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Abstract: Multiplex lateral flow immunoassay (LFIA) is largely used for point-of-care testing to detect
different pathogens or biomarkers in a single device. The increasing demand for multitargeting
diagnostics requires multi-informative single tests. In this study, we demonstrated three strategies
to upgrade standard multiplex LFIA to multimodal capacity. As a proof-of-concept, we applied
the strategies to the differential diagnosis of Human Immunodeficiency Virus (HIV) infection,
a widespread pathogen, for which conventional multiplex LFIA testing is well-established. In the
new two-parameter LFIA (x2LFIA), we exploited color encoding, in which the binding of multiple
targets occurs in one reactive band and the color of the probe reveals which one is present in the
sample. By combining the sequential alignment of several reactive zones along the membrane of
the LFIA strip and gold nanoparticles and gold nanostars for the differential visualization, in this
demonstration, the x2LFIA can furnish information on HIV serotype and stage of infection in a
single device. Three immunosensors were designed. The use of bioreagents as the capturing ligand
anchored onto the membrane or as the detection ligand labelled with gold nanomaterials affected the
performance of the x2LFIA. Higher detectability was achieved by the format involving the HIV-specific
antigens as capturing agent and labelled secondary bioligands (anti-human immunoglobulins M and
protein G) as the probes.
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1. Introduction

The use of point-of-care test (POCT) has been extensively employed in developing countries,
where laboratory settings are often unavailable [1]. The lateral flow immunoassay technique (LFIA) has
been extensively employed for setting up POCT, as it meets all requirements established by WHO for
this kind of tests [2]. Its application spans from healthcare to farming hazard assessment, by screening
disease-relevant biomarkers, bacteria, viruses, toxins, contaminants and so forth [3,4]. In the last
decade, the increasing demand for simultaneous detection of multiple biomarkers in a single assay,
has resulted in the development of unnumbered multiplexed LFIAs [5–8]. In a typical multi-target LFIA,
the number of information items corresponds to the number of test lines drawn on the strip. One of
the main applications of LFIA is their use for diagnosing infectious diseases the multiplexing approach
can be used for different purposes: serotyping [9], infection stage differentiation [10,11], discrimination
between similar infections [12]. However, reacting bands cannot be increased endless and thus the
number of information that can be obtain in a single test is limited to few [13,14]. Multiplexing
approaches exploiting probes with tuneable signals have been reported, based on fluorescence and
chemiluminescence encoding [15–17]. Nevertheless, these approaches need instrumentation that
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limits on-field applications. Dual-color probes, such as gold nanoparticles (GNP) and gold nanostars
(GNS) [18] or silver nanoparticles (SNP) [19] functionalized with antibodies were used in previous
studies to develop multiplexing LFIA in which the differentiation of the probe enabled distinguishing
the target [18,20,21].

Here, we propose a two-parameter multiplexing LFIA strategy (x2LFIA), which combines multiple
lines and the color-encoded approach to expand the number of information achievable within a single
strip test. The work aims at demonstrating the feasibility and the potentiality of the x2LFIA approach
to get a tetravalent information in a two-line and two-color assay.

As a proof-of-concept of the multimodal approach, we used a set of immunoreagents for the
diagnosis of the Human Immunodeficiency Virus (HIV) infection. HIV is one of the main fields of
application of point-of-care testing since it still has a severe impact on society [22] and especially in
low-resource settings. POCT diagnostics involving conventional and multiplex LFIA for HIV are
well-established [23]. HIV testing rely typically on the detection of the serological response to the
infection. In particular, antibody-screening LFIAs discriminate between HIV1 and HIV2 serotypes by
exploiting the specificity of the recognition between the type-dependent viral proteins and the human
anti-HIV antibodies [24]. Recombinant envelope glycoproteins gp41 and gp36 are generally used
as the antigens to specifically recognize HIV1 and HIV2 antibodies, respectively [25,26]. The spatial
resolution is the most common strategy to multi-targeting the single assay [27–33]. For instance, in a
typical HIV serotyping test, the discrimination is made by coating the specific antigens in two spatially
confined bands (test lines) (Figure 1a) and anti-HIV antibodies are indiscriminately revealed by labelled
secondary antibodies as the signal reporters. The anti-HIV antibodies form immunocomplexes with
the labelled secondary antibodies and are captured by the antigens at the test lines. This results in the
accumulation of the signal reporters with the formation of colored lines. On the other hand, the double
antigen approach has been reported also. In this case, the probe is represented by the labelled antigen
and the sandwich-type complex comprises the anti-HIV antibody bridging two antigens, one anchored
to the support (capture) and the second one labelled (detection). In microplate-based ELISA this
approach was shown to increase specificity and sensitivity and some LFIA formats adopted this
strategy [34,35].

