PIM1

induced stem cell gene expression (SOX2, OCT-4, and NANOG) through

H19. Identical results were found in prostate cancer (PCa) cell lines where

PIM kinases drive cancer growth, and both H19 and stem cell gene levels.

Small molecule pan-PIM inhibitors (PIM-i) currently in clinical trials

reduced H19 expression in both of these tumor types. Importantly, the

knockdown of H19 blocked the ability of PIM to induce stem cell genes in

T-ALL cells, suggesting a novel signal transduction cascade. In PCa,

increases in SOX2 levels have been shown to cause both resistance to the

androgen deprivation therapy (ADT) and the induction of neuroendocrine

PCa, a highly metastatic form of this disease. Treatment of PCa cells with

a small molecule pan-PIM-i reduced stem cell gene transcription and

enhanced ADT, while overexpression of H19 suppressed the ability of pan-

PIM-i to regulate hormone blockade. Together, these results demonstrate
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that the PIM kinases control the level of lncRNA H19, which in turn mod-

ifies stem cell gene transcription regulating tumor growth.

1. Introduction

The proviral integration site for Moloney murine leu-

kemia virus (PIM) protein kinase family, comprising

three serine/threonine protein kinases, PIM1, PIM2,

and PIM3, has been implicated in cancer initiation

and progression (Brault et al., 2010; Cuypers et al.,

1984). PIM kinases are elevated in hematopoietic neo-

plasms including myeloid leukemia, myeloma, and

lymphoma (Alizadeh et al., 2000; Cohen et al., 2004;

Wingett et al., 1996), and play an important role in

prostate tumorigenesis (Chen et al., 2005; Shah et al.,

2008). These enzymes have been associated with

aggressive prostate tumor growth (Cibull et al., 2006).

PIM kinases control tumor cellular metabolism, pro-

tein translation, cell growth, and division, and play a

clear role in the resistance to PI3K/AKT-directed

therapies in breast cancer (Braso-Maristany et al.,

2016; Le et al., 2016) and prostate cancer (PCa) (Padi

et al., 2019; Song et al., 2018). Although many of the

specific targets and pathways that are regulated by

the PIM kinases to drive cancer growth and progres-

sion have been examined (de Bock et al., 2018; Mal-

one et al., 2019), investigating other potential

mechanisms will provide new insights into novel ther-

apeutic targets.

A stem cell gene expression signature has been

shown to characterize poorly differentiated tumors

from several types of human cancer (Ben-Porath

et al., 2008). Tumor-initiating cells expressing pluripo-

tency factors, such as NANOG, octamer-binding

transcription factor 4 (OCT-4), and SRY (sex-deter-

mining region Y)-box 2 (SOX2), play a significant

role in the induction and maintenance of malignancy.

Immortalized PCa epithelial cell cultures and DU145

human prostatosphere cells have been shown to

express these stem cell genes (Gu et al., 2007; Rybak

et al., 2011), which are enriched in high-Gleason

grade PCa (Mathieu et al., 2011), and predict the

poorest overall survival (Markert et al., 2011). PIM1

transcriptional levels in embryonic stem (ES) cells are

controlled by STAT3 and leukemia-inhibitory factor,

which are known to regulate stem cell genes (Aksoy

et al., 2007). When ES cells are fused to fibroblasts,

the addition of IL-6 to stimulate these cultures upreg-

ulates PIM1 levels, which then cooperates with OCT-

4, SOX2, and Kr€uppel-like factor 4 (KLF4) to

increase induced pluripotent stem cell frequency

(Brady et al., 2013). Consistent with a role in stem

cells, transgenic mice overexpressing PIM1 upregulate

hematopoietic stem/progenitor cell proliferation, while

PIM1 knockout mice have impaired long-term

hematopoietic repopulating capacity (An et al., 2013).

Together, these findings suggest that the PIM kinases

could regulate stem cell genes to control cancer

growth.

We demonstrate that the PIM1 protein kinase

induces the long noncoding RNA (lncRNA) H19

expression and promotes induction of a stem cell sig-

nature in both T-cell acute lymphoblastic leukemia (T-

ALL) and PCa cells. The lncRNA H19 is highly

expressed in embryonic tissue and placenta and

repressed after birth (Pachnis et al., 1988; Poirier

et al., 1991), but is highly re-expressed in multiple can-

cers including both hematopoietic (Takeuchi et al.,

2007) and solid tumors including breast (Adriaenssens

et al., 1998), esophageal (Hibi et al., 1996), bladder

(Ariel et al., 1995; Elkin et al., 1995), lung (Kondo

et al., 1995), and endometrial and cervical (Lee et al.,

2003) cancers. H19 is encoded by the IGF2/H19-im-

printed gene cluster located on human chromosome

11p15 (Zemel et al., 1992), and its transcription is con-

trolled by differentially methylated regions (DMRs) of

the upstream DNA called ‘imprinting control regions’

(ICR). When hypomethylated, four specific DMRs

upstream of H19 start site bind the transcription factor

CCCTC-binding factor, which acts as insulator pre-

venting IGF2 promoter activation and enhancing H19

transcription (Phillips and Corces, 2009). Here, we

show that PIM1 induces epigenetic changes in DNA

methylation in the control regions of H19, suggesting

a mechanism by which it regulates the transcription of

this lncRNA. The inhibition of pan-PIM kinase activ-

ity and the knockdown (KD) of H19 sensitize PCa

cells to treatment with antiandrogen enzalutamide

(Enza). In PCa and its highly aggressive variant neu-

roendocrine PCa (NEPC) (Davies et al., 2018), which

expresses elevated H19 levels as compared to adeno-

carcinoma (Ramnarine et al., 2018), the combination

of pan-PIM kinase inhibitors with concomitant H19

KD reduces tumor growth. These results delineate a

unique signaling cascade driven by the PIM kinases

that involves lncRNA and stem cell genes to regulate

tumor growth.
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2. Materials and methods

