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Abstract

The use of RNA transport elements from different viruses can provide novel attributes to HIV-1-based gene delivery systems
such as improved safety or Rev independence. We previously described an HIV-1 based gene delivery system that utilized
the simian immunodeficiency virus Rev-response element (RRE) in place of the HIV-1 RRE. Despite the use of Rev for the
production of vector stocks, we showed the utility of this system for delivery of Rev M10, a dominant-negative mutant of
HIV-1 Rev, into T-cells. Here, we investigated the use of RNA transport elements from Mason-Pfizer monkey virus or MPMV
for the creation of high-titered Rev-free HIV-1-based packaging systems. The HIV-1 gag/pol expression constructs containing
one or more copies of MPMV constitutive RNA transport element (CTE) were used to package similarly modified gene-
transfer vectors in the presence or absence of Rev. An inverse correlation between the number of CTE modules and Rev
dependency was noted for vector stock production. While packaging systems containing multiple CTEs were resistant to
exogenously expressed Rev M10, the titers of vectors encoding Rev M10 were nevertheless reduced in comparison to
vectors encoding only green fluorescent protein (GFP). In contrast, a gene transfer vector encoding the Rev M10 transgene
and containing both RNA transport elements exhibited almost no loss in titer in comparison to a corresponding vector
encoding only GFP. The optimized Rev-independent gene delivery system was used for delivery of Rev M10 transgene into
T-lymphocytes. Upon challenge in single round infection assays with HIV-1, the modified T-cells produced fewer virus
particles than control cells expressing GFP. This Rev-free packaging system may prove useful for targeting the Rev-RRE-Crm1
nucleocytoplasmic RNA transport pathway for inhibiting HIV replication.
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Introduction

Gene delivery systems based on HIV-1 consist of packaging

constructs (also referred to as helper constructs) and a gene transfer

vector [1]. The packaging constructs encode virion structural

proteins such as Gag/Gag-Pro-Pol or Env or regulatory proteins

such as Rev and Tat. The gene-transfer vector provides the

genomic RNA for encapsidation by the virus-like particle

generated by the packaging constructs. The gene transfer vector

lacks protein coding regions of the provirus but retains the

necessary cis-sequences required for RNA transport, encapsida-

tion, reverse-transcription, and integration. The gene-transfer

vector also carries the transgene expression cassette.

The Gag and Gag-Pro-Pol proteins of HIV-1 are expressed

from the full-length or unspliced mRNA. The mRNAs for the Env

and accessory or regulatory proteins encoded by the virus are

derived from the full-length mRNA by alternative splicing [2]. It

follows that the gag/pro-pol region is defined as an intron for

production of spliced mRNA for expression of the other HIV-1

proteins. Normally, in eukaryotic cells, intron-containing messages

are retained in the nucleus and only completely spliced messages

are allowed to exit into the cytoplasm. Thus, the gag/pro-pol coding

region would be spliced out before transport of the mRNA from

the nucleus to the cytoplasm thereby precluding the production of

virus particles. The virus overcomes this checkpoint in cells

through expression of the viral regulatory protein Rev. The Rev

protein binds to a structured RNA element, the Rev-response

element (RRE) present in the envelope coding region, and through

its interaction with host proteins such as Crm1, engineers the exit

of the gag/pro-pol containing message from the nucleus into the

cytoplasm [3,4]. Thus, HIV-1 based packaging constructs contain,

in addition to the gag/pro-pol coding sequence, the HIV-1 RRE

as well. Production of virus-like particles from such a construct

requires coexpression of Rev [5]. The gene-transfer vector RNA,

while lacking most of the gag/pro-pol coding region still retains 59

and 39 splice sites, and therefore requires the RRE in cis and

expression of Rev in trans for production of high-titer vector stock

[1,5].

