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Abstract

Human beings often curb self-interest to develop and enforce social norms, such as fairness, as exemplified in the
ultimatum game (UG). Inspired by the dual-system account for the responder’s choice during the UG, we investigated
whether the neural basis of psychological process induced by fairness is under genetic control using a twin fMRI study (62
monozygotic, 48 dizygotic; mean age: 19.32 ± 1.38 years). We found a moderate genetic contribution to the rejection rate of
unfair proposals (24%–35%), independent of stake size or proposer type, during the UG. Using a voxel-level analysis, we
found that genetic factors moderately contributed to unfairness-evoked activation in the bilateral anterior insula (AI),
regions representing the intuition of fairness norm violations (mean heritability: left 37%, right 40%). No genetic
contributions were found in regions related to deliberate, controlled processes in the UG. This study provides the first
evidence that evoked brain activity by unfairness in the bilateral AI is influenced by genes and sheds light on the genetic
basis of brain processes underlying costly punishment.
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Introduction
Human beings often curb self-interest to develop and enforce
social norms, such as fairness, which is considered essential for
the evolution of cooperation in human beings (Fehr and Schmidt,
1999; Camerer, 2003). A canonical example is the ultimatum
game (UG), in which one player (proposer) proposes a division
of a sum of money between himself/herself and a second player

(responder), who either accepts or rejects it (Güth et al., 1982).
If the responder accepts the proposal, the suggested split is
realized. If the responder rejects the offer, neither of the two
receives anything. While the responders face an unfair proposal,
they have to trade off between the self-interest motive and a fair-
ness preference (Knoch et al., 2006). Rejection of unfair proposals
means that the responders succeed in curbing their self-interest
motive, i.e. maximizing their economic gain, to pursue fairness.
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Rejection of unfair proposals is observed across countries
and ethnicities (Camerer, 2003; Henrich et al., 2005), which has
triggered the discussion on the biological origin of this norm-
enforcement behavior. A behavioral genetics study on Swedish
twins suggested that this decision is controlled by genes, as
>40% of the variation in the rejection behavior of responders
was explained by additive genetic effects (Wallace et al., 2007).
However, this behavioral genetics study cannot answer which
psychological process subserving this decision is under genetic
control.

Researchers have tried to understand the psychological
processes underlying the social preferences of the responder
in fairness-related norm enforcement. Early models have
postulated the significant roles of inequality aversion (Fehr and
Schmidt, 1999) and intention inference (Rabin, 1993; Blount,
1995). In recent decades, these initial theoretical models have
been extensively elaborated due to interdisciplinary studies in
the fields of psychology, economics and neuroscience (Sanfey,
2007; Rilling and Sanfey, 2011). Recent studies have attempted to
understand fairness-related norm enforcement in response to
norm violations from the perspective of dual-system theories
(Sanfey et al., 2006; Sanfey and Chang, 2008; Buckholtz and
Marois, 2012; Feng et al., 2015), which have received extensive
theoretical consideration in the field of cognition (Evans,
2003; Lieberman, 2007) and judgment and decision-making
(Evans, 2008; Sanfey and Chang, 2008). In dual-system theories,
System 1, which is automatic and heuristic-based and quickly
proposes intuitive answers to problems as they arise, includes
the anterior insula (AI), the dorsal anterior cingulate cortex
(ACC) and the ventromedial prefrontal cortex; and System 2,
which corresponds closely to controlled processes, monitors
the quality of the answer provided by System 1 and sometimes
corrects or overrides these judgments, includes the ventral ACC,
the lateral prefrontal cortex (PFC), lateral parietal cortex and
dorsomedial PFC (Satpute and Lieberman, 2006; Lieberman,
2007). In terms of the decision-making of the responder in
the UG, researchers consistently observed that the regions
relevant to the dual-system theories are more activated when
the participants face unfair proposals than when they face
fair proposals and thus proposed that System 1 represents
the psychological components involved in rapidly evaluating
violations of the fairness norm; and System 2 is involved in
integrating both self-interest and the fairness norm to regulate
the intuitive system to permit more flexible decision-making
(Sanfey et al., 2006; Feng et al., 2015). However, this appealing
proposal omits another possible candidate intuition possibly
implicated in System 1, i.e. monetary self-interest, because most
of the previous studies cannot distinguish between fairness and
monetary incentives. In other words, in these studies, an unfair
offer is one with lower monetary incentives and a fair offer is
one with higher monetary incentives (Sanfey et al., 2003; Chang
and Sanfey, 2011; Corradi-Dell’Acqua et al., 2012; Xiang et al.,
2013). Therefore, the rejection of unfair offers may result from
two possibilities: it is possible that the fairness intuition drives
the participant to make a judgment whether the offer violates
a fairness norm and thus generate an impulse to reject unfair
offers; it is also possible that a monetary self-interest intuition
generates the same decision by simply judging whether the
offered amount is lower than expected or absolute value of the
reward. Similarly, the stronger brain activity seen when facing
unfair offers than that when facing fair offers in this situation
cannot exclude the possibility that the observed activation
is due to unexpected small monetary incentives. To exclude
the influence of monetary self-interest on the social decision-

