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Abstract: A family of iminoboronates was prepared through a one-pot multicomponent reaction,
starting from boronic acid, anthranilic acid, and different salicylaldehydes. Their synthesis was
straightforward and the complexes were obtained in good to excellent yields. Their photophysical
properties were assessed in a diluted solution, and the complexes proved to be faintly luminescent.
These chelates demonstrated remarkable Aggregation-Induced Emission Enhancement, which was
rationalized using crystal structures.

Keywords: anthranilic acid; 2-hydroxybenzaldehydes; phenylboronic acid; fluorescence; aggregation
-induced emission enhancement

1. Introduction

Boron complexes based on N and O donor ligands have been widely studied due to their ease of
preparation and versatility [1]. In terms of luminescent properties, boron complexes are dominated by
boron dipyrromethenes (BODIPYs) [2], but recently, boron diketonates [3–5] and ketoiminates [6] have
emerged as promising alternatives. Moreover, boranils appeared as more versatile [7], being very easily
prepared from building blocks that can be modified to tune the properties of the final complex [8,9].
Boron complexes usually suffer a quenching of their emission upon aggregation, which limits their
use in luminescent materials. However, they can present the opposite behavior, aggregation-induced
emission enhancement (AIEE) [10], when adequately substituted with aromatic rotating groups [11–15].
In these cases, the emission intensity increases upon aggregation, due to the restriction of molecular
motions and absence of excimer formations. In these complexes, the ligand is usually bidentate, and the
boron bears two fluorine or aromatic substituents. The use of a tridentate ligand is less explored and
mainly relies on the use of boronic acid or ester as precursor of the complex.

Boronic acids are widely used for the fluorescent sensing of carbohydrates [16], but rarely used
for the synthesis of fluorescent dyes [17–21]. However, they have been used as building blocks in the
synthesis of analogs of natural products [22], and advantage has been taken of their reversible bond
formations in the complexes, allowing the synthesis to be performed through one-pot multicomponent
reactions [23]. In these cases, the multicomponent reaction usually involves the formation of an imine
between two building blocks also bearing hydroxy or carboxy groups, and the complexation of the
boron into the formed tridentate ligand formed [24]. Here, we report the one-pot multicomponent
synthesis of iminoboronates, starting from readily available building blocks, and the study of their
photophysical properties.
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2. Results and Discussion

2.1. Synthesis

The boron complexes 1a–g were readily obtained in one step (Scheme 1). The imine was formed
in situ by the condensation of the appropriate substituted salicylaldehydes 2a–g with anthranilic acid 3
and underwent a double condensation with the phenylboronic acid 4 to form the boron complex in
good to excellent yields. This strategy was largely inspired by previously reported procedures but
avoids the use of highly toxic carbon tetrachloride as a solvent and uses conventional heating instead
of microwave irradiation [25].

Molecules 2020, 25, x FOR PEER REVIEW 2 of 9 

 

2. Results and Discussion 

2.1. Synthesis 

The boron complexes 1a–g were readily obtained in one step (Scheme 1). The imine was formed 
in situ by the condensation of the appropriate substituted salicylaldehydes 2a–g with anthranilic acid 
3 and underwent a double condensation with the phenylboronic acid 4 to form the boron complex in 
good to excellent yields. This strategy was largely inspired by previously reported procedures but 
avoids the use of highly toxic carbon tetrachloride as a solvent and uses conventional heating instead 
of microwave irradiation [25]. 

 
Scheme 1. Multicomponent synthesis of the boron complexes. 

This simple and modular approach allowed the synthesis of a family of boron complexes (Figure 1) 
with various substituents. The substituents did not seem to influence the yield of the reaction, nor its 
selectivity, as both electron donating (hydroxyl, ether, amino) and electron withdrawing (nitro, bromo) 
groups were able to be introduced on the salicylaldehyde moieties. Moreover, hydroxy groups can 
be present and do not seem to disrupt the boron complexation, the lower yield obtained in the case 
of 1d being ascribed to its incomplete precipitation in methanol. Salicylaldehyde 2g, bearing a diazo 
substituent, was also used to increase the conjugation of the backbone and therefore modify the color 
of the product. All compounds were fully characterized by 1H and 13C NMR, and MS (See 
Supplementary Materials). The complexes bore a chiral boron center and were obtained as a racemic 
mixture. The separation of the enantiomers was not attempted, even if it may be possible [20]. 