2.1. Cell culture

PC3, LNCaP, and DU145 were purchased from the

American Type Culture Collection (ATCC, Baltimore,

MD, USA); PC3-LN4 and human prostate fibroblast cell

line BHPrS1 (Zemskova et al., 2015) were cultured in

RPMI supplemented with 2 mmol�L�1 GlutaMAX (Life

Technologies, Rockville, MD, USA) and 10% FBS

(BioAbChem, Ladson, SC, USA) at 37 °C under 5%

CO2 as reported previously. The T-ALL cell lines HSB-2,

DU.528, KOPT-K1, CUTLL1, HPB-ALL, and SUP-T1

(Padi et al., 2017) were cultured in RPMI 1640 supple-

mented with 2 mM GlutaMAX (Life Technologies) and

10% FBS (BioAbChem) at 37 °C under 5% CO2.

LASCPC-01 (ATCC) was grown in HITES media con-

taining RPMI, 5% FBS, 10 nM hydrocortisone, 10 nM

beta-estradiol (Sigma-aldrich, St. Louis, MO, USA),

insulin–transferrin–selenium (Life Technologies), and

GlutaMAX (Life Technologies). hPrEC and murine pros-

tate epithelial tumor cells (mPrEC) cells were cultured as

described previously (Song et al., 2018). Phoenix-Eco cells

(a gift from J. Schatz, University of Miami Health Sys-

tem) and fibrosarcoma cell line FLYRD18/mCAT-IRES-

Bleo (a gift fromH.G.Wendel,Memorial SloanKettering

Cancer Center) were cultured in DMEM + 2 mM glu-

tamine + 10% FBS. All cell lines were maintained for no

more than 6 months in culture and were routinely tested

for Mycoplasma.

2.2. Organoid culture

The NEPC patient-derived organoids OWCM-155 were

provided by H. Beltran and were cultured as previously

described (Puca et al., 2018). For murine organoids, cells

were dissociated from the wild-type (WT) mouse prostate

and cultured as organoids as described (Drost et al.,

2016). All studies involving the use of animals were

approved by and conducted in accordance with the guide-

lines of the Institutional Animal Care and Use Commit-

tees at the University of Arizona Cancer Center. Both

NEPC and murine organoids were replenished with fresh

media every 3–4 days during organoid growth. Dense cul-

tures with organoids ranging in size from 200 to 500 lM
were passaged weekly. Organoid cultures were biobanked

using Bambanker (Gibco, Life Technologies) at �80 °C.

2.3. RNA extraction, qPCR, and gene expression

analysis

Total RNA was isolated from cells using TRIzol

reagent (Invitrogen, Waltham, MA, USA; Cat #

15596–018). One microgram total RNA was reverse-

transcribed by using i-Script cDNA Synthesis System

Kit (Bio-Rad, Hercules, CA, USA; Cat # 1708891).

To measure gene expression, real-time PCR was per-

formed using SsoAdvancedTM Universal SYBR�
Green Supermix (Bio-Rad; Cat # 1725271), following

the manufacturer’s protocol. Expression level of each

transcript was quantified by using Bio-Rad CFX96

Real-Time PCR Detection System. Quantitative real-

time PCR (qPCR) assay was performed using the fol-

lowing primers (50–30):

h-H19-F: GCACCTTGGACATCTGGAGT,

h-H19-R: TTCTTTCCAGCCCTAGCTCA; primer

for H19 was designed based on Ref Seq ID

NR_002196.2; amplicon length: 171

h-KLF4-F: GGCACTACCGTAAACACACG,

h-KLF4-R: CTGGCAGTGTGGGTCATATC;

amplicon length: 140

h-NANOG-F: TTTGTGGGCCTGAAGAAAACT,

h-NANOG-R: AGGGCTGTCCTGAATAAGCAG;

amplicon length: 116

h-OCT-4-F: TCGAGAACCGAGTGAGAGG,

h-OCT-4-R: GAACCACACTCGGACCACA;

amplicon length: 125

h-SOX2-F: CCCTGTGGTTACCTCTTCCT,

h-SOX2-R: AGTGCTGGGACATGTGAAGT;

amplicon length: 136

h-PIM1-F: CGACATCAAGGACGAAAACATC,

h-PIM1-R: ACTCTGGAGGGCTATACACTC;

amplicon length: 137

h-PIM2-F: GAACATCCTGATAGACCTACGC,

h-PIM2-R: CATGGTACTGGTGTCGAGAG;

amplicon length: 142

h-PIM3-F: GACATCCCCTTCGAGCAG,

h-PIM3-R: ATGGGCCGCAATCTGATC; ampli-

con length: 147

h-c-MYC-F: AAACACAAACTTGAACAGCTAC,

h-c-MYC-R: ATTTGAGGCAGTTTACAT-

TATGG; amplicon length: 188

h-18S-F: GTAACCCGTTGAACCCCATT,

h-18S-R: CCATCCAATCGGTAGTAGCG; ampli-

con length: 151
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m-PIM1-F: GATCATCAAGGGCCAAGTGT,