making of the responder, several previous studies applied a
revised UG paradigm, in which the same amount of monetary
incentive may be fair or unfair (Tabibnia et al., 2008; Zhou et al.,
2014).

Armed with this revised paradigm, in this study, we aim to
investigate whether the neural basis of psychological process
induced by fairness during the UG is under genetic control.
Although the dual-system theories assume that the processes in
System 2 may be heritable based on its close relationship with
genetically determined general intelligence and working mem-
ory (Evans, 2008), few empirical evidence support this hypothesis
(Sanderson et al., 2009). On the other hand, the processes in Sys-
tem 1 are considered as universal (Evans, 2008), as we observed
an unfair proposal is always perceived as unfair, even though
the extent of unfairness may be modulated by experimental
factors, such as proposer type or stake size (Zhou et al., 2014).
However, the universality cannot exclude the possibility that
these processes are heritable.

To investigate the possibility of such a genetic basis, we
conducted a twin fMRI study, which is a powerful tool in estab-
lishing the heritability of phenotype (Martin et al., 1978; Neale
and Cardon, 2013). First, we estimated the genetic contribution
to responders’ behavior in a UG by orthogonally manipulating
fairness and stake size from human or computer partners to
examine whether the norm enforcement indicated by rejection
of unfairness is genetic independent of experimental factors,
such as stake size and proposer type. Then, we investigated
in which region(s) the individual variation in brain activation
induced by fairness during the UG is attributable to genetic or
environmental influences by using a voxel-wise genetic model-
ing analysis. This voxel-wise analysis makes it possible to search
the whole brain and identify region-specific effects and answer
the question of the neural basis of which psychological process
is heritable.

Materials and methods
Participant

A total of 110 same-sex twin pairs (sex: 50.91% male; age:
M = 19.32, s.d.= 1.38 years) sampled from the Beijing Twin Study
(BeTwiSt) participated in this study, among which 62 pairs were
monozygotic (MZ) and the other 48 pairs were dizygotic (DZ).
For all twin pairs who participated in our study, zygosity was
assigned by DNA testing, with a classification accuracy of nearly
100% (Chen et al., 2010).

All participants were in good health, with no previous history
of psychiatric or neurological disease based on their self-reports.
Written informed consent was obtained following a detailed
explanation of the study. The participants were given a financial
reward at the end of the study. The study was approved by the
institutional review board of the Institute of Psychology, Chinese
Academy of Sciences, and the institutional review board of the
Beijing MRI Center for Brain Research.

Procedure and experimental design

Before scanning, the participants received instructions explain-
ing the rules of the game and were required to answer a series of
questions after reading the instructions to verify their compre-
hension. During scanning, the participants acted as responders
to play a one-shot game with a different proposal for each trial.
After completing the UG task, the participants rated the fairness
of all offers presented in the UG task on a Likert scale of 1 (very
unfair) to 7 (very fair). To increase the degree of involvement in
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Table 1. Types of offers

Fair (50%) Unfair (20%)

High stake size (�) 400/450/500/550/600 out of
800/900/1000/1100/1200

400/450/500/550/600 out of
2000/2250/2500/2750/3000

Low stake size (�) 4/4.5/5/5.5/6 out of 8/9/10/11/12 4/4.5/5/5.5/6 out of 20/22.5/25/27.5/30

Fig. 1. Timeline for a single round of the UG.

this task, the participants also made proposals with different
stake sizes as proposers after the experiment and were told that
their proposals would be used in a subsequent study.