 

Figure 1. Boron complexes obtained through the one-pot multicomponent reaction, and corresponding 
yield. 

2.2. Photophysical Properties 

Boron complexes often present interesting photophysical properties, such as high absorption 
coefficients and quantum yields, but iminoboronates have only been described as faintly luminescent 
in solution [25]. Therefore, the absorption and emission properties of the prepared boron complexes 
were studied in THF solutions. The absorption spectra present one or two bands (Figure 2, left), the 
main band being between 360 and 450 nm (Table 1). As expected, the complexes 1f,g, bearing a strong 

Scheme 1. Multicomponent synthesis of the boron complexes.

This simple and modular approach allowed the synthesis of a family of boron complexes (Figure 1)
with various substituents. The substituents did not seem to influence the yield of the reaction, nor its
selectivity, as both electron donating (hydroxyl, ether, amino) and electron withdrawing (nitro, bromo)
groups were able to be introduced on the salicylaldehyde moieties. Moreover, hydroxy groups can
be present and do not seem to disrupt the boron complexation, the lower yield obtained in the
case of 1d being ascribed to its incomplete precipitation in methanol. Salicylaldehyde 2g, bearing a
diazo substituent, was also used to increase the conjugation of the backbone and therefore modify
the color of the product. All compounds were fully characterized by 1H and 13C NMR, and MS
(See Supplementary Materials). The complexes bore a chiral boron center and were obtained as a
racemic mixture. The separation of the enantiomers was not attempted, even if it may be possible [20].
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2.2. Photophysical Properties

Boron complexes often present interesting photophysical properties, such as high absorption
coefficients and quantum yields, but iminoboronates have only been described as faintly luminescent
in solution [25]. Therefore, the absorption and emission properties of the prepared boron complexes
were studied in THF solutions. The absorption spectra present one or two bands (Figure 2, left),
the main band being between 360 and 450 nm (Table 1). As expected, the complexes 1f,g, bearing a
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strong electron donating substituent or with an extended conjugation, presented a bathochromic shift
of the main band. The effect of the other substituents is more difficult to assess.
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Table 1. Absorption and emission properties of the complexes 1a–g.

Complex
THF Solution

λmax abs Log ε λmax em
1 Φ2 (%)

1a 412 3.92 537 0.7
1b 396 3.90 491 0.2
1c 415 3.80 538 0.4
1d 371 4.44 494 0.5
1e 368 4.43 489 0.3
1f 434 4.72 487 6.0
1g 445 3.94 480 0.1

1 Upon excitation at the maximum of absorption. 2 Determined by comparison with fluorescein (quantum yield of
0.90 at an excitation of 470 nm in a solution of NaOH 0.01 M in water) [26].

All compounds were emissive in a dilute solution, with low quantum yields (Table 1). The emission
profile is composed of two bands (Figure 2, right), and the relative intensity depends on the substituents.
The intensity of the band at longer wavelengths seemed to decrease when substituents were introduced,
but the trend was not obvious. This band almost disappeared when the dyes bore strong electron
donating substituents (1e,f) and when the conjugation increased (1g). Overall, the dyes were only
faintly emissive, with quantum yields ranging from 0.1% to 6.0%, which is in accordance with previously
reported observations [20].

As the compounds 1a–g seemed luminescent in their powder or crystalline forms, when irradiated
with a hand-held UV-lamp, we performed a classical AIEE test. The emission spectra of all compounds
were recorded in THF-water mixed solvents at the same concentration and with different proportions of
water (See Supplementary Materials). Boron complex 1a exhibits a classical AIEE behavior (Figure 3):
when water is added, the compound precipitates and the intensity of the emission increases. When more
water is added, the quantity of solid in the suspension increases, and so does the emission intensity
up to 4 times the initial intensity. The emission wavelength does not change between solution and
aggregates, ruling out the formation of excimers. Unfortunately, all the other complexes 1b–g displayed
a different behavior: either they presented a quenching of their emission when they precipitated
(1c,f,g), or a shift in their emission wavelength with no clear trend, probably due to the formation of
excimers/exciplexes in the aggregate form.

