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In this work, we employ a data-fitted compartmental model to visualize the progression and behavioral response 
to COVID-19 that match provincial case data in Ontario, Canada from February to June of 2020. This is a 
“rear-view mirror” glance at how this region has responded to the 1st wave of the pandemic, when testing 
was sparse and NPI measures were the only remedy to stave off the pandemic. We use an SEIR-type model 
with age-stratified subpopulations and their corresponding contact rates and asymptomatic rates in order to 
incorporate heterogeneity in our population and to calibrate the time-dependent reduction of Ontario-specific 
contact rates to reflect intervention measures in the province throughout lockdown and various stages of social-

distancing measures. Cellphone mobility data taken from Google, combining several mobility categories, allows 
us to investigate the effects of mobility reduction and other NPI measures on the evolution of the pandemic. 
Of interest here is our quantification of the effectiveness of Ontario’s response to COVID-19 before and after 
provincial measures and our conclusion that the sharp decrease in mobility has had a pronounced effect in the 
first few weeks of the lockdown, while its effect is harder to infer once other NPI measures took hold.
1. Introduction

Since December 2019, the novel betacoronavirus SARS-CoV-2 and 
its associated disease COVID-19 have spread from the point of origin in 
Wuhan, China [1] to virtually all corners of the globe. As of April 1, 
2021 over 129 million people worldwide have been confirmed as hav-

ing contracted COVID-19, resulting in over 2.82 million deaths. Despite 
the recent development and ongoing distribution of several vaccines, 
the total number of cases is increasing [2]. Predictably, the events of 
the last year have stimulated a robust discussion related to the nature 
of mathematical models in epidemiology as they inform public policy 
[3, 4, 5]. It seems prudent then, before describing our own model and 
results, to review the history of mathematical modeling in epistemology 
and to recall the challenges it continues to pose.

The mathematical theory required to effectively model the spread 
of infectious diseases throughout a homogeneous population was devel-

oped by Gottfried Leibniz in the latter half of the 17th century [6, 7, 8]. 
Leibniz’s work was quickly put to use describing physical systems by 
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early physicists, notably Jacob Bernoulli in 1695 [9]. Early contribu-

tions to the mathematical study of infectious diseases began appearing 
during the 18th century notably by the physicist Daniel Bernoulli in 
1760 [10]. In 1866, during an epidemic of cholera in London, William 
Farr appears to have been the first person to (publicly) employ math-

ematics to predict the likely course of an epidemic [11, 12, 13]. His 
projection was apparently based on simple curve fitting and was seen 
as successful by his contemporaries, but attempts to extend his ideas 
to a more general context proved disappointing [13]. Further, more 
successful efforts to derive a mathematical model of epidemics were 
undergone by Brownlee [14, 15], Ross [16] and Hudson [17, 18]. The 
so-called ‘SIR’ model common in modern epidemiology was arrived at 
in 1927 by Kermack and McKendrick [19]. In the simplest case this type 
of model divides the population into three compartments: “susceptible”, 
“infected”, and “recovered”. Differential equations can then be used to 
describe the movement of the population between the compartments. 
Unfortunately, this simple model has two disadvantages which render 
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it unsuitable for most practical purposes. Firstly, for an SIR model to 
produce accurate results it must use accurate values for its parameters 
(e.g. rate of transmission, recovery time, and mortality rate). These pa-

rameters can be difficult to measure and may not be constant across an 
entire population. The second disadvantage of SIR-type models is that 
they assume that the population in any given compartment is homoge-

neous, which can cause them to ignore important differences such as 
age, location, and travel habits. Mathematically this can always be re-

solved by adding more compartments, however this increases both the 
computational complexity of the model and the number of parameters 
needed to produce an output. For these reasons, contemporary models, 
while still recognizably related to the classic SIR model, are typically 
modified to accommodate the specifics of the pathogen being modeled, 
important variances in the population, and the intended purpose of the 
model [20, 21, 22, 23, 24, 25].

Some early models for the COVID-19 outbreak returned to curve-

fitting as a method for projecting future outcomes [26]. Much of the 
epidemiological modeling is now performed with variants of the clas-

sic SIR model [27, 28, 29, 30] which fits the number of individuals in 
a population who are susceptible to, infected with, or have recovered 
from a communicable disease. The model can be extended to incorpo-

rate different phases of a disease [31], or population subtypes [32]. 
Studies have stratified Ontario populations by categorizing gender [33] 
or profession (such as healthcare workers) [34] separately. Age has also 
been shown to play an important factor in the transmission of COVID-19 
[35] and in this paper we will further investigate that variable.

Although contact rates between individuals have previously been 
studied [36, 37], due to imposed social distancing and sheltering mea-

sures, absolute contact rates during the pandemic have changed dras-

tically from baseline. Presently, governments have imposed measures 
in an attempt to reduce the spread of COVID-19. These include shel-

tering in place and isolation, travel restrictions, social distancing pro-

tocols, and the closure of public and commercial spaces. Specifically 
in Ontario, the government has mandated a slow relaxation of shelter-

in-place measures and reopening of the economy throughout the late 
spring and summer of 2020 [38], and provided guidance on protective 
measures such as hand-washing and the use of face coverings.

Naturally, there is considerable interest in understanding the effects 
of the measures taken to mitigate the spread of COVID-19 [39, 40, 
41], and at this stage, a year in the pandemic, looking back to what 
can be learned is as important as forecasting the next evolution of the 
pandemic. A comparative study used Google mobility data for Canada, 
not to model the epidemic, but to assess governmental interventions 
and social distancing measures, and to compare Canada’s response with 
that of other countries [42]. A Texas study assumed two situations using 
arbitrary values: a 90% drop in contacts for individuals in isolation and 
a 40% drop in contacts for those practising social distancing [43]. More 
accurate estimates may be gained through anonymised location data 
gathered from mobile phones. Using a combination of proprietary and 
publicly available data, it has been shown in the United States that the 
adoption of shelter-in-place policies corresponds to a sharp decrease in 
mobility. It has also been shown that the number of infected cases is 
directly correlated to mobility [44, 45] in February-April 2020, which 
is something we see here as well. However we also show that increase 
in mobility in the population of Ontario stops being a good indicator of 
pandemic evolution past April 2020. This is likely due to the fact that 
while mobility has steadily risen, other NPI measures took hold, such 
as mask wearing, and larger testing capacity.