To differentiate which psychological process induced by fair-
ness during the UG is under genetic control, we designed a
repeated one-shot UG task, which was similar to our previous
study (Zhou et al., 2014). Since responders often reject unfair
proposals and accept fair proposals, we set two ‘fairness’ cat-
egories: 50% of the stake (fair) and 20% of the stake (unfair)
to differentiate the genetic contribution to the responder’s nor-
mative decisions. In addition, we set two factors to modulate
the responder’s decision. One was the stake size, which was set
orthogonally to fairness by varying both the proposal amount
and the stake size across the rounds. The proposal amount to
the responder (i.e. monetary self-interest) was fixed for fair and
unfair proposals at the same level of stake size. The other was
proposer type. The participants were offered proposals from
real persons, who participated in the experiment and submitted
their proposals, or from computer partners, which generated
the proposals randomly. In reality, all the offers were pre-set
by the experimenter. The offers from the computer partners
were identical to those from the human partners, and the com-
puter condition was similar to the human condition in terms
of fairness and self-interest, except for the fact that there was
no potential for social interaction in the computer condition.
There were four combinations of offer size and fairness in each
proposer condition, and five rounds were run for each combina-

tion. The types of offers can be seen in Table 1. Therefore, the
responders played 40 rounds, 20 of which were supposedly from
a game with human partners and 20 with computer partners
(Figure 1). The proposals from human and computer partners
were presented randomly. To encourage participants to make
real decisions, it was emphasized that in addition to a fixed
amount for participation, they would be paid according to their
choices in the game.

fMRI data acquisition

The fMRI data were acquired from the Beijing MRI Center for
Brain Research. MR images sensitized to changes in blood
oxygen level dependent (BOLD) signal levels were obtained by an
echo planar imaging sequence on a 3.0-Tesla Siemens MR scan-
ner (repetition time = 2000 ms; echo time = 30 ms; flip angle = 90
degrees, matrix = 64 × 64; field of view = 220 × 220 mm2; slice
thickness = 3 mm; slice gap = 1 mm). Each brain volume was
composed of 32 axial slices. The scanning duration depended
on the participant’s response and ranged from 324 TR to 347
TR (average scanning duration = 327 TR). Stimuli were presented
with E-prime software (Psychology Software Tools, Pittsburgh,
PA, USA) on a personal computer, back-projected onto a screen
using a liquid crystal display projector and viewed by the
participants through a mirror mounted on the MRI head coil. The
scanner was triggered by a signal generated by E-prime stimulus
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presentation software to synchronize each volume acquisition
with the onset of a visual stimulus.

fMRI data processing

Image preprocessing was performed using statistical parametric
mapping (SPM8, Wellcome Department, London, UK). The
preprocessing included slice time correction, realignment,
normalization, resampling to 3 × 3 × 3 mm3 and smoothing
using an 8 mm full-width-at-half-maximum Gaussian kernel.
Subjects with head motion >3 mm in translation or 3 degrees
in rotation were labeled and repaired by using the ArtRepair
toolbox (http://cibsr.stanford.edu/tools/human-brain-project/
artrepair-software.html) (Mazaika et al., 2009). Images with
artifacts were repaired, and the quality checks were calculated
and detected. Subjects with improved data quality after repair
were re-incorporated into the analysis, while subjects who could
not be corrected by ArtRepair were excluded from the analysis.
Finally, 193 subjects were included in the fMRI analysis, and
there were 85 twin pairs (49 MZ and 36 DZ) among them.

A general linear model (GLM) with a 2 (fairness) × 2 (proposer
type) × 2 (stake size) factorial design matrix was constructed
to detect the brain activation of each participant during the
proposal epochs. Specifically, a GLM was defined for each par-
ticipant. These models included eight regressors that modeled
the BOLD response to the 6 s proposal epoch: fair proposal from
a human partner, unfair proposal from a human partner, fair
proposal from a computer partner and unfair proposal from a
computer partner for each of the high and low stake sizes. Addi-
tionally, six motion parameters obtained by realignment were
used as nuisance variables. Each regressor was convolved with a
canonical hemodynamic response function. High-pass filtering
(cutoff frequency = 128 s) was used to remove low-frequency
noise. The resulting GLM was corrected for temporal autocor-
relations using a first-order autoregressive model. First-level
contrasts were performed for each experimental condition of the
factorial design described above. To account for the dependency
between twins in the same pair, we emulated a hierarchical lin-
ear model (HLM) using the standard summary statistic approach
before conducting a second-level random-effect analysis. Specif-
ically, we first averaged the first-level contrast images for each
twin pair and then used the averages as data for the second-
level random-effect analysis to detect group effects. In this study,
we were particularly interested in fairness-related brain activity,
including activation evoked by unfair proposals compared to fair
proposals (unfair > fair t contrast) and activation evoked by fair
proposals compared to unfair proposals (fair > unfair t contrast),
regardless of zygosity. For the whole brain, significant activations
were required to exceed a height threshold of P < 0.05 after
family-wise error (FWE) corrected for multiple comparisons and
cluster-size threshold of 10 voxels.