2.3. Crystal Structures

Single crystals suitable for X-ray diffraction were successfully grown for compounds 1a,d,e, by
the slow evaporation of saturated solutions in dichloromethane-methanol. The crystal structure of 1a
has already been published [25], but was determined again for consistency.
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As already mentioned, the complexes were obtained as racemic mixtures, and crystallized as
such. They crystallized in centrosymmetric groups, and their asymmetric unit was composed of one
enantiomer, the other being generated by symmetry (Figure 4 and Supplementary Materials). All bond
lengths and angles are in normal range [27]. Complex 1d crystallized together with one molecule of
methanol, accepting one hydrogen bond from a phenol hydroxy group and donating one hydrogen
bond to the carboxylic oxygen linked to the boron center.
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Figure 4. Asymmetric unit of boron complexes 1a, 1d-MeOH, and 1e as revealed by single crystal
X-ray diffraction. Thermal ellipsoids are shown at the 50% probability level; hydrogen atoms are shown
with an arbitrary radius (0.30 Å). C, grey; N, blue; O, red; B, pink; H, white.

The ligands adopted a non-planar geometry to accommodate the tetrahedral boron center.
The dihedral angle N-B-C-C between the phenyl of the boronic acid and the ligand was the main
difference between the complexes: −17.17◦ for 1a, −57.48◦ for 1d and −110.11◦ for 1e. In the crystal
packing, 1a arranged into linear chains through C-H···O hydrogen bonds, and there were no close
contacts between the chains, which restrained the molecular motions without introducing the formation
of excimers, thus rationalizing the AIEE behavior observed. By contrast, both 1d and 1e arranged into
tridimensional networks involving multiple close contacts, which probably favored the formation of
excimers and exciplexes, resulting in a quenching of the emission in the solid state.

3. Materials and Methods

General procedure for the synthesis of the complexes: the appropriate salicylaldehyde derivative
(1 equiv, 1 mmol) was dissolved in MeOH (20 mL). Anthranilic acid (1 equiv, 1 mmol) was added,
followed by phenylboronic acid (1 equiv, 1 mmol), and the reaction mixture was refluxed for
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12 h. After cooling down to room temperature, the solid was collected by filtration, washed with
MeOH, and dried in air. When necessary, the product was further purified by silica gel flash column
chromatography. The boron complexes were obtained as colored solids in 40–95% yield.

3.1. 7-Phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]oxazaborinino[2,3-b][1,3,2]oxazaborinin-5-one 1a

Salicylaldehyde (1 equiv, 1 mmol, 122 mg) was dissolved in MeOH (20 mL). Anthranilic acid
(1 equiv, 1 mmol, 137 mg) was added, followed by phenylboronic acid (1 equiv, 1 mmol, 122 mg),
and the reaction mixture was refluxed for 12 h. After cooling down to room temperature, the solid was
collected by filtration, washed with MeOH, and dried in air. The product was obtained as a yellow
solid (295 mg, 90% yield) without further purification. The compound gave single crystals suitable for
X-ray diffraction by slow evaporation from a saturated solution in DCM/MeOH.

m.p. 259–261 ◦C. 1H NMR (300.13 MHz, CDCl3, 25 ◦C): δ = 8.70 (s, 1H, CHN), 8.27 (dd, 3JH-H

7.8, 4JH-H 1.2 Hz, 1H, aromatic CH), 7.69–7.59 (m, 3H, aromatic CH), 7.54–7.49 (m, 2H, aromatic CH),
7.29–7.26 (m, 2H, aromatic CH), 7.14–7.08 (m, 4H, aromatic CH), 6.99 (ddd, 3JH-H 8.1, 3JH-H 8.1, 4JH-H 1.2
Hz, 1H, aromatic CH). 13C NMR (75 MHz, CDCl3, 25 ◦C): δ = 161.8 (C=O), 160.3 (C=N), 158.3 (2C, C-O,
C-N), 140.7 (C-B), 139.8 (Cquat), 134.4 (C-H), 132.9 (C-H), 132.3 (C-H), 130.6 (C-H), 130.0 (C-H), 128.1
(C-H), 127.7 (C-H), 125.1 (C-H), 120.5 (C-H), 120.3 (C-H), 117.7 (C-H), 116.1 (Cquat).