To estimate differences in contact during the epidemic, a team of 
researchers using an SEIR-type model found the overall contact-rate 
in British Columbia dropped by 78% due to distancing and isolation 
measures. The paper, however, only uses mobility data to determine 
the beginning and end dates of these measures, without considering 
that mobility will change over time due to relaxed restrictions [46]. 
Related studies done for France [47] and the UK [48] found similar 
values, in that overall contacts were reduced by 70-80%.
2

It is known that the contact rates between individuals of different 
age groups will vary significantly [49], so it is important to take this 
into account. An Ontario paper uses an SEIR-type model with compart-

ments by age, but only modifies the severity of infection per age group 
[32]. A Brazilian study uses data from nine distinct age groups, but 
uses identical contact rates within and between groups [50]. [51] uses 
an SEIR model with age stratification to investigate the effect of various 
management strategies. Unfortunately, the study suffers from a lack of 
empirical data instead arriving at exposure rates by “making educated 
estimates of the effects of hygiene restrictions and specific social inter-

actions in each place”. Research is now suggesting that children only 
play a minor role in transmitting COVID-19 [52]. The spread of the 
disease is greatest between adults in the same age group, and less fre-

quently between parents and children. These results will have an impact 
on the effective contact rates between individuals.

In our work here, we use age-stratification in three broad age 
groups: young (less than 20 years), adults (between 20 and 60 years) 
and seniors (between 60 to 80 years). We use Ontario’s public health 
onset case data, we use the Google mobility data for Canada, and we 
adapt the contact rates, per broad age groups from existing literature. 
We adapt an SEIR-type model and we successfully fit the onset case 
data in Ontario, per each age category, to the simulated symptomatic 
cases, while discounting outbreak cases in long-term care (as median 
age there is higher than our modeled population groups). The period of 
time of interest for us is February – June 2020.

What we conclude is that there is a quantification of the level of suc-

cess in staving off the pandemic in Ontario via the study of a reduction 
of contacts coefficient 𝑞, which represents the decrease in base contacts 
due to lockdown and social-distancing measures. Moreover, we show 
that this reduction coefficient can be looked at as having two impor-

tant contributors: the first is from mobility reduction in the province 
(at work, outdoor, retail, schools, etc. categories), while the second is 
due to all other NPI measures that have started to take hold or be re-

quired, such as mask wearing, restricted commerce and services, etc. 
We can clearly see then that mobility reduction has certainly had a pro-

nounced impact on contact reduction in the first 4 weeks after the first 
lockdown was imposed, however it becomes a poor indicator (if at all) 
of pandemic evolution beyond that short time frame.

The structure of the paper is as follows: In Section 2 we present our 
methods and materials, in Section 3 we present our calibration results 
and reduction factor discussion, while we close with some concluding 
remarks and future work.

2. Methods & materials

2.1. Adapted SEIR model

We introduce an adapted SEIR model to the question at hand by 
modifying and age-stratifying a variant of the SEILR model presented 
in [53, 54]. First, we refine the Infected compartment further into three 
compartments: presymptomatic (𝐼𝑃 ), asymptomatic (𝐼𝐴), and symp-

tomatic (𝐼𝑆 ). In this way, we may better examine the dynamics of the 
COVID-19 infection through its stages of development and consequent 
patient behavior due to symptom prevalence.

Second, we generalize the model to allow for age group stratification 
and interactions between groups. In short, we propose the extended 
SEILR(pas) model with the following compartments: Susceptible (S), 
Exposed (E) - not yet contagious, Infected (p)resymptomatic (𝐼𝑃 ) -

contagious, Infected (a)symptomatic (𝐼𝐴), Infected (s)ymptomatic (𝐼𝑆 ), 
Recovered (R), and iso(L)ated - symptomatic cases isolated to prevent 
spread.

In order to account for differences in disease susceptibility and infec-

tion outcomes, we divide the population of Ontario (the most populous 
province of Canada) in three age-stratified subgroups: Group 1, denoted 
by 𝑁1: 0-19 years old, Group 2, denoted by 𝑁2: 20-59 years old, and 
finally Group 3, denoted by 𝑁3: (≥60) years old.
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Fig. 1. Schematic of SEILR(pas) model for COVID-19 progression and control measures for a Group 𝑖, 𝑖 ∈ {1, 2, 3}. The outward arrow labeled 𝛽𝑖𝑗 implies that the 
encircled compartments (Presymptomatic, Asymptomatic, and Symptomatic infected) in each age group have an impact on new transmissions to the other age 
groups {1, … , 3}.
Contact rates (𝑐𝑖𝑗 ) within and between these age groups were in-

ferred from Canadian contact data estimated by Prem, Cook, & Jit 
(2017) [37], who projected social contact patterns in 152 countries 
(see Collapsing age-stratified contact matrices for details). Since con-

tact rates are a factor in determining the size of the effective contact 
rates, typically denoted by 𝛽, in the context of age-stratified transmis-

sion, the effective rates will be denoted by 𝛽𝑖𝑗 . Before we outline the 
equations governing our model, we include first the flow chart between 
the above compartments, together with classic notations of the flow 
rates (Fig. 1).