Genetic modeling

By comparing the resemblance of MZ and DZ twin pairs on
observed trait(s), we estimated additive genetic (A), common
(shared) environmental (C) and non-shared environmental (E)
contributions to variance within a trait (Plomin et al., 2013).
Correlations between additive genetic factors are fixed at 1 for
MZ twin pairs, as they share 100% of their genes, and at 0.5 for
DZ pairs as they share, on average, 50% of their genes. In the case
that twins are reared together, the greater resemblance between
MZ twins than that between DZ twins indicates that the trait is

heritable. The proportion of trait variance explained by additive
genetic effects is referred to as heritability. By definition, com-
mon environmental factors are those factors in the environment
that make twins growing up in the same family similar to each
other. For common environmental factors, correlations between
co-twins are fixed at 1 for both MZ and DZ pairs, based on the
rigorous and frequent testing that has supported the assump-
tion that environments for MZ and DZ twins are comparable.
Non-shared environmental factors are those factors that make
twins less similar to each other, including environmental factors
unique to each individual and measurement error. They are left
uncorrelated in twins.

Genetic modeling of responder’s normative decision. To estimate
genetic and environmental effects on the responder’s normative
decisions, we used the rejection rate as the dependent variable
to conduct univariate genetic modeling implemented in the
OpenMx package for R (http://openmx.psyc.virginia.edu). First,
we calculated the intraclass correlation coefficient (ICC) for the
MZ and DZ twins separately. If ICCMZ was greater than ICCDZ,
this suggested that MZ twins resembled each other more than
DZ twins. We then used univariate models to partition the
variance of this measure into genetic (A) and environmental
(C and E) effects. We examined the full ACE model first. Sub-
models (AE, CE and E) nested within the full model were then
tested by systematically removing one or two components of the
variance. We used the change in chi-square (χ2) and the Bayesian
information criterion (BIC) as model fit indices (Raftery, 1995). A
lower BIC value indicates better fit. Comparing the full model
and a sub-model, a significant χ2 difference suggested that the
nested model fit significantly worse than the full model and the
full model should be chosen; otherwise, the nested model with
fewer parameters should be considered in terms of parsimony
(Bollen, 1989; Kline, 1998).

Genetic modeling of brain activity. Using a similar procedure, we
conducted a voxel-wise genetic modeling of the brain activity.
As to the fairness-related brain activity, we restricted the genetic
modeling analyses to voxels, which were specified by the group
analysis and showed greater intraclass correlations for MZ twins
(ICCMZ) than DZ twins (ICCDZ). We fitted univariate genetic mod-
eling voxel by voxel to estimate the contributions of A, C and E
to explain the variance in fairness-related brain activation, and
then submodels (AE, CE, and E) nested within the full model were
tested by systematically removing one or two components of
variance. For almost all the voxels, the best-fitting model was
AE (see result). Then, we assessed the genetic influence (i.e. the
A component) in terms of the difference in log-likelihood after
it was removed (i.e. comparing the AE model and the E model),
using the goodness-of-fit χ2 statistic. This likelihood enabled us
to construct posterior probability maps (PPMs) to identify regions
showing a genetic effect with ≥95% posterior confidence (Friston
and Penny, 2003). The construction of PPMs enables Bayesian
inferences about regionally specified effects in neuroimaging.
The PPMs report the posterior probability or confidence that an
effect exceeds some specified confidence level, given the data.
In contrast to classical inference, which is based on rejecting
the null hypothesis, PPMs report the posterior probability that
an effect is present (with a small probability that it is not).
This means there are no declaration of a ‘significant’ effect, no
false-positive rate and no multiple-comparisons problem. This
application of PPMs in twin fMRI analysis has been reported in a
previous study (Rao et al., 2018).

http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
http://openmx.psyc.virginia.edu
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Fig. 2. Mean rejection rates as a function of proposal fairness for different proposer types (A) and stake sizes (B). Error bars represent the SE of the difference of the

means.

We also conducted the same procedure for brain activity
induced by proposer type, stake size or interaction effects.