3.2. 11-Nitro-7-phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]oxazaborinino[2,3-b][1,3,2]
oxazaborinin-5-one 1b

p-Nitrosalicylaldehyde (1 equiv, 1 mmol, 167 mg) was dissolved in MeOH (20 mL). Anthranilic
acid (1 equiv, 1 mmol, 137 mg) was added, followed by phenylboronic acid (1 equiv, 1 mmol, 122 mg),
and the reaction mixture was refluxed for 4 h. After cooling down to room temperature, the solid was
collected by filtration, washed with MeOH, and dried in air. The product was obtained as a yellow
solid (230 mg, 62% yield) without further purification.

m.p. 353–355 ◦C. 1H NMR (300.13 MHz, Acetone-d6, 25 ◦C): d = 9.81 (s, 1H, CHN), 8.85 (d, 4JH-H

3.0 Hz, 1H, aromatic CH), 8.53 (dd, 3JH-H 9.0, 4JH-H 3.0 Hz, 1H, aromatic CH), 8.17–8.14 (m, 2H, aromatic
CH), 7.85 (ddd, 3JH-H 5.7, 3JH-H 8.1, 4JH-H 1.5 Hz, 1H, aromatic CH), 7.65 (ddd, 3JH-H 7.5, 3JH-H 7.5,
4JH-H 0.9 Hz, 1H, aromatic CH), 7.31–7.27 (m, 2H, aromatic CH), 7.22 (d, 3JH-H 9.0 Hz, 1H, aromatic CH),
7.13–7.09 (m, 3H, aromatic CH). 13C NMR (75 MHz, Acetone-d6, 25 ◦C): d = 162.2 (C=O), 161.5 (C=N),
157.4 (C-O), 153.1 (C-N), 140.6 (C-B), 135.4 (Cquat), 134.5 (C-H), 132.0 (C-H), 131.3 (C-H), 131.2 (2C,
C-H), 131.0 (C-H), 128.8 (C-H), 128.4 (2C, C-H, Cquat), 125.9 (Cquat), 121.1 (C-H), 120.2 (C-H). ESI+-MS
m/z = 373.1 [M + H]+, 395.1 [M + Na]+; HRMS-ESI+ m/z for [C20H13O5N2B + H]+ calcd 373.0996, found
373.0981; HRMS-ESI+ m/z for [C20H13O5N2B + Na]+ calcd 395.0815, found 395.0809.

3.3. 9,11-Dibromo-7-phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]oxazaborinino[2,3-b][1,3,2]
oxazaborinin-5-one 1c

4,6-Dibromosalicylaldehyde (1 equiv, 0.25 mmol, 70 mg) was dissolved in MeOH (20 mL).
Anthranilic acid (1 equiv, 0.25 mmol, 34 mg) was added, followed by phenylboronic acid (1 equiv,
0.25 mmol, 31 mg), and the reaction mixture was refluxed for 2 h. After cooling down to room
temperature, the solid was collected by filtration, washed with MeOH, and dried in air. The product
was obtained as a yellow solid (74 mg, 61% yield) without further purification.