Considering the 𝑖-group model for 𝑖, 𝑗 ∈ {1, … , 𝐾}, the differential 
equations governing each of the groups are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆𝑖

𝑑𝑡
= −

𝐾∑
𝑗=1
𝛽𝑖𝑗𝑆𝑖(𝑡)

𝐼𝑃
𝑗
(𝑡) + 𝐼𝐴

𝑗
(𝑡) + 𝐼𝑆

𝑗
(𝑡)

𝑁𝑗 (𝑡)
,

𝑑𝐸𝑖

𝑑𝑡
=
𝐾∑
𝑗=1
𝛽𝑖𝑗𝑆𝑖(𝑡)

𝐼𝑃
𝑗
(𝑡) + 𝐼𝐴

𝑗
(𝑡) + 𝐼𝑆

𝑗
(𝑡)

𝑁𝑗 (𝑡)
− 𝜎𝐸𝑖(𝑡),

𝑑𝐼𝑃
𝑖

𝑑𝑡
= 𝜎𝐸𝑖(𝑡) −𝜓𝐼𝑃𝑖 (𝑡),

𝑑𝐼𝐴
𝑖

𝑑𝑡
= 𝛼𝑖 ⋅𝜓 ⋅ 𝐼𝑃

𝑖
(𝑡) − 𝛾𝐼𝐴

𝑖
(𝑡),

𝑑𝐼𝑆
𝑖

𝑑𝑡
= (1 − 𝛼𝑖) ⋅𝜓 ⋅ 𝐼𝑃

𝑖
(𝑡) − (1 − 𝜖)𝛾𝐼𝑆

𝑖
(𝑡) − 𝜖 ⋅ 𝜅 ⋅ 𝐼𝑆

𝑖
(𝑡),

𝑑𝑅𝑖

𝑑𝑡
= 𝛾(𝐼𝐴

𝑖
(𝑡) + (1 − 𝜖)𝐼𝑆

𝑖
(𝑡)) + (𝛾 − 𝜅)𝐿𝑖(𝑡).

𝑑𝐿𝑖

𝑑𝑡
= 𝜖 ⋅ 𝜅 ⋅ 𝐼𝑆

𝑖
(𝑡) − (𝛾 − 𝜅)𝐿𝑖(𝑡).

(1)

Individuals are all initialized in the 𝑆 compartment, with the ex-

ception of a single infected individual from the largest group seeded in 
the 𝐼𝑃 compartment. Susceptible individuals exposed to the virus enter 
the 𝐸 category for an average of 1/𝜎 days before they become conta-

gious, at which point they move into the 𝐼𝑃 category. After an average 
of 1/𝜓 days, 1 − 𝛼 proportion of individuals will develop symptoms and 
move into the 𝐼𝑆 compartment, with the remaining 𝛼 moving into the 
𝐼𝐴 compartment. Individuals in 𝐼𝑃 , 𝐼𝐴 and 𝐼𝑆 compartments are all 
contagious. 𝜖 proportion of individuals in 𝐼𝑆 choose to self-isolate to 
prevent further disease transmission, and as a result move into com-

partment L (isolated) and do not interact with others. They do so with 
a delay of 1/𝜅, accounting for test result waiting time and individuals 
who may disregard minor symptoms initially. 1/𝛾 days after entering 
the 𝐼𝐴 and 𝐼𝑆 compartment, individuals all recover from (or succumb 
3

to) their infection and move into the 𝑅 compartment, where they re-

main permanently. The model was implemented and numerically solved 
with R (version 4.0.2) using the packages ggplot2 and deSolve.

2.2. Ontario specific parameter values and data sources

We assume that the outbreak of COVID-19 in Ontario begins on 
February 14, and that the implementation of intervention and control 
strategies begins on March 15. Control responses in Ontario were of-

ficially enacted on Monday, March 17, [55], but commensurate with 
earlier institutional responses, we adjust for the fact that the public 
began to alter behavior before this date. For further discussion, see 
the Initial start date section in the Appendix. We assume individuals 
who recover from infection remain in the 𝑅 compartment, with immu-

nity from COVID-19 for the duration of the simulation. Given the short 
time frame for simulation, our model does not include births or natural 
deaths, and any COVID-19 deaths are captured in 𝑅. Furthermore, we 
assume an isolation delay of one day on average, due to individuals not 
always taking initial symptoms seriously enough to isolate.

Additionally, we assume an isolation compliance rate of 95%. An 
early study of the virus in quarantined cruise ship passengers finds 
that 17.9% of infected individuals were asymptomatic, and suggests the 
true proportion could be up to 39.9% depending on the latency period 
of the virus [56]. A meta-analysis of six studies estimates the asymp-

tomatic infection rate to be anywhere in the range of 18.4% to 78.3%, 
and cites 46% as the most likely value [57]. We use the age stratified 
symptomatic rates found by Davies et al. (2020) [35] for our model, 
as shown in Table 1. Next, we assume that the only cases reported by 
Ontario’s public health units (PHUs) are symptomatic cases, and that 
every symptomatic case will be identified and reported. In addition, we 
assume that asymptomatic and presymptomatic cases are not tested and 
therefore do not self-isolate.

The model presented above is now tailored to Ontario using the 
parameter values in Table 1, as well as Ontario data sources for the 
pandemic evolution to date.

2.3. Deriving contact rates for Ontario pre-pandemic

We first need to derive contact rates within and between the three 
stratified age groups introduced above. There are many examples in in-

fectious disease modeling literature that assume uniform contact mixing 
for simplicity (for example, modeling Ebola dynamics in [60]), how-

ever, such an assumption neglects the significant role that age may play 
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Table 1. Parameters and initial values of the SEILR system (1).