The serological response to infection involves the production of different classes of immunoglobulins,
which follows a typical temporal pattern, in which immunoglobulins M (IgM) are produced first,
followed by immunoglobulins G (IgG) [36,37]. Then, the IgM/IgG ratio is exploited for identifying the
stage of the infection [38,39]. HIV testing embedding both serotyping capability and infection stage
discrimination are not available currently. We combined the two discrimination levels in a single test as
the illustration of the potential of the multimodal approach.

Variously combining specific bioreagents as capturing agents coated onto the nitrocellulose and
signal reporters conjugated to GNP and GNS two xLFIA and three x2LFIA immunosensors were
designed and their performance investigated.

For the studying x2LFIA immunosensors and comparing their performance, we used gp41 and
gp36 to bind specifically the two HIV serotypes and protein G and anti-human immunoglobulins
M (anti-hIgM) secondary antibody to bind IgG and IgM, respectively. The three immunosensors
differed each other by the role and position that immunoreagents played in the assay. Immunosensor 1
used secondary bioligands (e.g., protein G and anti-hIgM) as the capturing agents and the GNP/GNS
-labelled HIV antigens as the probes. Immunosensor 2 was the exact reverse. The two HIV antigens
were coated on the test lines and acted as the capturing agents while secondary bioligands were
labelled with two distinct signal reporters. Immunosensor 3 relied on the double antigen strategy,
where HIV antigens were used both for capture and for signal reporting, both linked to the red
GNP. The blue-labelled anti-hIgM was added to add the information on infection stage. Generally,
the double antigen approaches are reported as more sensitive than other formats, precisely because of
its selectivity [13]. The three immunosensors were tested using a panel of control sera for investigating
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the ability to combine the spatial and color resolution to provide multiple response and for elucidating
the effect of the role played by the immunoreagents on the immunosensors performance.
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Figure 1. Conceptual framework of the new generation multiplexing LFIA with the addition of a
dual-color probe: state-of-the-art in multiplexing (a) schematic of the possible use of red and blue
colored gold nanomaterials to discriminate HIV1 and HIV2 (b) and to merge the two information items
in a single test line (c). Results from a known negative, a HIV1 positive, and a HIV2 positive serum
samples, respectively are also shown to confirm the feasibility of the xLFIA (d) and x2LFIA (e).

The importance of multiplexing is growing day by day, parallel to the comprehension of the
relevance of intersecting information on several biomarkers at one time [40–43]. This study discloses
the possibility to expand the multiplexing capability of the LFIA platform for multi-target screening
tests without requiring expensive instrumentation for miniaturized spots reading.

2. Materials and Methods

2.1. Chemicals and Materials

Gold (III) chloride trihydrate (ACS reagent), hydroquinone, streptococcal protein G, sodium
caseinate, anti-human IgM (µ chain specific) antibody produced in goat, and bovine serum albumin
(BSA)were purchased from Sigma–Aldrich (St. Louis, MO, USA). Tween20 and other chemicals were
of analytical grade and were obtained from VWR International (Milan, Italy). HIV-antigens gp36 and
gp41 were purchased from Arista Biologicals Inc. (Allentown, PA, USA). Casein-biotin for conjugation
to GNPs was obtained from In3diagnostics (Torino, Italy). Nitrocellulose membranes with cellulose
adsorbent pad (CNPC-SS12-L3-P25) and sample pads (FR-1) were purchased from MDI membrane
technologies (Ambala, India), while conjugate pads (GF) were obtained from Merck Millipore (Billerica,
MA, USA).
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2.2. Synthesis of Gold Nanoparticles and Gold Nanostars

Spherical gold nanoparticles (GNP) were synthesized by the usual tetrachloroauric acid reduction
with sodium citrate [44]. GNP to be used as probes were obtained by adding 1.0 mL of sodium citrate
(1%) to 100 mL boiling aqueous tetrachloroauric acid (0.01%, w/v) under vigorous stirring. GNS were
synthesized through a seeding growth approach using a stepwise reduction of Au(III) to Au(I) by
citrate and Au(I) to Au(0) by hydroquinone. The protocol followed one previously reported [20] and
involved the synthesis of GNP seeds with a localized plasmon resonance (LSPR) band centered at
517 nm. These were obtained as described above, except for the volumes used, which were 0.6 mL of
1% w/v sodium citrate added to 30 mL of 0.01% tetrachloroauric acid.