m-PIM1-R: GATGGTTCCGGATTTCTTCA;

amplicon length: 122

m-OCT-4-F: TCAGGTTGGACTGGGCCTAGT,

m-OCT-4-R: GGAGGTTCCCTCTGAGTTGCTT;

amplicon length: 100

m-SOX2-F: GGTTACCTCTTCCTCCCACTCCAG,

m-SOX2-R: TCACATGTGCGACAGGGGCAG;

amplicon length: 193

m-KLF4-F: CCAAAGAGGGGAAGAAGGTCG,

m-KLF4-R: GTGCCTGGTCAGTTCATCGG;

amplicon length: 198

m-HPRT-F: AAGCTTGCTGGTGAAAAGGA,

m-HPRT-R: TTGCGCTCATCTTAGGCTTT;

amplicon length: 186

2.4. Immunoblotting

As previously described (Padi et al., 2017), at the end of

each experiment, cells were lysed in RIPA buffer (Cell

Signaling Technology, Danvers, MA, USA, Cat #

9806S) with complete protease/phosphatase inhibitor

cocktail (Cell Signaling Technology, Cat # 5872S). The

protein concentration was determined by Bio-Rad DC

Protein Assay (Bio-Rad). Western blots (WBs) were

performed as described previously (Song et al., 2018).

The levels of PIM1 kinase (relative to ACTIN) and p-

IRS1 (S1101) proteins (relative to IRS1) were quantified

and normalized to their respective control samples using

IMAGEJ (NIH, https://imagej.nih.gov/ij) software.

2.5. Antibodies and reagents

Primary antibodies used for western blotting included

anti-PIM1 (Cell Signaling Technology, Cat # 2907),

anti-PIM2 (Cell Signaling Technology, Cat # 4730),

anti-PIM3 (Cell Signaling Technology, Cat # 4165),

anti-pIRS1-S1101 (Cell Signaling Technology, Cat #

S1101 Cat # 2385), anti-insulin receptor substrate 1

(IRS1; Cell Signaling Technology, Cat # 06-248), anti-

HA (Cell Signaling Technology, Cat # 14031), anti-

SOX2 [(E-4) sc-365823; Santa Cruz Biotech, Santa

Cruz, CA, USA], anti-OCT-4 [(C-10) sc-5279; Santa

Cruz Biotech], and anti-NANOG [(5A10) sc-134218;

Santa Cruz Biotech]. HRP-conjugated anti-b-actin
(Cat # A3854) was purchased from Sigma-Aldrich.

HRP-linked mouse IgG (Cat # NA931V) and rabbit

IgG (Cat # NAV934V) were purchased from GE

Healthcare Life Sciences (Princeton, NJ, USA).

Doxycycline (Dox) hydrochloride (Cat # D3447) was

purchased from Sigma-Aldrich. AZD1208 (Cat #

A13203) was purchased from Adooq Bioscience (Irvine,

CA, USA). Enza (MDV3100; Cat # S1250) was pur-

chased from Selleckchem (Houston, TX, USA).

PIM447 was a gift from Novartis (Basel, Switzerland).

2.6. Plasmids

Knockdown of human H19 was performed using the len-

tiviral plasmids pLenti-siH19-GFP (Abm, Richmond,

British Columbia, Canada, Cat # i009382) and pLenti-

scrambled siRNA-GFP (Abm, Cat # LV015-G) as a con-

trol. These siH19 plasmids allow for direct nonviral plas-

mid transfection for immediate expression (siH19) and

also package into lentiviral particles for high-efficiency

transduction and stably integrated expression (shH19).

Overexpression of human H19 was performed using

pLenti-GIII-CMV-H19-GFP-2A-Puro (Abm, Cat #

LV178008). The PIM1-expressing constructs and its

K67M kinase-dead (KiD) mutants were described previ-

ously (Cen et al., 2010). All the PIM1, PIM2, and PIM3

overexpression plasmids and siRNA to PIM1 were per-

formed as previously described (Padi et al., 2017; Song

et al., 2018). Transient transfection of siRNA and cDNA

was performed using Lipofectamine 3000 (Invitrogen)

and Xfect transfection reagent (Clontech, Takara Bio

USA Inc., Mountain View, CA, USA). The SUP-T1 cells

were engineered (SUP-T1E) using a fibrosarcoma cell line

FLYRD18/mCAT-IRES-B (Ngo et al., 2006) and

infected with MigR1 and MigPIM1 following established

procedures (Peters et al., 2016).

2.7. Cell viability assay

LNCaP and PC3 cell lines were seeded into 96-well

plates at a density of 5000 cells per well and allowed

to grow under desired conditions. As described previ-

ously (Padi et al., 2017), at the end of each experi-

ment, cell viability was measured using XTT cell

proliferation assay (Trevigen, Gaithersburg, MD,

USA; Cat # 4891-025-K) following the manufacturer’s

protocol. Briefly, the XTT reagent was added to cell

culture (1 : 2 dilution) and incubated for 4 h at 37 °C
and 5% CO2. The absorbance of the colored formazan

product was measured at 450 nm.

2.8. Organoid growth assay

Organoids were dissociated with TrypLE (Invitrogen)

into tiny cell clusters, plated (5000 cell clusters per

well), and treated under desired conditions for 4–
6 days. A real-time imaging system (IncuCyteTM; Essen
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Bioscience, Sartorius, Ann Arbor, MI, USA) was used

to measure organoid growth. Images were captured

every 12 h, and results were plotted as the percent

average organoid growth vs time.