Results
Genetic contribution to responder’s decision

To determine whether the rejection rate was influenced by
experimental factors, we first investigated the main effects
of fairness, proposer type and stake size and the interaction
effects between these factors on rejection rate using repeated-
measures analysis of variance (ANOVA). Significant main
effects of fairness [F(1,219) = 237.11, P < 0.001, partial η2 = 0.52],
proposer type [F(1,219) = 6.66, P = 0.011, partial η2 = 0.03] and
stake size [F(1,219) = 124.89, P < 0.001, partial η2 = 0.36] were
found. These main effects separately indicated that unfair
proposals (M = 0.37, s.d.= 0.31) were more often rejected than
fair ones (M = 0.05, s.d.= 0.09), proposals from humans (M = 0.22,
s.d.= 0.17) were more often rejected than those from computers
(M = 0.20, s.d.= 0.18), and proposals with a low stake size (M = 0.28,
s.d.= 0.21) were more often rejected than those with a high stake
size (M = 0.14, s.d.= 0.17). In addition, the interaction between
fairness and proposer type was significant [F(1,219) = 16.83,
P < 0.001, partial η2 = 0.07]. A post hoc pairwise least significant
difference (LSD) test indicated that the rejection rates for
proposals from human partners were significantly higher than
those for proposals from computer partners when the proposals
were unfair (P < 0.001, Figure 2A). The interaction between
fairness and stake size was also significant [F(1,219) = 79.44,
P < 0.001, partial η2 = 0.27]. A post hoc pairwise LSD test indicated
that the rejection rate for proposals with a low stake size was
significantly higher than that for proposals with a high stake
size in both the fair and unfair proposal condition (Ps < 0.001,
Figure 2B). No interaction between fairness, proposer type and
stake size was found.

Accounting for the dependency between twins in the same
pair, we used an HLM to validate the abovementioned behavioral
findings. HLM is an ideal method for analyzing twin data because
it allows for nested data analysis, accounting for the correlated
nature of twin data (Lynch et al., 2006; Keuler et al., 2011; Lydecker
et al., 2012). We applied a two-level HLM to assess the effects of

fairness, stake size, proposer type and the two-way and three-
way interactions on rejection rate. Individual twins were the
first-level unit nested inside the ‘family’ variable shared by
co-twins. Regression equations were computed to predict
the rejection rate using the above independent variables
as dichotomous predictors. Regression coefficients and p
values were reported for each of the predictors in Table 2.
Compatible with the ANOVA, we found that fairness, stake
size, proposer type, interaction between fairness and stake size,
interaction between fairness and proposer type and the three-
way interaction were significant predictors of rejection rate.

Because the rejection rate of proposals was modulated by
proposer type or stake size, we separately analyzed the genetic
contribution to rejection rate under each condition. In general,
for the rejection rate of unfair proposals, the MZ twin correlation
was significantly higher than the DZ correlation, whether they
were from a human or computer partner or with a large or small
stake size (Table 3), suggesting that genes make a substantial
contribution to the individual differences in terms of costly
punishment. By conducting univariate model-fitting analyses
for the conditions including unfair proposals, we found the AE
model was the best model to partition the phenotypic variance.
The AE model attributed 24%–35% of individual difference in
the rejection rate of unfair proposals due to genetic influences
and the other 65%–76% to non-shared environmental influences
(Table 4), suggesting a moderate heritability for costly punish-
ment of responder during the UG. More importantly, a genetic
effect on the rejection rate of unfair proposals existed, whether
from a human or computer partner or with a low or high stake
size, suggesting that the norm enforcement indicated by rejec-
tion of unfairness is genetic independent of modulator factors
(proposer type and stake size).

For the rejection rate of fair proposals, unlike that for unfair
proposals, the MZ twin correlations were not significant and
were lower than the DZ correlations, indicating an absence of
genetic influence and the dominant role of environmental fac-
tors in determining the individual difference in the rejection rate
of fair proposals (Table 3). No further genetic modeling analyses
were done for this case. Similarly, we found that environmental
factors rather than genetic factors contributed to the modulation
effects of proposer type or stake size on rejection rate (Table 3).
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Table 2. Results from the HLM examining the influence of fairness, stake size, proposer type and the interactions between them on rejection
rate

Parameter B SE T df P

Fairness 0.164 0.012 13.895 109 <0.001
Stake size 0.071 0.007 10.903 109 <0.001
Proposer type 0.009 0.004 2.504 109 0.014
Fairness∗stake size 0.050 0.006 8.523 109 <0.001
Fairness∗proposer type 0.015 0.004 3.892 109 <0.001
Stake size∗proposer type 0.002 0.003 0.782 109 0.436
Fairness∗stake size∗proposer type 0.019 0.003 6.217 109 <0.001

Note: B, unstandardized regression coefficient; SE, standard error; df , degree of freedom.