Symbol Definition Initial Value Reference

𝐾 Number of age groups 3

𝑁𝑖 Subgroup population size

𝑁𝑡𝑜𝑡𝑎𝑙 14 566 547 [58]

𝑁1: (0-19) 3 141 693 [58]

𝑁2: (20-59) 7 977 131 [58]

𝑁3: (60+) 3 447 723 [58]

𝑐𝑖𝑗 Number of daily contacts with Group 𝑗 per member of Group 𝑖 Table 2

𝑝 Transmission probability per contagious contact Section 2.5

𝛽𝑖𝑗 Effective contact-rate, 𝑖, 𝑗 ∈ {1,… ,𝐾} 𝑐𝑖𝑗 ∗ 𝑝
𝜎 Time from exposure until contagious (days) 1/2.5 [32]

𝜓 Time from contagious until symptomatic (days) 1/3.5a [32, 59]

𝛼1 Proportion of permanently asymptomatic cases in 𝑁1 0.963 [35]

𝛼2 Proportion of permanently asymptomatic cases in 𝑁2 0.7 [35]

𝛼3 Proportion of permanently asymptomatic cases in 𝑁3 0.35 [35]

𝜖 Proportion of compliance with isolation 0.95 assumption

𝜅 Isolation delay 1 assumption

𝛾 Recovery/removal rate 1/7 [31]
a The parameter 𝜓 is estimated from the relationship 1/𝜎 + 1/𝜓 = incubation period, where 1/𝜎 = 2.5 

days and incubation period = 6 days.

Table 2. Contact rates calculated for the three Ontario population subgroups. Contact 
rates are taken from Canadian estimates by [37] and weighted according to census data 
from Statistics Canada [58].

Group 1 Group 2 Group 3 Total Contacts

Group 1 𝑐11=8.565645854 𝑐12=4.661272358 𝑐13=0.304014985 13.5309332

Group 2 𝑐21=2.987996842 𝑐22 =11.49063721 𝑐23=0.522285468 15.00091952

Group 3 𝑐31=1.248771202 𝑐32=3.686037351 𝑐33=1.982952539 6.917761092
in relevant contact patterns [61]. The Ontario groups were partitioned 
as such to characterize different contact rates associated with each age 
group.

Group 1 represents individuals in the youngest age group (0-19). As 
these individuals are school-aged, they generally experience high levels 
of interaction with similar-aged peers, as well as some interactions with 
individuals in Group 2, likely including their parents and other child 
care providers. Group 2 represents the majority of the working popula-

tion (20-59). These individuals display very high levels of interactions 
with other adults, likely as a combination of workplace interactions, 
errands such as shopping, appointments, and peer-relationships, and 
moderate levels of interaction with Group 1 members. The majority of 
these interactions are likely with their own children, but this value may 
be skewed up in part due to child care supervisors in Group 2 having 
many interactions per day. Group 3 is the oldest age group and consid-

ers seniors and retirees (60+), who make comparatively fewer overall 
contacts than their younger counterparts. This is to be expected as many 
of these individuals are retired and thus their lifestyles are more likely 
to be leisure-oriented ([62, 63]). Based on low transmission probability 
due to low contact rates, Group 3 has the lowest chance of contracting 
COVID-19, although they carry a much higher risk of hospitalization if 
they do so [64].

From [37] (a study of country-specific contact rates), a 16×16 con-

tact matrix of contact rates between Canadians aged 0 − 80 was col-

lapsed to create a condensed 3×3 contact matrix stratified by our se-

lected age groups. See Appendix for details.

From Table 2, a high degree of assortativity (intra-group contact) 
was found in Groups 1 and 2, shown in boldface. Group 1, comprising 
children and students, are most likely to interact with their peers (63% 
of contacts), followed by adults (parents, teachers, etc. forming 34% of 
contacts), with very little contact with seniors (2% of contacts). Group 
2 has the highest overall number of contacts, with adults coming into 
contact with other adults an estimated 77% of the time. Both results 
may be explained by Group 2 making up the majority of the working 
age population, as well as holding positions requiring interaction with 
elderly or very young individuals (e.g. care workers, teachers). Interest-

ingly, Group 3 individuals, while having the lowest number of overall 
contacts, have the most balanced spread of contact rates, and even per-
4

form contacts with Group 2 more than their own age group (53% vs. 
29%, respectively). This may be due to interactions with health care 
workers and employees at various businesses (cashiers, wait staff, etc.), 
and the fact that some individuals may still be part of the workforce. 
We preserve our contact structure by adopting Canadian relative con-

tact rates from [37] and assume they apply to Ontario for our time 
period with uniform contact scaling across all interactions. We assume 
our age-stratified population subgroups are homogeneously mixed, with 
hetereogeneous intergroup mixing.1

2.4. Case onset and mobility data

Tracked data for COVID-19 cases in Ontario were taken from Ontar-

io’s integrated Public Health Information System (iPHIS). This data set 
is compiled from reports from Ontario’s PHUs, recording all confirmed 
cases of COVID-19 and qualitative factors for each case, including age 
group (by decade), gender, testing location, and patient outcome. In ad-

dition, iPHIS is one of the few data sources that provides both episode 
(case onset) date, as well as reporting date. Most other sources, in-

cluding the CDC, only sort cases by reporting date. Cases organized 
by reporting date are highly subject to delays, including testing and 
submission delays, lab delays, and individual decisions regarding how 
soon after symptom onset one chooses to get tested. This produces nois-

ier trend lines and both over- and under-estimates for daily counts. 
Since case-onset data is much more accurate, we chose it to match our 
simulated infection curve(s) in order to provide a more complete under-

standing of how transmission has changed over time since the pandemic 
onset.