2.9. Luciferase assay

PC3 cells stably overexpressing Dox-inducible PIM1

(PC3 Tripz-PIM1) were plated in 96-well plates

(2 9 104 cells per well) and transfected with a OCT-4

(proximal and distal enhancer) luciferase reporters

(Addgene, Watertown, MA, USA) or Renilla (Pro-

mega, Madison, WI, USA) using Lipofectamine (Invit-

rogen). The plasmid sequences for OCT-4 distal and

proximal enhancers were pGL3-human OCT-4 DE-

SV40-Luc and pGL3-human OCT-4 PE-SV40-Luc and

were a gift from J. Hanna (Addgene plasmid # 52414

and 52415, respectively) (Gafni et al., 2013). The total

plasmid DNA used was normalized to 0.5lg per well

by the addition of Renilla. At 24 h after transfection,

luciferase activities were measured using a Dual-Luci-

ferase Reporter Assay System (Promega) and a Glo-

Max 96-well microplate luminometer (Promega). OCT-

4 (proximal and distal promoter) luciferase activities

were corrected by the corresponding Renilla luciferase

activities. Results are expressed in arbitrary light units.

2.10. Lentiviral production and transduction

Lentiviral particle production and infection were per-

formed as described previously (Tiscornia et al., 2006).

For infection of adherent PCa cells, 106 cells per well

were seeded in six-well plates and infected with concen-

trated lentiviral particles 1 day after seeding. For lentivi-

ral transduction, organoids were preincubated for at least

48 h with regular organoid media supplemented with

Wnt-3a and Rho kinase inhibitor (Karthaus et al., 2014).

After 48 h, organoids were dissociated with TrypLE and

spinoculated with lentiviral particles along with poly-

brene (8 lM final concentration) at 600 g for 1 h at

32 °C. After incubating organoid cells at 37 °C for 3 h,

the cells were replated in Matrigel in ENR media without

lentivirus and allowed to grow for several days.

2.11. Bisulfite sequencing

Genomic DNA from informative samples were trea-

ted with bisulfite (EpiTect Plus DNA Bisulfite Kit;

Qiagen, Hilden, Germany; Cat No./ID: 59124) to

convert unmethylated cytosines to uracils, whereas

methylated cytosines are unaffected according to the

manufacturer’s protocol. Bisulfite-treated DNA was

subsequently amplified using the forward 50-

TGGGTATTTTTGGAGGTTTTTTT-30 and reverse

50-TCCCATAAATATCCTATTCCCA 30 primers.

2.12. Fluorescent-activated cell sorting

Cells were resuspended in 10% FBS/PBS to reach a

concentration of 107 cells per milliliter. Twenty micro-

liters of the cell suspension was stained with various

antibodies diluted in 10% FBS/PBS for 1 h. Subse-

quently, cells were washed with 2% FBS/PBS and

resuspended in 10% FBS/PBS for flow cytometry anal-

ysis (FACS). Antibodies used for our FACS analyses

include APC anti-human CD24 antibody (Cat #

311117; Biolegend, San Diego, CA, USA), PE anti-hu-

man CD29 antibody (Cat # 303003; Biolegend), APC

anti-human CD133 (Cat # 17-1338-41; eBioscience,

San Diego, CA, USA), and APC anti-human CD49b

(integrin alpha-2; Cat # 17-0500-41; eBioscience).

2.13. Affymetrix gene chip expression analysis

The microarray was performed as described previously

(Padi et al., 2017). Total RNA was extracted from six T-

ALL cell lines using the RNeasy kit following manufac-

turer’s instructions (Qiagen, Cat #74104). The Genomics

Facility Core at University of Arizona Cancer Center

performed quality control using the Agilent Bioanalyzer

2100 to confirm all RNA samples had RNA integrity

numbers greater than seven and to quantitate the concen-

tration. From the RNA, the Genomics Core produced

labeled a DNA target using the WT PLUS Reagent Kit

and hybridized it to the Affymetrix� HTA 2.0

Array (Santa Clara, CA, USA) overnight according to

the manufacturer’s instructions. Arrays were washed and

scanned with the GeneChip Hybridization, Wash, and

Stain Kit and an Affymetrix� Scanner 3000 (Santa

Clara, CA, USA) following the manufacturer’s instruc-

tions. The Affymetrix� TRANSCRIPTOME ANALYSIS CONSOLE

v3.0 software (Affymetrix) was used to analyze resulting

data file to identify differentially expressed genes between

PIM inhibitor (PIM-i)-sensitive cells (HSB-2, DU.528,

and KOPT-K1) and PIM-i-insensitive cells (CUTLL1,

HPB-ALL, and SUP-T1) and generated a scatter plot of

differentially expressed genes with the following criteria:

fold change (linear) < �2 or fold change (linear) > +2,
and ANOVA P value (condition pair) < 0.05.

2.14. Statistics

Values reported and shown in graphical displays are

the mean � standard deviation or standard error of

the mean, as indicated. Comparisons of mean expres-

sion across groups were made using an unpaired two-
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tailed Student’s t-test. For all comparisons, P values

< 0.05 were considered statistically significant.