For GNS preparation, 1.9 × 10−8 mol of tetrachloroauric acid was mixed with 9.3 × 10−13 mol of
GNP seeds and 7.5 × 10−9 mol of sodium citrate. The mixture was stirred for 2 min at room temperature.
Then, 3.0 × 10−5 mol of hydroquinone was rapidly under vigorous stirring. The solution was kept
under stirring at room temperature for further 20 min.

2.3. Labelling Immunoreagents with GNPs and GNSs

The red-colored GNP-gp36 conjugate was prepared by adsorbing the gp36 antigen onto the
GNP surface. In detail, 10 mL of GNP (optical density ca. 1) was basified with carbonate buffer
(50 mM pH 9.6) to pH 8 and added dropwise with 100 µg of gp36 antigen under gentle stirring at room
temperature for 40 min. Next, 1 mL of casein (5% in borate buffer) was added and reacted for 10 min
to saturate the free GNP surface. GNP-gp36 was recovered by centrifugation (8000× g 10 min) and
washed with borate buffer supplemented with 0.5% casein. Finally, the GNP-gp36 was re-suspended in
the CAS-storage buffer (borate buffer with 0.5% casein, 0.25% Tween 20, 2% sucrose and 0.02% sodium
azide) and stored at 4 ◦C until use. The red GNP-gp41 and GNP-biotin conjugates were obtained
by the same procedure. The blue-colored GNS-gp41 and GNS-anti IgM conjugates were prepared
likewise, except that GNS with optical density ca 0.6 were used and reacted with 10 µg of protein.
For the GNP-protein G conjugate, 10 mL of GNP was brought to pH 6 with carbonate buffer and added
with 20 µg of protein G under gentle stirring at room temperature for 40 min. Next, 1 mL of BSA
(10% in borate buffer) was added and reacted for 10 min to saturate the free GNP surface. GNP-protein
G was recovered by centrifugation (8000× g, 10 min) and washed with borate buffer supplemented
with 1% BSA Finally, the GNP-protein G was re-suspended in BSA-storage buffer (borate buffer with
1% BSA, 0.25% Tween 20, 2% sucrose and 0.02% sodium azide). Successful conjugation of proteins to
gold nanomaterials was confirmed by UV-vis spectroscopy (Figure 2e,f).

2.4. LFIA Strip Preparation

The configurations of the preliminary LFIA immunosensors and of the three formats of x2LFIA are
shown in Figures 1 and 2. All strips were prepared by dispensing the immunoreagents on nitrocellulose
membranes (CNPC-SS12-L3-P25) employing an XYZ3050 platform (Biodot, Irvine, CA, USA).
Immunoreagents were diluted in phosphate buffer (20 mM, pH 7.4) to a concentration of 0.5 mg/mL
and were dispensed at a flow rate of 1 µL/cm, keeping 4 mm between the lines. The concentration of
0.5 mg/mL was chosen as the best compromise between signal intensity and non-specific interaction with
the GNP and GNS conjugates. After coating, membranes were dried at 37 ◦C for 60 min under vacuum.
The conjugate pads were previously saturated with borate buffer supplemented with 0.25% Tween 20,
2% sucrose and 0.02% sodium azide, dipped into the proper probe solution at optimal optical density
(2–3) and dried for 3 h at room temperature, protecting from light and dust. Strips were composed
by layering the NC membrane with the sample and the conjugate pads and cutting (4 mm width) by
CM4000 guillotine (Biodot, Irvine, CA, USA). Strips were finally included into plastic cassettes (Kinbio,
Shangai, China) to obtain stand-alone LFIA devices.
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Figure 2. Spectroscopic characterization of gold nanomaterials: images obtained by high-resolution
transmission electron microscopy of the GNP (a,b) and GNS (c,d), and visible spectra of bare GNP
(e) and GNS (f) and of the conjugates to bioreagents. Insets show a magnification of the LSPR band
region. Blue shifts witness increased dimensions due to the absorption of both the antigen and the
saturation protein.