Simpler retroviruses, such as the Mason-Pfizer monkey virus

(MPMV), do not code for regulatory proteins such as Rev. But

they have to overcome the same checkpoint for expression of the

viral Gag/Gag-Pro-Pol polyproteins. The MPMV contains a

structured RNA element, the constitutive transport element

(CTE). This element functions in cis and does not require

coexpression of a viral Rev-like protein to effect transport and

translation of intron-containing messages [6,7,8]. Instead, the

CTE uses cellular proteins to perform a function analogous to Rev

and RRE. The MPMV CTE can substitute for Rev and RRE in

HIV-1 proviral clones as subgenomic constructs encoding Gag/

Gag-Pro-Pol or Env [5,6,9,10].
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Intriguingly, HIV-1 and MPMV utilize distinct cellular RNA

transport machinery for export of intron-containing messages. The

RNA transport pathway mediated by Crm1 is used by Rev and

RRE [11,12,13] while the MPMV CTE utilizes cellular mRNA

pathway mediated by Nxf1(Tap)-p15(Nxt1). The host proteins

involved in Rev-RRE RNA transport pathway include Crm1 and

the RNA helicase DDX3 [14]. In contrast, the MPMV CTE has

been shown to require host proteins, Tap (Nxf1), p15 (Nxt1),

Sam68 [15,16,17] and the RNA helicase Dbp5 [14]. Sam68 may

be involved in other aspects of HIV-1 gene expression including

the Rev-RRE-Crm1 pathway [18,19,20,21]. An HIV-1 packaging

system based on MPMV CTE would not only allow one to target

Rev function using dominant negative proteins or RNA based

approaches, but also host proteins unique to the Rev-RRE-Crm1

RNA transport pathway [22].

To that end, we created HIV-1 packaging systems containing

one or more copies of MPMV CTE in the packaging or gene

transfer vector constructs. While the CTE-modified packaging

systems were indeed Rev-independent, and consequently not

susceptible to inhibition by a dominant negative Rev mutant, Rev

M10, they provided less than optimal titers. We were able to

rectify this defect by including the RRE of simian immunodefi-

ciency virus (SIVmac239) in the CTE-containing gene transfer

vectors. This novel vector system was used for delivery of Rev M10

into Jurkat T-cells to provide intracellular ‘immunization’ against

HIV-1 replication.

Results

Increasing the number of CTE moieties in packaging
constructs enhances particle production

The HIV-1 Gag and Gag-Pro-Pol encoding packaging

constructs, pGP/1xCTE, pGP/2xCTE and pGP/4xCTE, con-

taining 1-, 2- and 4-copies of CTE (Figure 1A), respectively, were

transfected individually into human embryonic kidney (HEK)

293T cells. For comparison, parallel transfections received pGP/

HIV-1 350 RRE, a packaging construct containing RRE instead

of CTE, together with pCI-HIV Rev, a Rev expression plasmid.

Each transfection also received a secreted alkaline phosphate

(SEAP) expression construct to normalize for transfection

efficiency. The supernatants were harvested 72 h post-transfection

and assayed for HIV-1 virion capsid protein (p24) by ELISA. The

SEAP-adjusted p24 in the spent media of transfected cells is shown

in Figure 2. As anticipated, significant amounts of p24 were

detected in the media of cells transfected with pGP/ 350 HIV-1

RRE only in the presence of Rev. The CTE regulated Gag/Gag-

Pro-Pol expression plasmids demonstrated different levels of p24

production depending on the number of CTE modules present in

the construct. The p24 levels were approximately 50-fold higher

for pGP-2xCTE than for pGP/1xCTE. Likewise pGP/4xCTE

achieved 55-fold higher levels of p24 than pGP/2xCTE. The p24

levels observed for transfections with pGP/ HIV-1 350 RRE with

pCI-HIV Rev were within 2-fold to that seen with pGP/2xCTE.

Thus, pGP/4XCTE in the absence of pCI-HIV Rev achieved 28-

fold higher levels of p24 than pGP/HIV-1 350 RRE with pCI-

HIV Rev.

Creation of a high-titer Rev-free packaging system
requires modification of both packaging and gene
transfer vector constructs with multiple copies of CTE

The encapsidation of genomic RNA from the gene transfer

vector is likely to be determined by the efficiency of nucleocyto-

plasmic transport and by the localization of the vector or full-

length RNA in the cytoplasmic compartment at the site of virion

assembly [23]. We hypothesized that increasing number of CTE-

modules in the gene transfer vector would result in enhanced

cytoplasmic localization of the vector RNA in the absence of Rev.

The enhanced encapsidation would manifest as improved vector

titers. This premise was tested as described below.