3. Results

3.1. PIM protein kinase regulates the level of the

lncRNA H19

We have chosen to examine two model systems to

understand the mechanism by which the family of

PIM kinases regulates tumor growth. T-ALL and

PCa have been shown to be driven by increased PIM

levels, and small molecule inhibitors of PIM decrease

the growth of these tumor types. T-ALL cell lines can

be divided into the early progenitor types (ETP-

ALL), HSB-2, KOPT-K1, and DU.528, containing

elevated levels of PIM kinase, and those that are

more mature, SUP-T1, HPB-ALL and CUTLL1, and

express lower levels of this protein kinase (Padi et al.,

2017). ETP-ALL cells are blocked in their growth by

PIM-i, while the more mature T-ALLs, SUP-T1, and

CUTLL1 are not (Padi et al., 2017). To understand

the genes or pathways that might be involved in the

sensitivity of HSB-2, KOPT-K1, and DU.528 and the

resistance of SUP-T1, HPB-ALL, and CUTLL1 to

PIM-i, microarray profiling was carried out on these

six T-ALL cell lines (Fig. 1A, Table S1). Among the

genes most elevated in ETP-ALL cells whose growth

is driven by PIM and sensitive to PIM-i therapy, the

lncRNA H19 was identified (Fig. 1A). Using qPCR,

we confirmed that H19 is highly expressed in the

PIM-driven PIM-i-sensitive HSB-2 and DU.528 but

at much lower levels in the PIM-i-insensitive SUP-T1

and CUTLL1 cells (Fig. 1B,C, Fig. S1). KD of PIM1

levels in HSB-2 with siRNA led to a significant

decrease in cellular H19 level (Fig. 1D), demonstrat-

ing that PIM1 regulates H19 in these ETP-ALL cells.

Conversely, PIM1 overexpression in the PIM-i-resis-

tant cell line SUP-T1 induced increases in H19 levels

(Fig. 1E). The PIM1 overexpression in SUP-T1E cells

was confirmed by measuring p-IRS1 (S-1101;

Fig. 1E). IRS1 is a known PIM kinase substrate, and

its phosphorylation is regulated by PIM kinase activ-

ity (Song et al., 2016).

A possible mechanism by which PIM regulates H19

levels is by modulation of the H19 DMR methylation.

There is a striking difference in the methylation state

of H19 between PCa and benign prostate hyperplasia

(BPH). Eight percent of the CpGs in the DMRs and

in the ICRs are methylated in BPH, while only 41%

of CpGs are methylated in PCa (Paradowska et al.,

2009). Bisulfite sequencing demonstrates that while the

DMR is methylated in 100% of the SUP-T1 clones,

PIM1-overexpressing SUP-T1 cells demonstrated a

demethylation of the DMR in 30% of the clones ana-

lyzed, reflecting the loss of imprinting of H19

(Fig. S2A,B). This result suggests a potential mecha-

nism for the suppression of H19 expression in SUP-T1

cells and its potential regulation by PIM1 kinase.

Since PIM1 kinases have been shown to drive the

growth of PCa, we sought to address whether the

PIM1 regulation of H19 levels was also present in this

tumor type. Transient overexpression of PIM1 in

human PCa cell lines PC3 and DU145 elevated H19

expression (Fig. 2A,B). To examine whether the kinase

activity of this enzyme was needed, DU145 cells were

transfected with PIM1 (WT) or a K67M KiD mutant

(Cen et al., 2010) (Fig. 2B). WT-PIM1, but not its

KiD mutant, induced increases in H19 levels (Fig. 2B).

Similarly, in human prostate stromal cell line BHPrS1

containing Dox-inducible PIM1 construct (Zemskova

et al., 2015), PIM1 induction resulted in increases in

H19 levels, which were blocked by 24 h of PIM-i

(AZD1208, 3 µM) treatment (Fig. 2C). The effect of

Dox induction and PIM-i treatment was confirmed by

p-IRS1 phosphorylation (Fig. 2C). Similarly, PIM1-

mediated H19 induction was also observed in normal

human prostate-derived epithelial cells, hPrEC

(Fig. 2D), or prostate tumor cell line PC3 (Fig. 2E).

To check whether this H19 induction by PIM kinase is

isoform-specific, we transduced PC3 cells with PIM1,

PIM2, or PIM3 and measured the H19 levels. Each of

the PIM kinase isoforms induced similar H19 level

increases (Fig. S3A), indicating that each isoform was

capable of regulating this lncRNA.

H19 and IGF2 are expressed from the same genetic

locus (Gabory et al., 2010). We observed no changes

in IGF2 RNA expression when PIM1 kinase was

transfected in PC3 cells (Fig. 2F). Since H19 has been

shown to be directly activated by c-MYC (Barsyte-

Lovejoy et al., 2006), the increase in H19 upon PIM

overexpression could be mediated by changes in c-

MYC levels. It has been shown that the PIM1/PIM2

kinases synergize with c-MYC to induce tumorigenesis.

It has been found that overexpressing PIM1 kinase

decreased phosphorylation of Thr58 and enhanced

phosphorylation at S62, whereas PIM2 caused S329

phosphorylation on c-MYC. These phosphorylation

events caused by PIM1/PIM2 lead to increased protein

stability and enhanced transcriptional activity of c-

MYC (Kim et al., 2010; Zhang et al., 2008). However,

in our model system, overexpression of c-MYC in

DU145 cells did not induce H19, suggesting that PIM

regulates H19 independently of c-MYC function

(Fig. S4). Taken together, these data demonstrate that

979Molecular Oncology 14 (2020) 974–990 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

N. Singh et al. PIM regulates lncRNAH19 to drive stem cell genes



the lncRNA H19 expression is regulated by the PIM

kinases in both hematopoietic and solid tumor types.