Table 3. Mean (s.d.) rejection rate under each condition and twin ICCs (95% confidence intervals)

Rejection rate Mean (s.d.) Twin correlation Fisher’s Z

ICC MZ ICC DZ test

unfair human 0.40(0.32) 0.51∗∗(0.19∼0.71) 0.15(−0.52∼0.52) 2.08∗
unfair computer 0.35(0.33) 0.56∗∗∗(0.26∼0.73) −0.05(−0.88∼0.41) 3.45∗∗∗
unfair high 0.25(0.32) 0.45∗∗(0.09∼0.67) −0.18(−1.11∼0.34) 3.37∗∗∗
unfair low 0.50(0.38) 0.52∗∗(0.20∼0.71) 0.31(−0.24∼0.61) 1.29
fair human 0.04(0.10) −0.02(−0.70∼0.38) 0.66∗∗∗(0.39∼0.81) −4.11∗∗∗
fair computer 0.05(0.09) 0.26(−0.23∼0.55) 0.36(−0.15∼0.64) −0.56
fair high 0.03(0.06) 0.28(−0.19∼0.57) 0.74∗∗∗(0.53∼0.85) −3.35∗∗∗
fair low 0.07(0.14) 0.08(−0.53∼0.45) 0.21(−0.42∼0.56) −0.67
fairness∗proposer type 0.06(0.22) 0.02(−0.62∼0.41) 0.10(−0.61∼0.49) −0.41
fairness∗stake size −0.20(0.33) 0.25(−0.25∼0.55) 0.11(−0.59∼0.50) 0.73

Note: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001

Table 4. Univariate genetic modeling for rejection rate under each condition

Rejection rate Model -2LL df BIC Change from full model A C E
�χ 2 �df P

unfair human ACE 112.49 216 −902.82 0.34 (0.00–0.53) 0.00 (0.00–0.35) 0.66 (0.47–0.89)
AE 112.49 217 −907.52 0 1 1 0.34 (0.11–0.53) 0.66 (0.47–0.89)

unfair computer ACE 120.87 216 −894.43 0.34 (0.00–0.54) 0.00 (0.00–0.26) 0.66 (0.46–0.90)
AE 120.87 217 −899.14 0 1 1 0.34 (0.10–0.54) 0.66 (0.46–0.90)

unfair high ACE 125.24 216 −890.06 0.24 (0.00–0.47) 0.00 (0.00–0.24) 0.76 (0.53–1.00)
AE 125.24 217 −894.76 0 1 1 0.24 (0.00–0.47) 0.76 (0.53–1.00)

unfair low ACE 184.47 216 −830.83 0.34 (0.00–0.53) 0.01 (0.00–0.42) 0.65 (0.47–0.88)
AE 184.47 217 −835.53 0 1 0.97 0.35 (0.14–0.53) 0.65 (0.47–0.86)

Note: The full ACE model and the best-fitting model are presented for each condition. −2LL, twice the negative log-likelihood; �χ2, change in chi-square; �df , change
in degrees of freedom; A, proportion of variance due to additive genetic effects; C, proportion of variance due to shared environmental effects; E, proportion of variance
due to non-shared environmental effects. The 95% confidence intervals are in parentheses.

Together, these findings suggest that the costly punishment
for unfairness has an innate mechanism, which is indepen-
dent of some experimental factors (such as proposer type and
stake size).

Genetic contribution to brain activation

To investigate the genetic contributions of the neural basis of
psychological processes induced by fairness during the UG, we
first identified the brain regions whose activities were modu-
lated by fairness. Specifically, we found that the bilateral insular
cortices, striatum, medial PFC extending to the anterior cingu-
late cortex (ACC), lateral PFC, inferior parietal cortex, superior
parietal cortex and middle occipital gyrus showed greater activa-
tion in response to unfair proposals than to fair proposals (FWE
corrected P < 0.05; voxels, >10; Figure 3B).

Intraclass correlations for unfairness-evoked brain activation
are shown in Figure 4. Overall, the MZ correlations were greater
than the DZ correlations, suggesting that the individual varia-
tion in unfair-evoked activation is genetically influenced. Voxel-
wised genetic modeling further showed that an AE model better
fit the data for most voxels (92%). In the AE model, genetic
contributions to the brain activity evoked by unfairness were
found in the left (mean heritability = 0.37) and right AI (mean
heritability = 0.40) and the right middle occipital gyrus (mean
heritability = 0.42), with ≥95% posterior confidence to support a
genetic effect (Figure 5).