The HEK 293T cells were transfected with the pN-GIT72 gene

transfer vector containing 1-, 2- or 4-copies of CTE together with

packaging constructs modified with 1-, 2- or 4-copies of CTE. The

vector expressed the enhanced green fluorescent protein (EGFP)

and a functional seventy-two amino acid Tat protein (Tat 72). One

set of transfections received a plasmid, pCI-HIV Rev that encodes

HIV-1 Rev, while the parallel set included the parent expression

construct, pCI-Neo as negative control. All transfections also

received a VSV-G expression plasmid (pMD.G) as well as a

plasmid encoding SEAP. The resultant vector stocks were used for

infection of naı̈ve HEK 293T cells for determination of vector titer

by flow cytometry [24].

The vector titers, normalized for transfection efficiency using

SEAP levels, are shown in Figure 3A. Vector stocks generated

using pGP/ HIV-1 350-RRE required coexpression of Rev even if

the gene transfer vector contained one or more copies of CTE in

addition to RRE. Thus, very low or background titers were

observed in the absence of Rev but considerably higher levels were

seen in its presence. When pGP/1xCTE, was used for packaging,

all of the CTE-bearing vectors showed similar titers in the

presence and absence of Rev. The only exception was the vector

with only RRE and no CTE modules which showed diminished

titers in the absence of Rev. As anticipated from the particle

production experiments described in the previous experiment, the

vector titers obtained with the packaging construct pGP/1xCTE

were low in the presence and absence of a Rev. In contrast,

packaging constructs pGP/ 2xCTE and pGP/4xCTE achieved

titers that approached those of the control pGP/HIV-1 350 RRE

even in the absence of Rev. This was particularly true of pGP/

4xCTE, which generally provided higher titers than pGP/2xCTE.

For the vector pN-GIT72 lacking CTE, Rev coexpression during

virus stock production was still required with both pGP/2xCTE

and pGP/4xCTE. These results demonstrated that for creating a

Rev-independent packaging system both the packaging and gene-

transfer vector constructs required modification with one or more

copies of CTE.

To correlate vector titers with virus particles, the vector

containing supernatants were tested for HIV –1 capsid (p24)

antigen by ELISA. The p24 values are shown in Figure 3 B. For

vector stocks produced with pGP/HIV-1 350 RRE, the titers were

higher when transfections contained pCI-HIV Rev (Fig 3A). The

titer differences between stocks produced in the presence or

absence of pCI-HIV Rev could be explained by differences in the

p24 levels. For the packaging plasmids containing one or more

copies of CTE, presence or absence of Rev during virus

production, did not affect p24 levels, but the titers were lower in

the absence of Rev (indicated by ‘*’ in Figure 3 B). These results

demonstrated that pCI-HIV Rev was necessary for packaging

gene transfer vectors containing only RRE but no CTE modules.

CTE-based packaging systems are resistant to Rev M10
Having established a Rev-free packaging system, it was of

interest to determine if this packaging system was susceptible to

Rev M10, a dominant negative mutant of wild-type Rev. To this

end, we produced vector stocks, using the CTE-based packaging

system or the HIV-1 RRE/Rev based one, together with

increasing amounts of pCI-Rev M10. The total amount of DNA

added was kept constant by using pCI-neo, the parent plasmid for

creating pCI-Rev M10, as a ‘filler’. We also tested the effect of

Rev-Free HIV-1 Packaging System
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pCI-Rev M10 on reciprocal or combination packaging systems in

which either the packaging or the gene transfer vector contained

CTE while the other construct was regulated by RRE and Rev.

For the Rev-RRE based or the combination packaging systems,

pCI-HIV Rev was also included during vector stock production.

To allow comparison among the different packaging systems, the

vector titers for a particular packaging system were normalized to

the titer obtained in the absence of Rev M10 for that system. The

results are shown in Figure 4. As anticipated, for the packaging

system regulated by Rev and RRE, cotransfection with pCI-Rev

M10 resulted in a dose-dependent decrease in vector titer. In

contrast, the packaging system with CTE in both gene transfer

vector and packaging construct was completely resistant to the

inhibitory effects of Rev M10 at the dosages tested. The reciprocal

or combination packaging systems exhibited intermediate pheno-

types.