3.2. PIM overexpression is associated with a

stem cell signature

H19 expression has been shown to positively correlate

with the level of stem cell genes and pluripotency fac-

tors in various tumor types (Bauderlique-Le Roy

et al., 2015; Li et al., 2016; Peng et al., 2017; Zeira

et al., 2015). Comparison of the PIM-i-resistant (SUP-

T1 and CUTLL1) and PIM-i-sensitive (HSB-2 and

DU.528) T-ALL cell lines revealed significantly ele-

vated SOX2 expression in sensitive vs resistant T-ALL

cells (Fig. S1). PIM1 overexpression in both T-ALL

cell line—SUP-T1—and PCa cell lines—PC3 and

DU145—was able to induce the expression of stem cell

factors OCT-4, SOX2, NANOG, and KLF4 (Fig. 3A,

B). At the protein level, PIM1 overexpression in mur-

ine PCa cells mPrEC (Song et al., 2018) augmented

the level of the stem cell genes Sox2, NANOG, and

Oct-4 (Fig. 3C). The overexpression of PIM2 and
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PIM3 in PC3 cells also led to increases in NANOG

and OCT-4 gene expression (Fig. S3A). Using a luci-

ferase reporter controlled by either the OCT-4 proxi-

mal or distal enhancers, increasing PIM1 levels in PC3

cells showed increased OCT-4 transcription and pro-

moter activity when PIM1 was induced (Fig. 3D). To

confirm that the PIM1-induced stem cell signature is

associated with a stemness state, we analyzed PIM1-

overexpressing cells for the enrichment of stem cell

surface markers (CD24 (Weng et al., 2019), CD29

(Lawson et al., 2010; Vassilopoulos et al., 2014), and

CD49B (Erb et al., 2018; Lawson et al., 2010). We

demonstrate that PIM1 overexpression in PC3 cells

induces stem cell surface markers CD29, CD49b, and

CD24, suggesting that increased PIM1 expression is

capable of inducing a stem cell-like surface phenotype

through in part regulating these gene changes

(Fig. S3B).

To evaluate the effect of PIM1 overexpression on

growth of normal stem cells, we isolated WT mouse

prostate organoids that have been shown to possess

stem cell-like characteristics (Karthaus et al., 2014).

PIM1 overexpression in these organoids caused a sig-

nificant increase in proliferation of these cells (Fig. 4A;

PIM1-RFP vs EV-RFP, P < 0.001). As in PCa cell

lines, overexpressing PIM1 in mouse organoids

induced increases in H19 and the stem cell genes Klf4,

Oct-4, and Sox2 (Fig. 4B). Importantly, in PC3-LN4

cells, a metastatic variant of PC3 cells that expresses

elevated levels of the PIM kinases (Song et al., 2018),

H19 KD repressed the expression of NANOG, OCT-4,

SOX2, and KLF4 (Fig. 4C).
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To validate that the PIM1 increases in stem cell

genes are mediated by H19, we knocked down H19 in

PIM1-overexpressing SUP-T1E cells using either len-

tivirus encoding scrambled shRNA (shScr) as a con-

trol or shH19 (Fig. 4D). Our results indicated that the

KD of H19 abrogated the PIM1-induced stem cell

gene expression. Thus, these experiments help to estab-

lish a novel signaling cascade connecting PIM1, H19,

and stem cell genes, suggesting that the PIM1 induc-

tion of stem cell genes may occur with the activity of

H19.

3.3. PIM-i treatment reduces H19 expression and

inhibits cell growth

To investigate the effect of pharmacological inhibition

of PIM kinases on the levels of H19 in T-ALL cell

lines, HSB-2, DU.528, and CUTLL1 were treated with

the pan-PIM-i AZ1208 (3 µM, 24 h). This treatment

reduced H19 levels in the two ETP-ALL cell lines,

HSB-2 and DU.528, by ~ 60%, while it had no effect

on H19 levels in the more mature and kinase inhibi-

tor-resistant CUTLL1 cells (Fig. 4E). Similarly,
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treatment of LNCaP cells (Fig. 4F) with PIM-i

decreased H19 levels. Similar results were obtained in

NEPC cell line LASCPC-01 where PIM447, another

small molecule pan-PIM-i, significantly decreased H19,

NANOG, OCT-4, and SOX2 expression in a dose-de-

pendent manner (Fig. S5). Additionally, we observed

that overexpression of PIM1 partially sensitized PIM-

i-resistant SUP-T1E cells to PIM-i treatment (Fig. S6).

These data demonstrate that PIM1 regulates H19

levels in PIM-dependent but not in PIM-i-insensitive

cell lines.

To analyze whether the inhibition of PIM and the

subsequent decrease in H19 affected cell growth in

PCa, we performed XTT assay on PC3 cells with H19

KD and treated or not with a PIM-i. The combination

of si-H19 and PIM-i significantly inhibited cell growth

(Fig. 5A), while individual treatments had modest

effects. NEPC is a variant of PCa that is clinically

unresponsive to chemotherapy treatments. To test this

combination treatment in this tumor type, we utilized

NEPC patient-derived organoids OWCM-155 (Puca

et al., 2018), which have high levels of H19 (Singh
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et al., manuscript in preparation). When compared to

androgen-responsive PCa cell line LNCaP, these orga-

noids have elevated PIM kinase expression (Fig. S7).

Stable KD of H19 in these organoids (Fig. S8) results

in a significant growth reduction (Fig. 5B). When H19

KD and PIM-i treatment are combined, there is an

even further decrease in the NEPC organoid growth

(Fig. 5B). These results demonstrate that kinase inhibi-

tion and decreases in this lncRNA can function

together to inhibit PCa growth.