We also incorporate some movement and behavioral activity in 
the population by considering Ontario mobility data compiled from 
Google’s release COVID-19 Community Mobility Reports. Specifically, 
we try to capture changes in the transmission rate 𝑝, which is further 
explained below in Section 2.5. These reports use anonymised Google 
service location data to track changes in movement over time compared 

1 Since [37] estimates contact rates only up to 80 years of age, we assume that 
Ontarians aged 80+ have identical contact rates to those aged 60-80 years.

https://data.ontario.ca/en/dataset/confirmed-positive-cases-of-covid-19-in-ontario
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.gstatic.com/covid19/mobility/2020-07-21_CA_Mobility_Report_en.pdf
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to baseline (pre-lockdown) activity in six broad categories: retail/recre-

ation, groceries/pharmacies, parks, transit stations, workplaces, and 
domiciles. To determine the pre-lockdown average contact rate for On-

tario, we used the contact rates provided by Prem et al. [37] for Canada. 
We weighted the average contact rates of Canada with the Ontario pop-

ulation to get a daily average contact rate for an individual in Ontario. 
We considered this value as the average baseline (pre-lockdown) con-

tact rate, i.e.:

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑎𝑣 ≈= 12.5046

To find the mobility-influenced time-dependent contact rates post-

lockdown, we considered the average contacts rate in Ontario for the 
home, work, and other location categories (comprising retail/recreation 
and groceries/pharmacies) from Prem et al., (≈ 3.2, 4.5, 3.8, respec-

tively). Next, we used these category rates to modify the same cate-

gories of mobility data as follows:

𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑚
𝑎𝑣
(𝑡) = 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑚

𝑎𝑣
⋅ 𝑔𝑚(𝑡) where 𝑚 ∈ {Home, Work, Other location}

where the 𝑡 unit is time=1 day and where 𝑔𝑚(𝑡) is the percentage 
increase or decrease in the category 𝑚 of mobility as compared to 
Google’s baseline values per category. Finally, we amalgamated the 
Google mobility-influenced contact rates of these categories to compute 
the daily mobility-influenced contact rate, by considering an average 
number of daily hours an average Ontarian spends in each category, 
i.e., 8 hours of day for work, etc.

We thus assume that changes in Google mobility data as compared to 
baseline activity reflect equivalent changes in contact rates as compared 
to average contact baseline. We also assume that the proportion of the 
population that has opted to provide location tracking data to Google 
via their personal account settings can be considered representative of 
the behavior of the total population of Ontario at large.

2.5. Dampening contact rates to replicate behavioral changes and 
preventative measures

The effective contact rate for a member of Group 𝑖 with members of 
Group 𝑗 is given by

𝛽𝑖𝑗 = 𝑐𝑖𝑗 ⋅ 𝑝, (2)

In Davies et al. (2020), authors estimated 𝑝 for COVID-19 in sev-

eral models under different parameters, including susceptibility/asymp-

tomatic rates and demographic structures. They found 𝑝 values of 0.046 
and 0.055 in Wuhan, 0.074 in Beijing, 0.084 in Lombardy, and 0.099 in 
South Korea [35]. For Ontario-specific studies, Abdollahi et al. (2020) 
found 𝑝 ranging from 0.018-0.041 [65], and Wu et al. (2020) found 𝑝
of 0.145 [66]. For our model, we solve for 𝑝 implicitly, fitting to the 
onset data recorded by iPHIS for our pre-intervention period (Feb 14 -
Mar 15). We do so using a derivative-free optimization method known 
as the Golden Section Search algorithm to minimize the sum of squared 
errors (SSE) between our model output and iPHIS data (see [67]).

We find that for the pre-lockdown phase, the corresponding trans-

mission rate in Ontario is 𝑝 = 0.045. We note that this transmission rate 
is much lower than the estimate of 0.145 given by [66], yet on par 
with the estimates given by [65]. We attribute the large difference in 
transmission rate compared to [66] to two main factors. Firstly, their 
infectious period is 5 and 7.2 days for symptomatic and asymptomatic 
individuals respectively. In comparison, we use an infectious period 
of 10.5 days in our model, allowing for many more days of contacts 
while infectious. Secondly, their contact rates are lower than we con-

sider here, with a universal contact rate of < 11.8, as opposed to our 
contact matrix which averaged ≈ 13 contacts per individual per day. 
As a result of fewer daily contacts in conjunction with fewer infectious 
days, one drastically reduces the total contacts each infected individ-

ual makes before recovery. To compensate for fewer contacts, a much 
5

higher transmission probability is required to produce similar case num-

bers.

Fig. 2 depicts our simulated data from February 14 - March 15. Af-

ter March 15, 2020, both the social behavior and the mobility of the 
population have changed, as the province adopted various preventive 
measures to help curb the spread of COVID-19. (For more detail on date 
selection, see Initial start date in the Appendix.) We therefore need our 
model to reflect:

• changes in the frequency of contacts due to social distancing mea-

sures intra- and inter-groups

• changes in the transmission probability due to mask wearing and 
other hygiene practices.

To do so, we introduce a dampening variable, denoted by 𝑞int ∈ [0, 1]
during a given time interval and generically denoted by int, such that

𝛽𝑖𝑗 (int) = 𝑐𝑖𝑗 ⋅ 𝑝 ⋅ 𝑞int , ∀ int ∈ interval (3)

where 𝑞int is constant during time interval int, interval is the number of 
time intervals used in the model, and int is defined as the ceiling of the 
number of weeks since preventive measures are introduced. Since no 
preventive measures were present pre-lockdown (February 14 - March 
15), we will define this time period as int 0 ∶= [Feb 14, March 15] and 
𝑞0 ∶= 1. We use the Golden Section Search to fit our model to iPHIS 
data, but this time we fix 𝑝 = 0.045085. We solve for 𝑞int and obtain the 
results in Fig. 3.