Figure 1. Schematic representation of packaging constructs (A) and gene transfer vectors (B). The packaging constructs (A) were created
by inserting the gag/pro-pol coding region from pNL4-3 in pCDNA3 between the human cytomegalovirus immediate early promoter and the bovine
growth hormone poly A signal (BGHpA). The plasmid pGP/HIV-1 350 RRE contains the HIV-1 RRE; while pGP/1-4xCTE contains either 1-, 2- or 4-copies
of MPMV CTE, respectively. The RRE or CTE sequences were inserted between the gag/pro-pol coding sequence and the BGHpA signal. The gene
transfer vectors (B) are derivatives of pN-GIT72 [27]or pN- EF1a-EGFP-WPRE[25]. They were modified to contain 1-, 2- or 4- copies of CTE. The HIV-1
RRE in pN- EF1a-EGFP-WPRE was replaced with the 1045 nt SIVmac239 RRE [24] to create pN- EF1a-EGFP-1x-4x CTE/SIV RRE. The vector pN- EF1a-
EGFP-2A-M10- 4xCTE /SIV RRE is similar to pN- EF1a-EGFP-4xCTE/SIV RRE, but contains EGFP-2A-M10 fusion protein instead of only EGFP. FS: frame-
shift mutation; 59ss: 59 splice site; 39ss: 39 splice site, DY : deletion in encapsidation signal; IRES: encephalomyocarditis virus internal ribosome entry
site; 2A: foot and mouth disease virus 2A protease cleavage factor; CPPT/CTS: central polypurine tract/central termination sequence.
doi:10.1371/journal.pone.0028462.g001

Rev-Free HIV-1 Packaging System
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Diminished titers of CTE-based packaging systems with
gene transfer vectors containing internal promoters

We next wished to determine how CTE modules affected titers

of vectors with internal promoters. For this purpose, we chose the

previously described vector expressing EGFP under control of an

internal EF1a promoter [25]. The gene transfer vector, pN-Ef1a-

EGFP-WPRE, was modified by replacing the woodchuck post-

transcriptional regulatory element downstream of the EGFP gene

with 1-, 2- or 4-copies of CTE. The gene transfer vectors also

contained the HIV-1 RRE (Figure 1 B).

We hypothesized, as with the pNGIT72 based vector

constructs, that a) the packaging/encapsidation efficiency of

genomic RNA from the gene transfer vector would be determined

by the efficiency of nucleocytoplasmic transport and colocalization

of the vector RNA in the appropriate cytoplasmic compartment at

the site of virion assembly, and b) that increasing number of CTE

modules would render the packaging system Rev independent. We

tested this premise as follows.

The HEK 293T cells were transfected with pN-EF1a-EGFP-

WPRE or vectors containing 1-, 2- or 4-copies of CTE together

with pGP/4xCTE. One set of transfections received the plasmid

pCI-HIV Rev that encodes HIV-1 Rev while a parallel set of

transfections received the parent expression construct, pCI-Neo.

All transfections also received a VSV-G expression plasmid

(pMD.G), a Tat expression construct (pCMVtat) as well as a

plasmid encoding secreted alkaline phosphatase (SEAP). The

resultant vector stocks were used for infection of Jurkat-T cells for

determination of vector titer.

The vector titers are shown in Figure 5 A. The results indicate

that the titers were higher in the presence of Rev than in its

absence for the pN-EF1a-EGFP-1xCTE and pN-EF1a-EGFP-

2xCTE vectors. The difference was greater for pN-EF1a-EGFP-

1xCTE than pN-EF1a-EGFP-2xCTE. Even with four copies of

CTE, the vector pN-EF1a-EGFP-4xCTE exhibited a partial Rev-

dependency. This difference was statistically significant (p,0.05;

Table S1 ). Thus, while the results were similar to the pNGIT72

based vectors in exhibiting decreasing Rev-dependence with

increasing number of CTE modules, complete Rev-independence

was not seen even with four copies of CTE in the gene transfer

vector. To determine if the difference between titers of vectors

packaged in the presence or absence of Rev was due to differences

in particle production the HIV-1 capsid protein content in the

vector stocks was measured by p24 ELISA. The results (Figure 5

C) showed that all transfections achieved comparable amounts of

p24 in the presence and absence of a Rev-expression construct.