3.4. H19 blocks the ability of PIM-i to sensitize

prostate cancer cells to hormone blockade

Patients diagnosed with advanced PCa initially

respond to androgen deprivation therapy (ADT) but

ultimately develop hormone-refractory disease that

leads to death. Recent evidence suggests that increased

expression of the reprogramming stem cell transcrip-

tion factor SOX2 makes PCa cells resistant to hor-

mone blockade by the antiandrogen Enza (Mu et al.,

2017). To investigate the role of PIM kinases in ADT,

we analyzed the effect of Enza treatment on PIM1-

overexpressing androgen-responsive PCa cell line

LNCaP cells. Interestingly, we observed that while

Enza treatment (48 h, 10 lM) was cytotoxic to the

empty vector (EV)-transduced control LNCaP cells

(EV), overexpression of PIM1 caused resistance to

Enza treatment (Fig. 5C). This result is consistent with

our finding that PIM kinase activity stimulates

increases in SOX2 (Fig. 3C). To explore this further,

we examined the growth of LNCaP with control vec-

tor transduction (LNCaP-EV) and H19 overexpression

(LNCaP-H19; Fig. S9), followed by treatment with

increasing concentrations of PIM447 with or without

Enza (2, 5 µM) treatment for 72 h (Fig. 5D,E). The

PIM-i treatment significantly sensitized the control

LNCaP cells to growth inhibition by Enza (Fig. 5D).

Notably, ComboSyn analysis (Chou, 2010) demon-

strated that the PIM447 and Enza combination was

highly synergistic in killing LNCaP cells. As shown in

Fig. S9, the combination index values were < 1 for

multiple PIM447 and Enza combination doses. Over-

expression of H19 in LNCaP cells blocked the effect

of PIM kinase inhibitor treatment (Fig. 5E), suggest-

ing that the PIM-mediated control of H19 levels mod-

ulates Enza sensitivity in LNCaP cells.

4. Discussion

Our results identify a unique signaling cascade that

regulates the transcription of stem cell genes in both

T-ALL and PCa. PIM1 kinase induces the expression

of lncRNA H19, which in turn stimulates the tran-

scription of the stem cell genes SOX2, NANOG, and

OCT-4. We found that the expression of H19 is signifi-

cantly higher in the T-ALL cell lines with high levels

of PIM1 kinase and sensitivity to PIM-i (HSB-2,

DU.528, and KOPT-K1) as compared to those with

low PIM1 levels and insensitivity to these kinase inhi-

bitors (CUTLL1, HPB-ALL, and SUP-T1). Since PIM

kinases (Aksoy et al., 2007; Jimenez-Garcia et al.,

2017; Xie and Bayakhmetov, 2016) and H19 (Peng

et al., 2017; Zimta et al., 2019) have been both shown

to be involved in the maintenance of stemness in solid

tumors and hematopoietic malignancies, we decided to

investigate whether there is a link between the two in

the regulation of stem cell genes. We further demon-

strated that PIM-i decreased H19 levels in PIM-i-sensi-

tive cell lines (HSB-2 and DU.528) but has no effect

on H19 levels in the PIM-i-insensitive cell line

CUTLL1. Overexpression of PIM1 in SUP-T1 cells

increased stem cell gene transcription through H19

and restored partial sensitivity to PIM-i. Further, we

identified that the stem cell genes SOX2, KLF4,

NANOG, and OCT-4 were induced as a result of H19

elevation. These findings were corroborated in PCa

cells, indicating the PIM regulation of H19 and induc-

tion of stem cell genes in both solid and hematopoietic

tumors.

Further analysis of the microarray data comparing

the transcriptomes of PIM-i-sensitive vs PIM-i-insensi-

tive cells revealed enrichment of several pathways

important for stem cell progression and maintenance

(Table S2) in the PIM-i-sensitive cell lines. Studies

have shown the involvement of these pathways in

maintenance of pluripotent stem cells both in solid

tumors and in hematopoietic malignancies. Specific

pathways of interest could be chemokine signaling

pathway (P value = 0.00019) (Jiang et al., 2017),

VEGFA/ VEGFR2 pathway (P value = 0.0002)

(O’Donnell et al., 2016), and PI3K-Akt signaling path-

way (P value = 0.045) (Madsen et al., 2019) that are

enriched in the PIM-i-sensitive cell lines and could be

presumably more important in understanding the

PIM-specific mechanism. Further experiments are

needed to examine the role of PIM and H19 in regu-

lating a broad segment of the genes regulating this

stem cell phenotype.

The mechanism by which H19 mediates stemness in

liquid and solid tumors (Jiang et al., 2016; Peng et al.,

2017; Ren et al., 2018; Sasaki et al., 2018; Zhou et al.,

2019) is likely complex. Various studies have pointed

out the ‘sponge effect’ of H19 in which this lncRNA

decreases the bioavailability of miRNAs such as Let7,

leading to an increase in their target gene expression
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(RAS, MYC, HMGA2, STAT3, and IL-10) (Peng

et al., 2017; Zhou et al., 2017). H19 forms a double-

negative circuit with let-7 and LIN28 in breast cancer

cells, wherein H19 sponges the let7 miRNA that conse-

quently releases and promotes the LIN28 expression.