2.5. Serum Samples

Control sera used in the study are listed in Table 1. Negative, HIV1 and HIV2 positive
samples (#10, #8 and #5 respectively) and HIV1 seroconverting positive samples were from Zeptometrix
International FDA approved HIV- panels. Samples X (9081-03), Y (9089-06) and Z (9019-03) were taken
after 27, 26 and 38 days from infection, respectively.

Table 1. The human serum samples from panels used in the study: one negative (#10), two fully
seroconverted samples (#8 and #5) and 3 early-infected HIV1 positive samples.

ID (#) Serotype Type Elapsed from Infection (Days) Seroconversion

NEG (#10) Negative - -
HIV1 (#8) HIV1 >90 complete
HIV2 (#5) HIV2 >90 complete

X (9081-03) HIV1 27 In progress
Y (9089-06) HIV1 26 In progress
Z (9019-03) HIV1 38 In progress

2.6. The LFIA Test Procedure

Serum samples of the HIV panels were diluted 1/10 in the dilution buffer (phosphate 20 mM
buffer, pH 7.4 with 1% BSA, 1% Tween20); 80 µL of the mixture was applied to LFD device and the
results were visually inspected after 10 min.

The immunosensors were designed as qualitative ones, and the results were interpreted visually
by comparing the color of the test lines with the one of the control lines to judge on the red/blue balance.
However, to confirm visual judgements, we estimated red and blue color contribution to mixed lines
by a RGB analysis, as detailed in Di Nardo et al. [18]. Briefly, the blue and red color channels were
plotted as histograms and a threshold approach was applied to count the number of pixels for each
channel. The R and B colors measured at the test line were normalized by the corresponding one
measured at the control line.
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3. Results and Discussion

3.1. Design of Multimodal LFIA Immunosensors

Preliminary, we investigated the applicability of the signal resolution obtained through labelling
the specific recognition elements with dual color gold nanomaterials (e.g., gold nanospheres, GNP and
gold nanostars, GNS). Gold nanomaterials were prepared as previously reported [18,20] and were
characterized through transmission electron micrography and UV-vis absorption. GNP were almost
spherical, mono-dispersed and with a mean diameter of ca. 30 nm (Figure 2a,b) The UV-vis spectrum
showed a localized surface plasmon resonance (LSPR) band centered at 525 nm (Figure 2e), which
corresponded to the perception of a ruby red color. GNS exhibited a blue color that was confirmed by
the position of the LSPR band centered at ca. 620 nm (Figure 2f). Transmission electron microscopy
images showed nanomaterials characterized by larger diameters (ca. 70 nm) and a star-like structure
(Figure 2c,d).

We employed them in a conventional two-line serotyping strip based on the double antigen
approach and labelled the HIV1 specific antigen (gp41) with GNS (blue) and the HIV2 specific antigen
(gp36) with GNP (red), respectively (Figure 2e,f) to verify the functionality of the in-house prepared
LFIA strips and of probes. The model LFIA was a rapid test for HIV1/2 antibodies detection developed
by Primalab srl and under evaluation of the performance according to EC directive 2009/886 [45].
In the traditional format, the antigens were both labelled by GNP and deposed to form two test lines
(Figure 1a). Selectivity and affinity of the labelled antigens towards HIV1/2 antibodies and their
specificity towards other serum components (e.g., other proteins) were then assumed based on the
performance of the traditional test.

To this aim, a protocol to prepare stable gold nanomaterials-antigen probes was established.
In particular, the use of high amounts of casein (5%) in the saturation step stabilized GNP and GNS
antigen conjugates and protected from non-specific interactions (see Supplementary Materials for
further details). However, the use of casein to protect gold nanoprobes from aggregation, led to the
partial inhibition of the specific interactions, as well. Finding a compromise in the use of casein was
needed to equilibrate the S/N ratio.