The difference in p24 levels were within 2.4 fold of the p24 value

for the transfection with control vector containing only HIV-1

RRE while differences in the titer dwere much greater. These data

suggested that the differences in titers could only be attributable to

the Rev-independence of the gene transfer vectors.

Interestingly, the overall vector titers were reduced with

increasing copies of CTE. Thus, as the number of CTE modules

increased, the titer of the vector decreased even in the presence of

Rev (Figure 5 A). The diminished titers were statistically significant

(p value,0.05; Table S1).We addressed this observation by

modifying the vector backbone as described below.

Replacement of HIV-1 RRE with that of SIVmac239
restores titer of vectors containing multiple copies of CTE

We previously demonstrated that the SIV RRE could substitute

efficiently for the HIV-1 RRE in both packaging and gene transfer

vectors [24]. During the course of those studies we observed that

SIV RRE containing vectors displayed slightly higher basal titers

even in the absence of Rev. Moreover, they had the unexpected

property of rendering the packaging system partially refractory to

the inhibitory effects of Rev M10. We hypothesized that

combining both the SIV RRE and MPMV CTE would improve

vector titers without altering the phenotype of resistance to Rev

M10. To this end, we created a series of HIV-1 vectors based on

pN-EF1a-EGFP-WPRE containing the 1045 nt SIVmac239 RRE

in place of the HIV-1 RRE, together with one or more copies of

CTE in place of WPRE (see Figure 1 B). Each of the vectors was

used for production of virus stocks with the packaging plasmid

pGP/4xCTE in the presence and absence of pCI-HIV Rev. The

resultant SEAP-adjusted titers are shown in Figure 5 B and

indicate that replacement of HIV-1 RRE with that of SIVmac239

RRE in CTE containing vectors restored vector titers to near

normal levels. The SIV RRE modified vectors with one or two

modules of CTE were still responsive to Rev in that titers were

higher in the presence of Rev than in its absence. However, the

titers in the absence of Rev were much higher for the vectors with

the SIV RRE than the corresponding vectors with HIV-1 RRE.

Figure 2. Particle production by packaging constructs with RRE
or CTE HEK 293T were transfected with packaging plasmids
pGP/HIV-1 350 RRE, pGP/1xCTE, pGP/2xCTE or pGP/4xCTE. The
transfections with pGP/HIV-1 350 RRE, received either pCI-Neo or pCI-
HIV Rev. The supernatants were harvested 72 hours post-transfection
and assayed for HIV-1 capsid protein (p24) by ELISA and SEAP activity
using a commercial kit. Mean SEAP-adjusted p24 levels are shown. Each
experiment was carried out in duplicate. Error bar = 1 SD.
doi:10.1371/journal.pone.0028462.g002

Rev-Free HIV-1 Packaging System
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Again, these differences could not be attributed to differences in

particle production since results of p24 ELISA showed comparable

levels of the virus capsid protein in the supernatants (Figure 5 D).

The p24 levels were within 0.4 fold of the value of the transfection

with the vector with SIVmac239 RRE and no CTE and could not

be distinguished statistically (p.0.05). The SIV RRE modified

vector with four copies of CTE, pN-EF1a-EGFP-4xCTE/SIV

RRE, achieved similar titers both in the presence of Rev and in its

absence. These titers were statistically indistinguishable (p

value.0.05) Thus, replacing HIV-1 RRE with SIV RRE in

CTE-containing gene transfer vectors significantly improved titers

of CTE based packaging systems.

Efficient delivery of Rev M10 into T-cells by gene-transfer
vectors containing both CTE and SIVmac239 RRE