We also found that the bilateral middle temporal gyrus, the
bilateral inferior parietal lobule, the medial prefrontal cortex
and the bilateral precuneus showed greater activation in
response to fair proposals than unfair proposals (FWE corrected
P < 0.05; voxels, >10; Figure 3A). In addition, we found the main
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Fig. 3. Brain activations influenced by fairness at proposal presentation. (A) Maps of the t statistics for the contrast [fair > unfair] showing activation of the bilateral

middle temporal gyrus, the bilateral inferior parietal lobule, the medial frontal gyrus and the bilateral precuneus. (B) Maps of the t statistic for the contrast [unfair > fair]

showing activation of the bilateral insular cortices, striatum, medial prefrontal cortex extending to ACC, lateral PFC, inferior parietal cortex, superior parietal cortex

and middle occipital gyrus.

Fig. 4. ICCs for unfairness-evoked brain activation in MZ and DZ twins.

Fig. 5. Variance component estimates for unfairness-evoked brain activation. (A and B) Percentages of variance explained by genetic (a2) and unique environmental

factors (e2) within a mask in which ICCmz was larger than ICCdz. (C) PPMs for a2, indicating which genetic estimates were significant at the ≥95% confidence level.
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effects of proposer type and of the stake size and their inter-
action effect (for details, please see Supplementary Figures S1,
S2 and S3). No interaction effect between fairness and stake
size or a three-way interaction effect was found with this strict
threshold. Using a voxel-wise genetic modeling analysis, we
found no strong evidence to support a genetic contribution
either in regions showing greater activity when facing a fair
proposal than an unfair proposal or in regions showing the main
effect of proposer type and of the stake size and their interaction
effect.

Discussion
This study aimed to investigate genetic contributions to the
neural basis of psychological processes induced by unfairness
during the UG. We found that the rejection decision for
unfair proposals was heritable independent of stake size or
proposer type. Furthermore, we found that genetic contributions
to the brain activity evoked by unfair compared to fair proposals
during the UG located in the bilateral anterior insular cortices.
These findings suggest that the psychological process supported
by the anterior insular cortex during the UG was heritable.

We implemented identical monetary payoff for fair and
unfair proposals in the UG task. This design makes it possible
to separately examine the impact of fairness and monetary
self-interest on the decisions of the responders. We found that
fairness per se can affect the decision-making of the responder
in the UG after excluding the influence of monetary incentives.
In addition, the rejection decision for unfair proposals was
heritable in our Han ethnic twins, which is consistent with
the findings in a Swedish population (Wallace et al., 2007). This
repeatable observation across ethnicities indicates that genes
account for the part of inter-individual differences involved
in deciding whether to punish others by costing themselves.
Particularly, we found that the genetic contribution to the
rejection of unfair proposals was independent of stake size or
proposer type, suggesting that this influence stably existed in
different social contexts, such as the proposal being from a real
person or a computer and with different stake sizes (high or
low).

The main concern of the current research is to investigate
the neural basis by which psychological process is under genetic
control when the participants face unfair proposals during the
UG. When we compared the brain activity evoked by unfair
proposals and that evoked by fair proposals during the UG, we
found that the bilateral anterior insular cortices, lateral PFC,
lateral parietal cortex and dorsal ACC showed stronger activ-
ity, consistent with previous studies (Sanfey, 2007; Feng et al.,
2015). Based on dual-system theories (Satpute and Lieberman,
2006; Lieberman, 2007), in our UG task, the regions involved
in System 1 included the bilateral AI and dorsal ACC and the
regions in System 2 included the lateral PFC and lateral parietal
cortex. Furthermore, we examined the genetic contribution to
these unfairness-evoked brain activities to uncover the neural
basis of this fairness normative decision. Among these regions,
only the activities of the bilateral AI were moderately controlled
by genetic factors. The AI plays a crucial role in the norma-
tive decision of responders. Previous studies emphasized on
the role of AI in negative emotion and interoceptive sensation
(Sanfey et al., 2003; Harlé and Sanfey, 2007; Grecucci et al., 2012;
Harlé et al., 2012); however, recent evidence suggests its role
in cognitive heuristics to detect norm violations (Civai et al.,
2012; Corradi-Dell’Acqua et al., 2014). As a straightforward and
parsimonious account for the variety of cognitive and emotional