The amount of capture bioreagents and probes was adjusted to reach clearly perceivable coloring
at test lines (details on LFIA immunosensor setting up are reported in the Supplementary Materials).
The blue GNS-gp41 and the red GNP-gp36 probes were mixed and included in the conventional
xLFIA for HIV serotyping. An additional (red) GNP-biotin probe was added to form the signal at
the control line, which comprised avidin. In fact, the setup of the double antigen approach includes
an independent system to create the control line, not influenced by the specific probes, which can be
regarded as a limitation of the strategy.

There was no mutual interference between the different signal reporters; no false positive signals
were observed by applying the control negative sample, while HIV1 and HIV2 positive samples were
correctly assigned on the basis of the position of the line and on the color of the probe (Figure 1b).

The mix of probes was then applied to a device with a single test line formed by a mix of the
two antigens to compress the two information items in a single line (Figure 1c) and to achieve the
signal resolution that we also have called “color-encoding” strategy [18]. If the stability and the
absence of mutual interference was maintained no color change on respect to the two-line system was
expected, since HIV-antibodies to gp36 and gp41 are known to do not cross-react with each other [46].
The absence of any false positive results due to non-specific binding and the correct assignment of the
serotype based on the “color code” was verified in these conditions. The color code was defined as
follows: a red coloring of the test line was interpreted as positivity associated to HIV2 serotype while
the blue color indicated positivity again but due to HIV1 serotype, finally no coloring of the test line
meant absence of any serological response and thus negativity (Figure 1c).

Based on the results from these preliminary studies, three different x2LFIA immunosensors were
designed to disclose the potential of the multimodal strategy to combined multiple information in
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a single device. In this illustration, the prototypes allowed four information items to be obtained
from two lines and two probes for the discrimination of the serotype (HIV1/HIV2) and of the class of
immunoglobulins IgG/IgM) present in the patient’ serum. Therefore, we introduced two additional
bioligands specific to IgM (anti-human IgM) and IgG (protein G), respectively. Two out of the three
immunosensors varied for the role played by immunoreagents (capture or detection) in the typical
serological immunometric assay and the third was designed to apply with the double antigen approach.

The format of immunosensor 1 included secondary ligands (anti-human IgM and protein G)
separately coated on two test lines to capture anti-HIV antibodies. Therefore, the spatial resolution
allowed for discriminating the immunoglobulin class. The differentiation of the serotype was realized
on each line by employing the two signal reporters, namely GNS-gp41 to reveal HIV1 and GNP-gp36
to reveal HIV2, respectively. The GNP-biotin probe was added to form the control line (Figure 3a,
Immunosensor 1). In the second immunosensor, the role of capturing and detection reagents was
inverted. Hence, the first gp36-coated test line captured anti-HIV2 antibodies and the second
gp41-coated test line captures anti-HIV1 ones. By using (blue) GNS-anti-IgM antibody and (red)
GNP-protein G as the signal reporters, we expected a blue response for very early infection and a
progressive red shift proportional to seroconversion rate on each test line. (Figure 3b, immunosensor
2). In this secondo format, the control line comprised protein G, which was able to capture both probes
and then directly reflected their stability.

The set-up of coated antigens described for immunosensor 2 was maintained for designing
immunosensor 3. Instead, the mix of signal reporters included the two antigens both labelled with
GNP (red) and the anti-human IgM labelled with blue GNS.

The total antibody response was red colored such as in a conventional double-antigen assay based
on the two-line set-up. However, the presence of specific IgM turned the color of the line to violet,
due to accumulation of the blue GNS-anti-human IgM probes. (Figure 3c, Immunosensor 3).