Encouraged by these results, we created gene transfer vectors

containing four modules of CTE and encoded both EGFP and the

transdominant Rev mutant , Rev M10. The two transgenes were

expressed under control of the EF1a promoter enhancer elements

as a single fusion protein, EGFP-2A-Rev M10, separated by the 2A

Figure 3. Virus stock production by various combinations of packaging and gene transfer vectors containing either HIV-1 RRE or
one or more modules of MPMV CTE. HEK 293T cells were transfected with indicated packaging and gene transfer vectors. One set of
transfections received pCI-Neo (speckled bars) and a parallel set of transfections received pCI-HIV Rev (cross-hatched bars). All transfections received
VSV-G envelope expression construct and a SEAP expression construct. The supernatants were harvested 72 h post-transfection and used for
infection of naı̈ve HEK 293T cells. The virus titers (top panel) were determined by flow cytometry of infected cells as described in Materials and
Methods and normalized for transfection efficiency against SEAP activity. The supernatants were also assayed for virus particle content by ELISA for
HIV-1 capsid protein (p24). The SEAP-adjusted p24 values are shown in the bottom panel. Discordant results between the titers and the p24 levels are
indicated by asterisks (*) above the corresponding bars. Each experiment was carried out in duplicate. Error bar = 1 SD.
doi:10.1371/journal.pone.0028462.g003

Rev-Free HIV-1 Packaging System
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protease cleavage factor derived from foot and mouth disease virus

(FMDV). This configuration allows equimolar expression of both

EGFP and Rev M10. The FMDV 2A cleavage factor ensures the

release of the Rev M10 moiety by proteolytic cleavage subsequent to

the synthesis of the fusion protein. Since SIV RRE containing

vectors have also exhibited resistance to Rev M10, we created

vectors that contained both SIVmac239 RRE as well as four copies

of CTE. The control vectors lacked CTE but contained RRE from

either HIV-1 or SIVmac239. The vectors pN-EF1a-EGFP-2A-

M10-4xCTE, pN-EF1a-EGFP-2A-M10-WPRE/SIV RRE and

pN-EF1a-EGFP-2A-M10-4xCTE/SIV RRE were individually

packaged using pGP-4xCTE. Each of the above vectors was

compared to control vectors encoding only EGFP for generation

of vector stocks. Three different amounts of each vector were

tested for generation of stocks to determine if this could influence

final titers. We compared each of the above packaging

combinations with the traditional packaging system based on

HIV-1 RRE and Rev and also our recently described SIV RRE

based packaging system[24]. The vector stocks were used for

transduction of Jurkat T-cells to determine vector titers. A

representative flow cytometry analysis is shown in Figure 6. The

vector titers derived from flow cytometry are shown in Figure 7.

To allow comparison between the different packaging systems,

the titers were normalized to that of the control vector encoding

EGFP alone for each packaging system.

Consistent with our earlier results [24], attempts at packaging a

vector encoding EGFP-2A-M10, pN-Ef1a-EGFP-2A-M10-

WPRE, using a HIV-1 Rev/RRE based packaging system,

resulted in a dose-dependent decrease in vector titer between

97- to 215-fold in comparison to control vector, pN-Ef1a-EGFP-

WPRE, that encoded only EGFP. In contrast, a pure SIV RRE/

HIV-1 Rev based packaging system consisting of pGP-SIV 1045

RRE and pN-EF1a-EGFP-2A-M10-WPRE/SIV RRE demon-

strated a titer decline of 9- to 10- fold with respect to pN-EF1a-

EGFP -WPRE/SIV RRE. The CTE-based packaging system

displayed even less sensitivity to encoded Rev M10. Thus the titers

of the vector encoding Rev M10 was decreased by only 5- to 6-fold

in comparison to the control vector encoding only EGFP. When

we attempted to package an SIV RRE containing Rev M10

encoding vector with pGP/4xCTE, the titers were reduced 24- to

28-fold. In contrast, a vector containing both SIV RRE and CTE,

pN-EF1a-EGFP-2A-M10-4xCTE/SIV RRE, when packaged

with pGP/4xCTE displayed no diminution of titer from the

control vector encoding EGFP alone, pN-EF1a-EGFP-4xCTE/

SIV RRE. Thus, combining four copies of CTE with SIV RRE in

the gene transfer vector encoding Rev M10 allowed production of

stocks with very little reduction of titer (0.9 to 1.9-fold).