This increase in LIN28 expression further potentiates

H19 expression, leading to the feedback circuit that

acts to maintain the stem cell state in breast cancer

(Peng et al., 2017). The LIN28/let7 has also been asso-

ciated with increasing the stem cell gene expression in

oral squamous cell carcinoma (Chien et al., 2015). The

suppression of Let7 by LIN28 derepresses its target

mRNAs—ARID3B and HMGA2, which then is

thought to increase the transcription of stem cell genes

OCT-4 and SOX2, through promoter binding.

However, further studies are needed to investigate the

effect of H19 on this double-negative feedback loop in

the context of PIM1-overexpressing PCa or T-ALL

cells.

Alternatively, H19 may function to increase stem

cell gene levels through epigenetic mechanisms. H19

has been documented to bind to S-adenosylhomocys-

teine hydrolase protein inducing genome-wide methyla-

tion changes by indirectly regulating S-

adenosylmethionine-dependent methyltransferases

(Zhou et al., 2015). This H19-driven methylation could

be sufficient to increase the transcription of stem cell

genes. It has been demonstrated by our laboratory

(Singh et al., manuscript in preparation) and others

that H19 physically interacts with the proteins in the
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polycomb repressor complex 2 (PRC2) complex, for

example, enhancer of zeste homolog 2, and increases

histone H3K27me3 modifications (Fazi et al., 2018). It

is possible that similar to the lncRNA HOTAIR (Tsai

et al., 2010), H19 could bind both the PRC2 complex

and lysine demethylases to mutually activate and

repress gene transcription inducing a ‘stem-like’ state.

The PIM kinases may function to elevate H19 levels

by regulating both transcription factor binding and

DNA methylation. The promoter region of H19 con-

tains transcription factor binding sites for HIF1 (Wu

et al., 2017), androgen receptor (AR; putative), E2F1

(Berteaux et al., 2005), and OCT-4/SOX2 (Zimmerman

et al., 2013). In hypoxia, PIM kinases are elevated and

increase HIF1 activity (Casillas et al., 2018), thus hav-

ing the potential to activate H19 transcription. H19

levels have been shown to be hormonally regulated

and are inhibited by dihydrotestosterone in androgen-

responsive cells (Berteaux et al., 2004), thus pointing

to an inverse relation between AR and H19. PIM1 can

regulate AR levels by phosphorylation, leading to

degradation of this protein (Linn et al., 2012) poten-

tially removing a negative regulator controlling the

transcription of this lncRNA.

All the PIM isoforms phosphorylate p27 protein lead-

ing to its degradation, stimulating the cell cycle (Mor-

ishita et al., 2008), which can indirectly inhibit RB

activity. When RB1 activity is lost, E2F1 could bind to

the H19 promoter and stimulate increases in its tran-

scription (Berteaux et al., 2005). In turn, H19 affects

RB1 phosphorylation by regulating the expression of

CDK4 and CCND1 genes (Ohtsuka et al., 2016) that

can act to further increase E2F1 activity. In murine ES

cells, OCT-4 and SOX2 have been shown to coopera-

tively bind the ICR of the Igf2/H19 locus, resulting in a

hypomethylated state, which stimulates increases in this

lncRNA (Zimmerman et al., 2013). Mass spectrometry

on PIM1-treated ES cell samples revealed the relative

abundance of phosphorylated OCT-4 peptides that con-

tain putative PIM1 phosphorylation at S289 and S290,

suggesting that PIM1 phosphorylates OCT-4 (Brum-

baugh et al., 2012). PIM kinase inhibitor treatment

could block this phosphorylation inhibiting the ability

of OCT-4 to work synergistically with SOX2. Conse-

quently, the decreased binding of these two transcrip-

tion factors could reduce H19 levels.

We showed that expression of PIM1 in T-ALL mod-

ulates the methylation status of H19 DMR, suggesting

that the PIM kinase could act directly or indirectly as

an epigenetic regulator. It has been suggested that

PIM regulates DNA methylation. Phosphorylation of

heterochromatin protein 1c (HP1) at Ser-93 by PIM1

promotes HP1 binding with histone H3K9me3, which

leads to heterochromatin formation and the suppres-

sion of gene transcription responsible for proliferation

(Jin et al., 2014). Further experiments are required to

decipher the exact mechanism by which PIM controls

H19 levels.

Prostate cancer cells can escape ADT through a

change in lineage identity driven by elevated SOX2.

Knocking down SOX2 can restore sensitivity to Enza

in vitro and in mouse xenograft models (Mu et al.,

2017). Our findings are consistent with these observa-

tions in that small molecule PIM-i cells downregulate

SOX2 and sensitize androgen-responsive LNCaP cells

to Enza therapy. This result could be secondary to the

ability of these inhibitors to decrease H19. A recent

study (Lawrence et al., 2018) showed that the combi-

nation of pan-PIM-i and RNA polymerase I inhibitor

targeting ribosomal biosynthesis was effective against

all four neuroendocrine-like AR-null patient-derived

xenografts. These tumor cells exhibited heterogeneous

mechanisms of resistance, including AR mutations and

genomic structural rearrangements of the AR gene

(Lawrence et al., 2018).

5. Conclusions

Our data demonstrate that PIM kinase induction

increases the lncRNA H19 and this in turn regulates

stem cell genes, including the transcription factor

SOX2, which plays a role in controlling the response

to ADT. Additionally, we found that while elevated

levels of PIM1 contribute resistance to ADT, the com-

bination of a pan-PIM-i and H19 KD can reduce the

tumor-forming capacity of highly aggressive NEPC.

Together, these data suggest a novel pathway con-

trolled by the PIM kinases whose inhibition could

impact clinical outcomes.
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