3.2. Performance of the x2LFIA Immunosensors for HIV Serotyping and Discrimination of the Infection Stage

To investigate the multiplexing capability of the three multimodal approaches and to compare their
performance, the x2LFIA formats were tested by control human sera (Table 1). Results were visually
observed and captured by common smartphone cameras. The images were processed and compared
as relative intensities of the red and blue components of the colorimetric signal. The comparative
study on immunosensors 1 and 2, which differed for the role played by immunoreagents, and with
immunosensor 3, which differed for the assay format, were investigated in terms of detectability and
specificity in correlation to what is expected by the control samples.
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Figure 3. Scheme of the three immunosensors of x2LFIA unlocked by the combining spatial resolution
with dual color gold nanomaterials. The binding and colored results expected for a negative and a
HIV1 positive sample containing both IgG and IgM (early infected) is depicted. The three formats
varied for the role played by immunoreagents as follows: (a) HIV-specific antigens were labelled and
reacted with anti-HIV antibodies in the sample, which were then captured by anti-hIgM and protein
G coated to form test lines (immunosensor 1); (b) HIV-specific antigens were coated and captured
anti-HIV antibodies, which were revealed by labelled anti-hIgM and protein G (immunosensor 2);
and (c) HIV-specific antigens were both coated and labelled and reacted with anti-HIV antibodies
to form a double antigen sandwich. The addition of the blue-labelled anti-hIgM to the red-labelled
antigen provided the additional information on the infection stage (immunosensor 3).

Details on the immunosensors format and on interpretation of the results are reported in Table 2.
The three x2LFIA formats were tested with control human sera and with samples from

seroconversion panels, which were supposed to contain anti-HIV1 IgM. The outcomes considerably
differed among the immunosensor formats, both in the color encoding response and in terms of
detectability (Figure 4). All x2LFIA immunosensors correctly assigned the fully seroconverted positive
samples and did not show non-specific binding with the negative sample. Immunosensor 1 provided
a single test line at the T1 (IgM) or at the T2 (IgG) position, blue colored for HIV1 positive and red
colored for HIV2 positive sera, respectively. The seroconverting samples resulted in two blue-colored
test lines, where the variable IgM/IgG ratio reflected in the relative intensities of the two lines (Figure 4,
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immunosensor 1 and 5a). Samples X and Y showed coloring at both lines, with a slight disproportion in
favour of T1 (IgM) for sample X. On the contrary, sample Z showed an evident preponderance of IgG.

Table 2. Schematic of the xLFIA and x2LFIA formats used in this study.

Reporter Capture

Format Adsorbed on GNP Adsorbed
on GNS

Optical Density
(Ratio) b

Test Line
1 (T1)

Test Line
2 (T2)

Control
Line (C)

xLFIA
A gp36 biotin a gp41 2.5 (1 + 0.5 + 1) gp36 gp41 avidin
B gp36 biotin a gp41 2.5 (1 + 0.5 + 1) gp36/gp41 - avidin

x2LFIA
1 gp36 biotin a gp41 2.5 (1 + 0.5 + 1) anti-IgM protein G avidin
2 protein G anti-IgM 3 (1.5 + 1.5) gp36 gp41 protein G
3 gp36 gp41 anti-IgM 3 (1 + 1 + 1) gp36 gp41 protein G

a to form the control line, b the probes were mixed to reach the optical density in variable ratio.

In general, largely lower intensities were obtained from immunosensor 1 on respect to other two
x2LFIA formats. Immunosensor 2 provided a red colored test line at T2 position for HIV1 positive,
and at T1 position for HIV2 positive sera, respectively. The three seroconverting samples resulted in a
single violet test line at the T2 (HIV1) position, which intensity varied (Figure 4, immunosensor 2).
Serum X provided a signal at the test with a larger contribute of the blue probe compared to the control
line indicating the prevalence of blue-labelled anti-hIgM, while serum Z showed a red-purple color
at the test line, witnessing the prevalence of the red GNP-protein G reporter (Figure 5b). Compared
to immunosensor 1, using anti-hIgM antibody and protein G for signal reporting and the antigens
as capturing agents instead of the opposite increased the detectability (Figure 4). We argued that the
difference on the fact that probes disposed of longer time to bind to their targets (because they are
mixed with the sample and reacts during flowing), while capturing reagents should be particularly
efficient as the time of contact with the target was limited. Alternatively, we guessed that the different
flow rate of the HIV-specific antibodies compared to non-specific immunoglobulins present in the
serum samples determined the observed behavior. In format 1, anti-HIV antibodies bound to the
GNP-labelled antigen and were slower than unbound non-specific antibodies. Probably, the faster
unbound immunoglobulins reached the lines of capturing reagents first so inhibiting the following
binding of the specific ones linked to GNPs. In immunosensor 2 all immunoglobulins bound to GNP
probes and moved with the same velocity, while immunosensor 3 eliminated the competing binding of
non-specific immunoglobulins, as it included only HIV-specific bioreagents. Immunosensor 1 and
2 furnished spatially separated outcomes, as a “two-line x two-color” response. Immunosensor 3
showed a single red colored test line, at the T2 position for HIV1 positive and at the T1 position for
HIV2 positive sera, respectively. In the absence of anti-HIV IgM, the results from the immunosensor
3 overlapped the ones from immunosensor 2. Serum belonging to individuals with late infections
(HIV1 and HIV2) provided a response indicating the sole presence of immunoglobulins G (Figure 4,
immunosensor 3). Compared to immunosensor 2, the signal intensity was almost unaffected by the
change of the probes. The sensitivity was supposed to be boosted by the double antigen approach;
however, we did not observe relevant improvements, except on serum Y. The presence of the blue
GNS-anti-hIgM antibody provoked a violet-shift in the presence of anti-HIV IgM, because of the
additive effect of red and blue probes. The three seroconverting samples resulted in a single intense
violet test line at the T2 (HIV1) position. Patient Z resulted in an almost red line, suggesting the
prevalence of IgG, while sample X and Y provided a blue-shifted line, which indicates the presence of
IgM, besides IgG (Figure 5c).