m.p. 353–355 ◦C. 1H NMR (300.13 MHz, Acetone-d6, 25 ◦C): d = 9.60 (s, 1H, CHN), 8.17–8.12
(m, 3H, aromatic CH), 8.05 (bs, 1H, aromatic CH), 7.85 (dd, 3JH-H 7.7, 3JH-H 7.7 Hz, 1H, aromatic
CH), 7.66 (dd, 3JH-H 7.4, 3JH-H 7.4 Hz, 1H, aromatic CH), 7.25 (bs, 2H, aromatic CH), 7.10 (br s, 3H,
aromatic CH). 13C NMR (75 MHz, Acetone-d6, 25 ◦C): d = 161.4 (C=O), 161.3 (C=N), 155.9 (2C, C-O,
C-N), 144.2 (C-H), 140.5 (C-B), 135.9 (C-H), 135.4 (C-H), 132.0 (C-H), 131.3 (C-H), 128.6 (2C, C-H, C-H),
128.3 (C-H), 125.8 (C-H), 120.1 (Cquat), 119.6 (Cquat), 114.6 (C-Br), 111.3 (C-Br). ESI+-MS m/z = 483.9,
485.9, 487.9 [M + H]+, 505.9, 507.9, 507.9 [M + Na]+; HRMS-ESI+ m/z for [C20H12O3NBBr2 + H]+ calcd
485.9335, found 485.9319.
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3.4. 10,12-Dihydroxy-7-phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]oxazaborinino[2,3-b][1,3,2]
oxazaborinin-5-one 1d

2,4,6-Trihydroxybenzaldehyde (1 equiv, 0.5 mmol, 77 mg) was dissolved in MeOH (20 mL).
Anthranilic acid (1 equiv, 0.5 mmol, 69 mg) was added, followed by phenylboronic acid (1 equiv,
0.5 mmol, 61 mg), and the reaction mixture was refluxed for 2 h. After cooling down to room
temperature, the solid is collected by filtration, washed with MeOH, and dried in air. After silica gel
flash column chromatography (eluent: DCM/MeOH, 90/10), the product was obtained as a yellow
solid (72 mg, 40% yield). The compound gave single crystals suitable for X-ray diffraction by slow
evaporation from a saturated solution in MeOH.

m.p. > 350 ◦C. 1H NMR (300.13 MHz, Acetone-d6, 25 ◦C): d = 9.10 (s, 1H, CHN), 8.02 (d, 3JH-H

8.0 Hz, 1H, aromatic CH), 7.96 (d, 3JH-H 8.0 Hz, 1H, aromatic CH), 7.71 (dd, 3JH-H 7.8, 3JH-H 7.8 Hz,
1H, aromatic CH), 7.42 (dd, 3JH-H 7.2, 3JH-H 7.2 Hz, 1H, aromatic CH), 7.16–7.06 (m, 5H, aromatic CH),
5.92 (d, 4JH-H 1.8 Hz, 1H, aromatic CH), 5.80 (d, 4JH-H 1.8 Hz, 1H, aromatic CH). 13C NMR (75 MHz,
Acetone-d6, 25 ◦C): d = 170.6 (C=O), 162.7 (C=N), 161.8 (C-O), 161.0 (C-O), 152.5 (C-O), 150.7 (C-N),
140.5 (C-B), 134.5 (C-H), 130.4 (C-H), 130.2 (C-H), 127.6 (C-H), 127.3 (C-H), 127.2 (C-H), 122.7 (C-H),
118.5 (Cquat), 101.8 (Cquat), 95.8 (C-H), 94.6 (C-H). ESI+-MS m/z = 360.1 [M + H]+, 382.1 [M + Na]+;
HRMS-ESI+ m/z for [C20H14O5NB + H]+ calcd 360.1043, found 360.1035.

3.5. 10,12-Dimethoxy-7-phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]oxazaborinino[2,3-b][1,3,2]
oxazaborinin-5-one 1e

3,5-Dimethoxysalicylaldehyde (1 equiv, 1 mmol, 182 mg) was dissolved in MeOH (20 mL).
Anthranilic acid (1 equiv, 1 mmol, 137 mg) was added, followed by phenylboronic acid (1 equiv,
1 mmol, 122 mg), and the reaction mixture was refluxed for 4 h. After cooling down to room temperature,
the solid was collected by filtration, washed with MeOH, and dried in air. The product was obtained
as a yellow solid (293 mg, 76% yield) without further purification.

m.p. 251–253 ◦C. 1H NMR (300.13 MHz, Acetone-d6, 25 ◦C): δ = 9.24 (s, 1H, CHN), 8.07 (dd, 3JH-H