Recently, Google has released data for phone mobility in various 
countries around the world, compared to baseline, sorted by region and 
mobility type. Let us now consider 𝑀𝑖𝑛𝑡, average mobility during inter-

val 𝑖𝑛𝑡 compared to baseline, as our relative number of total contacts as 
compared to baseline. Thus, 𝑞 no longer needs to account for mobility 
changes, and we introduce a new variable 𝑞 to account for changes in 
transmissibility. Thus, when including mobility data,

𝑞int =𝑀int ⋅ 𝑞int , (4)

and thus

𝛽𝑖𝑗 (int) = 𝑐𝑖𝑗 ⋅ 𝑝 ⋅𝑀int ⋅ 𝑞𝑖𝑗 , ∀ int ∈ interval. (5)

2.5.1. The golden search method for minimizing SSE

With or without mobility, using our above model, we are left sim-

ulating a system of equations depending on a scalar unknown variable 
(either 𝑞 or 𝑞). The values of this variable change over time due to 
changes in mobility, mask wearing, maintaining physical distance and 
weather changes. However, we can compute the optimal value of 𝑞 or 
𝑞 over given intervals such that our simulated infected symptomatic 
curve in Ontario (adding the 3 groups) best matches the curve of onset 
COVID-19 cases in Ontario:

𝐼𝑆new(int) =
3∑
𝑖=1
𝛼𝜓𝐼𝑃

𝑖
(int − 1) (6)

We solve for the optimal value of 𝑞 during a preset time interval in 
such a way as to minimize the sum of squared errors (SSE) between 
𝐼𝑆
𝑛𝑒𝑤

(𝑖𝑛𝑡) and the new daily reported cases from iPHIS. We begin this 
with 𝑖𝑛𝑡 0 =[Feb 14, Mar 14] as defined previously. Then due to the 
variable nature of new cases in Ontario after March 15, weekly time 
intervals are defined as before:

• int 0 := [Feb 14, Mar 14] (pre-lockdown)

• int 𝑖 := [Mar 15+7(i-1), Mar 15 + 7i] or the ceiling of the 𝑖𝑡ℎ week 
following March 15

To minimize the SSE as described, we use the Golden Section Search 
algorithm, taking 2 initial approximate points for 𝑞 or 𝑞 and converging 
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Fig. 2. Pre-lockdown iPHIS data (black) and simulated symptomatic infections in each of the 3 groups. The blue curve represents symptomatic infected in the overall 
Ontario population.

Fig. 3. Simulated new daily symptomatic infections in each of the 3 age groups according to the SEILR(pas) model.
onto the local minimum in between the 2 points. To find the SSE, we 
compute

Total New Symptomatic Infections in Ontario (TNSI)

=
interval∑

1
(((
𝐾∑
𝑛=1
𝛼 ⋅𝜓 ⋅ 𝐼𝑃

𝑖
(int − 1)))

from our model on day 𝑡, and compare them to numbers reported by 
iPHIS.

SSE = ((
𝐾∑
𝑛=1
𝛼 ⋅𝜓 ⋅ 𝐼𝑃

𝑖
(𝑖𝑛𝑡− 1)) − iPHIS(int))2 (7)

Standard Deviation =
√

TNSI − iPHIS(int))2)
interval

. (8)

Finally, we need to be mindful of the limitations of SEIR-type models 
to carefully trace delays between various stages of exposed, presymp-
6

tomatic, etc. As such, a matching delay for 𝑞 must be introduced before 
running the model. The optimal delay value was found to be 2 days, as 
described in Initial start date of the Appendix.

2.6. SEILR(pas) model results

As shown in Figs. 4 and 5, while Group 1 cases are modeled quite 
accurately, we under-predict cases in the senior population (Group 3), 
and over predict cases in adults (Group 2). This is especially true during 
the peak of this first wave, from the third to the sixth week following 
the initiation of lockdown, corresponding to March 29th to April 19th. 
During this time period, there were many outbreaks reported in Long 
Term Care (LTC) facilities in Ontario, putting the senior population at a 
disproportionately higher risk than usual [68].
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Fig. 4. Simulated new daily symptomatic infections in each of the 3 age groups compared with iPHIS reported cases, stratified by age.
Fig. 5. Proportion of COVID-19 cases in Ontario attributed to each age group 
for the real iPHIS reported numbers (top; total = 32,095, Group 1 = 1,336, 
Group 2 = 18,595, Group 3 = 12,004) vs. the SEILR(pas) model (bottom; total 
= 31,722, Group 1 = 1,029, Group 2 = 22,407, Group 3 = 8,286).

3. Results & discussion

3.1. Removing outbreaks to match age-specific case rates

Infection in our model is governed by our contact patterns and our 
contact scaling through lockdown. Our model takes a very macroscopic 
approach to transmission, and does not consider smaller clusters of in-

dividuals and “superspreaders”. As such, cases resulting from isolated 
outbreaks in long-term care homes, retirement homes, hospitals, group 
7

homes, shelters, and correctional facilities that occur as a result of close 
proximity are not accounted for by our model. iPHIS labels such cases 
“outbreak” cases, allowing us to remove them from the data and re-run 
the model to track only community contacts.

Figs. 6 and 7 show that when removing outbreak-related cases, we 
yield a much better match for age proportional case rates. Here, we 
match cases in Group 2 almost perfectly, while slightly over-predicting 
cases in seniors, and under-predicting cases in under-20s. This under-

prediction in cases in young people can be accounted by the fact that 
our model does not include household transmission rates, which have 
been found to be much higher than external community transmission 
rates [69]. Since the vast majority of individuals under 20 years old live 
alongside adults, they inherit a higher risk than just through community 
transmission. The over-prediction in seniors can be attributed to the 
large numbers of seniors living in long-term care (LTC) facilities. Since 
all cases in LTC facilities are labeled ‘outbreak’, some seniors who may 
have gotten sick through external sources may have been labeled as 
‘outbreak’ cases by iPHIS regardless. Thus, the outbreak-removed iPHIS 
data may be slightly under-representing non-outbreak cases in seniors.