The classification of the three seroconverting sera (X, Y, and Z) was coherent within the
immunosensor formats. Anti-HIV1 IgM significantly contributed to the serological response for
patients X and Y indicating very early infection, while patient Z was assigned as having predominantly
IgG, though some IgM were also revealed.
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Zeptometrix panels.

The outputs of x2LFIA were in agreement with the time of blood collection from infection, as well.
Serum Z (9019-03) was a sample taken 38 days from infection, while the other two were from earlier
sampling (27, 26 days). The color evaluation, though susceptible of subjective interpretation was
facilitated by the comparison to the control line, which acted as a sort of internal reference, besides
confirming the validity of the assay, as usual. Immunosensor 3 appeared to be more sensitive to
IgM variation in a narrow interval compared to others. Noticeably, immunosensor 3 added the
discrimination ability by simply including an additional probe with differentiable signal to the standard
double antigen set-up.
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Format 1 and reported as a function of line positioning (a). Red (R) and blue (B) components were
extracted and measured for Formats 2 and 3 as reported in Di Nardo et al. [18] (b,c). Color at test lines
was normalized for the corresponding one measured at the control line. Analysis were repeated in
triplicate and mean RSD% were calculated between 4 and 16%.
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Multiplexing LFIA based on differentiable color probes are conventionally based on using latex
microparticles embedding dyes with different adsorption peaks [47,48] and noble metal nanoparticles
showing localized plasmon resonance bands at variable wavelengths according to their size and
shapes [17,20,21].However, these approaches involves aligning several lines along the strip to
differentiate the target to be detected and the color of the probe is simply exploited to help simplifying
the visual reading of the result. Here, we designed a two-parameter strategy, in which the color
and space resolution were combined to expand the number of analytes simultaneously detected by
a single device. As a proof-of-concept, dual color probes (i.e., red and blue gold nanomaterials)
were combined with a two-line arrangement of capturing ligands to reach a 2 × 2 analytical platform
(x2LFIA). Theoretically, the strategy could be implemented by including more than two different probes
and by aligning more than two test line. In this regards, the use of latex microspheres embedding dyes
will increase further the number of information that could be furnished by a single device.

4. Conclusions

The use of LFIA devices for HIV diagnosis is well-established and largely diffuse, as such we use
it as the model as a proof-of-concept to verify the feasibility of the multimodal approach combining
the spatial resolution with color encoding to expand the multiplexing capability of the LFIA platform.
Taking advantage of the unique spectroscopic properties of gold nanomaterials and the simplicity
of their conjugation with proteins (antigens and antibodies) by passive adsorption, three x2LFIA
immunosensors were designed. Immunosensors were explored in this work, to investigate the
ability of differentiating serum samples belonging to individuals with different serological conditions.
We investigated, also, the impact of changing the role of immunoreagents, in the x2LFIA set-up,
showing that it strongly affected the detectability of the assay. Moreover, we designed a strategy
enabling the discrimination of the antibody class that can be embedded in the conventional double
antigen strategy.

In conclusion, we introduced a general route to enlarge the number of information achievable
within one LFIA strip as the product of the number of probes for the number of lines, conserving the
one-step and equipment-free operability.
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