7.8, 4JH-H 1.5 Hz, 1H, aromatic CH), 8.04 (d, 3JH-H 8.4 Hz, 1H, aromatic CH), 7.73 (ddd, 3JH-H 7.2, 3JH-H

8.1, 4JH-H 1.5 Hz, 1H, aromatic CH), 7.47 (ddd, 3JH-H 7.8, 3JH-H 7.8, 4JH-H 1.0 Hz, 1H, aromatic CH),
7.29–7.26 (m, 2H, aromatic CH), 7.10–7.07 (m, 3H, aromatic CH), 6.14 (s, 2H, aromatic CH), 3.94 (s, 3H,
OCH3), 4.00 (s, 3H, OCH3). 13C NMR (75 MHz, Acetone-d6, 25 ◦C): δ = 172.6 (C-OCH3), 163.5 (C-OCH3),
153.8 (C=N), 150.8 (C=O), 146.4 (C-O), 142.0 (C-N), 141.7 (C-B), 135.0 (C-H), 131.8 (C-H), 131.4 (C-H),
128.9 (C-H), 128.1 (C-H), 125.1 (C-H), 119.2 (C-H), 108.7 (Cquat), 103.7 (Cquat), 95.5 (C-H), 92.2 (C-H),
56.9 (OCH3), 56.8 (OCH3). ESI+-MS m/z = 388.1 [M + H]+, 410.1 [M + Na]+; HRMS-ESI+ m/z for
[C22H18O5NB + H]+ calcd 388.1356, found 388.1351.

3.6. 10-(Diethylamino)-7-phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]oxazaborinino[2,3-b][1,3,2]
oxazaborinin-5-one 1f

4-Diethylaminosalicylaldehyde (1 equiv, 0.5 mmol, 96 mg) was dissolved in MeOH (10 mL).
Anthranilic acid (1 equiv, 0.5 mmol, 69 mg) was added, followed by phenylboronic acid (1 equiv,
0.5 mmol, 61 mg), and the reaction mixture was refluxed for 1 h. After cooling down to room
temperature, the solid was collected by filtration, washed with MeOH, and dried in air. The product
was obtained as a yellow solid (190 mg, 95% yield) without further purification.

m.p. 284–286 ◦C. 1H NMR (300.13 MHz, Acetone-d6, 25 ◦C): d = 8.98 (s, 1H, CHN), 8.04 (dd,
3JH-H 7.8, 4JH-H 1.2 Hz, 1H, aromatic CH), 7.90 (d, 3JH-H 9.0 Hz, 1H, aromatic CH), 7.66 (ddd, 3JH-H

7.2, 3JH-H 8.1, 4JH-H 1.5 Hz, 1H, aromatic CH), 7.49 (d, 3JH-H 9.3 Hz, 1H, aromatic CH), 7.36 (ddd,
3JH-H 7.8, 3JH-H 7.8, 4JH-H 1.0 Hz, 1H, aromatic CH), 7.29–7.26 (m, 2H, aromatic CH), 7.10–7.03 (m, 3H,
aromatic CH), 6.54 (dd, 3JH-H 9.3, 4JH-H 2.4 Hz, 1H, aromatic CH), 6.13 (d, 4JH-H 2.1 Hz, 1H, aromatic
CH), 3.57 (q, 3JH-H 7.2 Hz, 4H, NCH2), 1.23 (t, 3JH-H 7.2 Hz, 6H, CH3). 13C NMR (75 MHz, Acetone-d6,
25 ◦C): d = 162.9 (C=O), 162.8 (C-O), 158.2 (C-N), 154.8 (C=N), 142.3 (C-N), 141.7 (C-B), 136.2 (C-H),
134.7 (C-H), 131.8 (C-H), 131.4 (C-H), 128.0 (C-H), 127.8 (C-H), 127.5 (C-H), 124.6 (Cquat), 118.2 (C-H),
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108.5 (Cquat), 107.8 (C-H), 98.4 (C-H), 45.7 (CH2CH3), 13.0 (CH2CH3). ESI+-MS m/z = 399.2 [M + H]+,
421.2 [M + Na]+; HRMS-ESI+ m/z for [C24H23O3N2B + H]+ calcd 399.1880, found 399.1869; HRMS-ESI+

m/z for [C24H23O3N2B + Na]+ calcd 421.1699, found 421.1689.