Note that while the total cases differ between the models with out-

breaks included versus removed, the relative proportion of cases for 
each age group remains consistent. This is to be expected, as the model 
has not been altered, it simply fits 𝑞 to match to a different total case 
number. Removing outbreaks has a significant impact on the age distri-

bution of cases in iPHIS reported data, since outbreaks in LTC facilities 
disproportionately affect seniors [68].

3.2. Estimates of mobility and behavior during the pandemic’s first wave

To better understand the behavior of the epidemic curve as influ-

enced by mobility reductions, contact reductions and other NPIs, we 
first estimate 𝑅0, the effective reproductive number of the virus near 
the disease-free equilibrium (pre-lockdown). We simply compute the 
spectral radius of the next generation matrix from the Jacobian of our 
model in Section 2, assuming a pre-lockdown value of 𝑞 = 1. Doing so 
yields an 𝑅0 = 5.88 during this pre-lockdown phase. Consequently we 
find that with 𝑝 = 0.045 and 𝑞 = 0.17, 𝑅𝑒𝑓𝑓 ≈ 1.2 This implies that 0.17

2 As we move away from the initial date of first reported cases, the initial 
reproduction number 𝑅0 is in fact replaced by the effective reproduction num-

ber 𝑅𝑒𝑓𝑓 =𝑅0𝑠(𝑡) =𝑅0(1 − 𝑐(𝑡)), with 𝑐(𝑡) the cumulative number of infected. We 
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Fig. 6. Simulated new daily symptomatic infections in each of the 3 age groups compared with iPHIS reported cases, stratified by age, with outbreaks removed.
is our threshold value for 𝑞, denoted 𝑞, that prevents total new cases 
from increasing.3 At 𝑞 values above this threshold we expect the dis-

ease to proliferate, and at 𝑞 values below this threshold we expect case 
numbers to decrease over time. For this reason, it is interesting to in-

vestigate the behavior of 𝑞 over time (Fig. 8).

When comparing the placement of 𝑞 relative to 𝑞 to the behavior

of disease spread over the same time intervals, it can be observed that 
when 𝑞 < 𝑞, case numbers decrease, when 𝑞 > 𝑞, case numbers rise, and 
when 𝑞 ≈ 𝑞, case numbers remain relatively consistent.

When we introduce Google mobility data to the model, the result-

ing epidemic curve is nearly identical to the model that did not utilize 
Google mobility. This is to be expected, as 𝑞𝑖𝑛𝑡 =𝑀𝑖𝑛𝑡 ⋅ 𝑞𝑖𝑛𝑡, allowing 
𝛽𝑖𝑗 𝑖𝑛𝑡 to remain consistent between the two models. When overlaying 
the graphs, this is even more evident (see Fig. 9).

It is interesting to investigate how 𝑞 and 𝑀 change relative to 𝑞
(Fig. 10). As expected, both 𝑀 and 𝑞 drop significantly as soon as 
lockdown measures are implemented. When comparing 𝑞 to changes 
in Google mobility, the change vs. baseline is quite different in shape, 
with the exception of the initial drop in both. While mobility slowly 
rises over time, 𝑞 slowly falls. This does not suggest that mobility is 
completely unassociated with 𝑞, simply that it is not necessary to keep 
mobility exceedingly low in order to keep 𝑞 low as long as other pre-

cautionary measures are taken.

Conversely, when comparing 𝑞 to 𝑞, one notices they are actually 
very similar shape, just with 𝑞 behaving with more drastic increases and 
decreases. This is because the dampening effect of 𝑞 on transmission is 
amplified by the additional dampening effect of mobility (∼0.5), and 
so 𝑞 must dampen ∼twice as much in order to yield a similar effect 
in each 𝛽𝑖𝑗 (recall that 𝑞 =𝑀 ⋅ 𝑞). It is clear from what we show here 
that mobility alone is not telling the whole story, on the contrary, it 

note that given the 𝑐(𝑡) number being in the range of up to a couple of thousands 
in Ontario until May 31st 2020, we assumed 𝑅(𝑡) ≈ .𝑅0 for this time period and 
we set the 𝑞 threshold at ≈ .0.17.

3 We investigated changes in threshold values of 𝑞 when we half the com-

pliance rate 𝜖, or when we double or quadruple the isolation rate 𝑘 ∈ {2, 4}, 
respectively. We registered extremely small variations in the threshold 𝑞-values, 
within the 0.17 ± 10−2 magnitude.
8

Fig. 7. Proportion of COVID-19 cases in Ontario attributed to each age group

with outbreaks removed for the real iPHIS reported numbers (top; total = 
18,614, Group 1 = 1,222, Group 2 = 12,985, Group 3 = 4,407) vs. the 
SEILR(pas) model (bottom; total = 17,970, Group 1 = 582, Group 2 = 12,705, 
Group 3 = 4,683).

tends to quickly want to climb back up, however 𝑅(𝑡) does not. This is 
exemplified towards the end of the model as mobility begins to trend 
back towards baseline, causing 𝑞 to trend closer to 𝑞. The closer mobility 
gets to 1, the less of an effect it has keeping effective contacts low, and 
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Fig. 8. Change in 𝑞 over time as compared to threshold, 𝑞 = 0.17.
so the more that one can attribute the decrease in disease transmission 
to external factors.

The values of 𝑞 are quite well behaved, dropping to roughly 25% of 
baseline immediately following implementation of COVID-19 measures, 
and staying relatively stable in the time following. Mobility also drops 
following these implementations, though slightly more slowly, and only 
to about 70% of baseline, before slowly creeping above 80% by the end 
of the model (June 7th).