tasks in which the AI has been found to play a role, the activation
of AI in the UG can be interpreted as a signal of deviation from
an expected outcome (Civai, 2013). This is consistent with a
particular role of the AI in bias or error detection (Preuschoff et
al., 2008; d’Acremont et al., 2009; Chang et al., 2013; Xiang et al.,
2013). In the context of our UG task, there were two candidates
for prediction error: the violation of fairness norm and the
unexpected offer amount. Although both of these prediction
errors could induce activity in the AI, we observed increased
activity in the AI only when comparing unfair proposals with
fair proposals, both of which were set with the same monetary
incentive. Therefore, our study provides clear evidence that the
AI may be activated by the bias between the externally presented
proposals and the internalized social norm (fairness) of the
responder and thus may reflect an intuition of fairness norm
violations. This detection of norm violation happening in the
initial evaluation on the proposals is one of the psychological
components implicated in System 1 (Feng et al., 2015).

Along these lines, our finding that genetic factors contribute
to the activity of bilateral AI induced by unfairness suggests that
the neural basis of intuition of fairness norm violations is under
genetic control. This is compatible with development studies on
fairness preference, an intuitive process. These studies found
that children as young as 2 years demonstrated preferences for
fairness in UGs (Li et al., 2016), and a more general predisposition
toward altruism even can be observed in infants (Warneken and
Tomasello, 2006). The appearance of fairness preference in the
first stage of life suggests that the intuition reaction related to
fairness norm violations has an innate basis. Our study provides
the first evidence that the neural basis underlying this fairness
intuition is under genetic control.

In this voxel-wise search for genetic contributions to brain
activity in the current study, we find no strong evidence for her-
itability of regions related to reflective and deliberate process,
i.e. integrating both self-interest and a fairness norm to regulate
the intuitive system to permit more flexible decision-making
(Sanfey et al., 2006; Feng et al., 2015). This finding contradicts
previous speculation on the heritability of System 2 based on
its close relationship with genetically determined general intelli-
gence and working memory (Evans, 2008), which is under genetic
control (Devlin et al., 1997; Blokland et al., 2011). However, the
impact of general intelligence and working memory on UG per-
formance has been sparsely addressed in the literature. General
intelligence was not predictive of reciprocity outcomes when
investigating whether individuals would reciprocate ‘generosity’
shown from other proposers (Ben-Ner et al., 2004), and cogni-
tive abilities including working memory were not significant in
predicting the responder’s rejection behavior in the UG (Nguyen
et al., 2011). The lack of contribution of general intelligence and
working memory in the UG may account for the current obser-
vation that no significant genetic contributions to the activity of
regions related to reflective and deliberate process.

Culture and gene co-evolution models (Boyd and Richerson,
1985; Gintis, 2003; Fehr and Fischbacher, 2004) provide a
theoretical account for our finding that psychological processes
supported by the AI are moderately heritable. This dual-
evolution model posits that human evolution of social norms has
been substantially influenced by the interaction of our cultural
and genetic inheritance systems (Chudek and Henrich, 2011).
Computational model studies also suggest that fairness is a
product of natural selection and that compliance with a fairness
norm has advantages in evolution (Young, 1993; Ellingsen, 1997;
Nowak and Sigmund, 2005; Rand et al., 2013). This intuition to
fairness norm violation may be hardwired into human nature

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsz031#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsz031#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsz031#supplementary-data
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by natural selection, while culture (or experience) shapes our
social behavior with its interaction with genes, and thus the
costly punishment behavior is partly under genetic control.

There are several limitations to this study. Although twin
studies can suggest that brain activity induced by fairness is
partially hardwired, more efforts are needed to identify specific
genes in charge of this brain process. Second, the current study
only focused on brain activity induced by fairness, which may
not causally determine the responder’s choice. Although the
seminal work of Sanfey found a correlation between the anterior
insula and acceptance rate (Sanfey et al., 2003), no study has pro-
vided evidence for a causal role of the AI in costly punishment
(Gabay et al., 2014; Gu et al., 2015). Third, the neural components
of System 1 and System 2 may interact with each other to yield
costly punishment; future studies need to investigate the func-
tional interaction between the neural components of System 1
and System 2 using functional or effective connectivity, such as
dynamic causal modeling (Friston et al., 2003).

In summary, this study provides evidence for genetic
contributions to costly punishment of the responder and its
neural basis during the UG. The genetic factor influences the
brain activity evoked by unfair proposals in the bilateral insular
cortices, suggesting the detection of fairness norm violation
is partially hardwired into our brain. Our findings shed more
light on the brain processes underlying costly punishment and
provide an additional level of evidence for the discussion of the
motives underlying this behavior.
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