3.7. (E)-11-[(4-Methoxyphenyl)diazenyl]-7-phenyl-5H,7H-7λ4,14λ4-benzo[d]benzo[5,6][1,3,2]
oxazaborinino[2,3-b][1,3,2]oxazaborinin-5-one 1g

(E)-2-Hydroxy-5-[(4-methoxyphenyl)diazenyl]benzaldehyde (1 equiv, 0.25 mmol, 64 mg) was
dissolved in MeOH (20 mL). Anthranilic acid (1 equiv, 0.25 mmol, 34 mg) was added, followed
by phenylboronic acid (1 equiv, 0.25 mmol, 31 mg), and the reaction mixture was refluxed for
5 h. After cooling down to room temperature, the solid was collected by filtration, washed with
MeOH, and dried in air. The product was obtained as a yellow solid (71 mg, 62% yield) without
further purification.

m.p. 282–284 ◦C. 1H NMR (300.13 MHz, Acetone-d6, 25 ◦C): δ = 9.74 (s, 1H, CHN), 8.39 (d, 4JH-H

2.5 Hz, 1H, aromatic CH), 8.28 (dd, 3JH-H 9.0, 4JH-H 2.5 Hz, 1H, aromatic CH), 8.20–8.13 (m, 2H,
aromatic CH), 7.92 (d, 3JH-H 9.0 Hz, 2H, aromatic CH), 7.83 (ddd, 3JH-H 8.2, 3JH-H 7.4, 4JH-H 1.6 Hz,
1H, aromatic CH), 7.62 (ddd, 3JH-H 7.6, 3JH-H 7.6, 4JH-H 1.1 Hz, 1H, aromatic CH), 7.34–7.28 (m, 2H,
aromatic CH), 7.19 (d, 3JH-H 9.0 Hz, 1H, aromatic CH), 7.16–7.08 (m, 5H, aromatic CH), 3.92 (s, 3H,
OCH3). 13C NMR (75 MHz, Acetone-d6, 25 ◦C): δ = 163.3 (C=O), 162.3 (C=N), 162.1 (C-O), 161.8 (C-O),
147.5 (C-N), 146.7 (C-N), 140.9 (C-B), 135.3 (C-N), 133.7 (C-H), 131.9 (C-H), 131.3 (C-H), 130.7 (C-H),
129.6 (C-H), 128.5 (C-H), 128.3 (C-H), 125.8 (Cquat), 125.4 (C-H), 123.7 (Cquat), 120.9 (C-H), 120.1 (C-H),
115.3 (C-H), 114.9 (C-H), 56.1 (OCH3). ESI+-MS m/z = 462.2 [M + H]+, 484.1 [M + Na]+; HRMS-ESI+

m/z for [C27H20O4N3B + H]+ calcd 462.1625, found 462.1609; HRMS-ESI+ m/z for [C27H20O4N3B +

Na]+ calcd 484.1445, found 484.1429.

4. Conclusions

A straightforward one-pot multicomponent reaction was implemented, allowing the rapid
preparation of boron complexes based on phenylboronic acid. This versatile methodology was compatible
with a wide range of derivatives, and the complexes were decorated with electron donating or withdrawing
substituents. They proved to be faintly luminescent in a dilute solution, but the quantum yield
increased when a strongly electron donating substituent was adequately placed. The parent compound
demonstrated aggregation-induced emission enhancement, but unfortunately, the emission intensity
of the other complexes was quenched in the solid state, probably due to the formation of excimers.
Overall, this study should open the way to the design and synthesis of other boron complexes, which may
find applications as luminescent materials or probes.

Supplementary Materials: The following are available online: 1H and 13C NMR spectra, absorption, and emission
spectra. Details of the crystal data collection, solution, and refinement of compounds 1a, 1d-MeOH, and 1e.
Crystal structures in CIF format.
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