Interestingly, from 𝑖𝑛𝑡 4 (March 30 - April 6) to 𝑖𝑛𝑡 5 (April 6 - April 
13) while Google mobility and 𝑞 vary slightly, their relative changes 
cancel out such that 𝑞 stays the same at 16.99478% of baseline, very 
slightly below our 𝑞 = 0.17. During this time, case numbers remain al-

most completely stable, just slightly increasing over time as we are 
slightly below our threshold. Additionally, as more people are infected 
and recover from the virus, the proportion of individuals within the 
Susceptible compartment decreases, lowering 𝑅𝑒𝑓𝑓 as well. With case 
numbers as low as they are for the time period modeled, this has a very 
small impact on the model as a whole.
9

The epidemic curve resulting from using outbreak-removed data 
(Fig. 6) is significantly flatter and more consistently behaved than the 
curve that included highly localized outbreaks (Fig. 4). Other than a 
small spike during the initial week following lockdown, and a second 
peak towards the end of May, new cases were consistent at approxi-

mately 200 per day. Even during the two peaks, cases never exceeded 
300 new cases in a day in either the iPHIS or modeled data. This is in 
stark contrast to the previous iteration of the model in Section 2 that 
included outbreak-related cases, as case number surges and drop-offs 
are now comparatively stable. This suggests that community trans-

mission in Ontario during our time period is relatively consistent and 
predictable over time, while the majority of surges are due to localized 
outbreaks. The community has been able to keep cases numbers consis-

tent as well, suggesting a overall 𝑅𝑒𝑓𝑓 value of approximately 1 given 
the guidelines and protocols established provincially. This is even more 
evident when examining the 𝑞 plot (Fig. 11).

From 𝑖𝑛𝑡 1 through 𝑖𝑛𝑡 12, 𝑞 ∈ [0.1101416, 0.2565002]. This yields 
an 𝑅𝑒𝑓𝑓 ∈ [0.6487918, 1.5058941], with an overall average of 𝑅𝑒𝑓𝑓 𝑎𝑣𝑔 =
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Fig. 9. Comparison of SEILR(pas) model epidemic curves, with and without mobility data.

Fig. 10. Relative changes in mobility data, the transmission scaling factor (𝑞), and the transmission scaling factor decoupled from mobility data (𝑞) from February 
14 - June 7.
1.007796 during this time period. This shows that Ontario communities 
are living in a delicate balance, very close to an 𝑅𝑒𝑓𝑓 = 1. This suggests 
that even a relatively minor shift in behavior (distancing, mask wear-

ing, mobility, etc.) or environment (climate, virus mutations, etc.) that 
increases our 𝑅𝑒𝑓𝑓 can easily result in further eclipsing 𝑅𝑒𝑓𝑓 = 1, and 
will lead to more significant growth in case numbers over time.

4. Limitations and further work

There are some limitations to the work presented here. First, our 
model assumes uniform transmissibility, uniform susceptibility, and 
uniform contact dampening as a result of lockdown across the three 
age groups, which may not be true [70, 71, 72]. As well, our model 
only considers a period of time when non-pharmaceutical interventions 
(NPIs) were used to mitigate infection spread (e.g. vaccinations, and 
other practices which have become standard over the course of the 
10
pandemic). Now that the pandemic is much further along, different pa-

rameters may be established at new time points to reflect newly instated 
measures of control in our model. Additionally, when we employ the 
outbreaks-removed data to find a better fit for our model, we do not 
make adjustments to our assumed population sizes. As there are a wide 
range of definitions for potential outbreak locations, we cannot know 
from which age subgroup outbreak cases are removed.

5. Conclusion

Using our SEILR(pas) model in conjunction with Canadian contact 
rates and mobility data, we have successfully modeled new daily On-

tario cases from February 14 to June 7, 2020 while matching age-

specific case rates. We accomplish this by tracking the dampening 
effects of preventative measures, represented by variable 𝑞. When re-

moving cases associated with localized outbreaks, we observe that the 
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Fig. 11. Change in 𝑞 over time with outbreak cases removed as compared to threshold 𝑞 = 0.17.
vast majority of variability in new cases is a result of these outbreaks. 
When considering community transmission only, Ontario has generally 
maintained an 𝑅𝑒𝑓𝑓 ≈ 1 over the course of our modeled time period. 
This suggests that even a slight change that results in increasing 𝑅𝑒𝑓𝑓
can result in daily case numbers growing over time, rather than remain-

ing stable or decreasing as we observe now. When considering changes 
in mobility, we find that while mobility has increased towards the end 
of our time period, preventative measures such as hand-washing, phys-

ical distancing, and mask-wearing have been sufficient to maintain an 
𝑅𝑒𝑓𝑓 ≈ 1. It is important to note that using the mobility reduction as 
a signal for pandemic evolution is not easy, nor perhaps desirable, es-

pecially in a simple model such as this. We clearly see that a large 
suppression of mobility has helped arrest the spread, however that level 
is generally unsustainable beyond a few weeks and mobility will invari-

ably be pushed back up towards baseline values over time. Disentan-

gling mobility reduction in contacts from other NPI measures reduction 
teaches us that the collective impact of NPIs is perhaps a better repre-

sentation for the evolution of the Ontario pandemic in the time frame 
considered.

We also found that the contact rates provided by Prem, Cook, & 
Jit (2017) [37] in combination with the age-specific symptomatic rates 
provided by Davies et al. (2020) [35] resulted in closely matching pro-

portions for working-age populations and senior populations, but un-

derestimated cases in young people. This is likely due to a combination 
of the effects of household transmission, differing degrees of suscepti-

bility and transmissibility between age groups, differing responses to 
lockdown between age groups [70], and differing likelihoods to receive 
testing between age groups. This can be fixed in the future, however 
it would require more complete data. The lack of testing before lock-

down is implemented precludes us from accurately assessing differences 
in susceptibility decoupled from mobility.
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