Jurkat T-cells transduced with EGFP-2A-Rev M10
encoding vectors release fewer particles than cells
transduced with control vector encoding only EGFP

Jurkat T-cells transduced with each of the different vectors

described in the previous experiment were sorted to greater than

90% purity. The EGFP expression levels were comparable

between each of the sorted populations. Each pool of cells derived

from the transduction of one vector, were infected with a

replication-defective pNL4-3 encoding mouse heat stable antigen

(CD24). Following infection, the cells were extensively washed and

returned to the wells and placed in the incubator. The culture

supernatants were harvested and assayed for HIV-1 capsid antigen

by p24 ELISA. The results of p24 assay on day 8 are shown in

Figure 8 and indicate that p24 levels, normalized to levels found in

unmodified Jurkat T-cells, were decreased in each of the Rev M10

encoding cells in comparison to the control cells encoding only

EGFP. Pair-wise comparison of the data showed that these

differences were statistically significant (p value,0.05). Thus,

modification of vectors with four copies of CTE or both SIV RRE

and CTE did not adversely affect anti-HIV-1 activity of encoded

Rev M10. The differences could not be attributed to differences in

levels of infection since cell surface staining for HSA (CD24)

encoded by the challenge virus revealed similar percentage of

infected cells for M10 vector transduced cells and the correspond-

ing control cells transduced with EGFP encoding vector

counterpart (data not shown).

Discussion

In this study, we sought to create a high-titer Rev-free HIV-1

packaging system based on the MPMV CTE. Such a packaging

system should prove useful not only for targeting HIV-1 Rev, but

also find use in targeting cellular cofactors unique to the Rev-

RRE-Crm1 nucleocytoplasmic RNA transport pathway. Thus the

CTE-based packaging system might be useful for targeting cellular

cofactors such as the RNA helicases DDX3 and/or DDX1

purported to be unique to the Rev-RRE-Crm1 transport

pathway[14,26]. To that end, we created packaging systems

containing one or more copies of MPMV CTE. We found that

using a single copy of CTE in packaging and gene transfer vector

resulted in a packaging system that was Rev-independent, but

Figure 4. Effect of Rev M10 coexpression on vector production
by packaging systems regulated by HIV-1 RRE, CTE or
combinations thereof. Four different combinations of packaging
and gene transfer vectors (RRE/RRE; RRE/CTE; CTE/RRE; CTE/CTE) were
tested for production of vector stocks. The plasmid pCI-Rev M10 was
used at the indicated amounts during vector stock production. The
total amount of plasmid added was kept constant by using pCI-Neo as a
filler plasmid. All transfections also received a VSV-G expression
construct (pMD.G) and pCI-HIV Rev except for the packaging system
(CTE/CTE) that used CTE in both packaging and gene transfer vector
constructs. The vector titers were determined by infection of Jurkat T-
cells. For each kind of packaging system, the titer obtained in the
absence of pCI-Rev M10 was used for normalization. The different
combinations were designated based on the transport element in the
packaging construct and gene transfer vector. Each experiment was
carried out in duplicate. Error bar = 1 SD. RRE/RRE: pGP/HIV 350 RRE and
pN-GIT72; RRE/CTE: pGP/HIV 350 RRE and pN-GIT72-2xCTE; CTE/RRE:
pGP/4xCTE an d pN-GIT72; CTE/CTE: pGP/4xCTE and pN-GIT72-2xCTE.
doi:10.1371/journal.pone.0028462.g004
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provided somewhat low titers attributable to lower levels of p24

produced by the packaging construct, pGP/1xCTE. Adding 2- or

4- copies of CTE in both the packaging and gene transfer vectors

allowed the generation of stocks with much higher vector titers. In

general, Rev-dependence decreased with increasing number of

CTE modules in the vectors. The most likely explanation is that

with insufficient numbers of CTE modules fewer of the full-length

vector RNA were available in the cytoplasm for encapsidation into

the particles. Addition of Rev with such vectors presumably

improved nucleocytoplasmic transport of full-length genomic/

vector RNA resulting in enhanced titers.

A surprising observation was that while increasing the number

of CTE modules in the gene transfer vector, particularly those

containing an internal promoter for directing expression of the

transgene, rendered the packaging system Rev-independent, the

overall titers tended to decrease (Figure 5). The increased particle

production by packaging constructs regulated by multiple copies of

CTE may be due to either a positive effect on transport, enhanced

polysomal association or increased translation. In the case of the

gene transfer vector which contained both HIV-1 RRE and CTE,

addition of Rev lead to an increase in titer, but the titer did not

approach that of the control vector containing only HIV-1 RRE.

This increase in titer can be attributed to enhanced transport via

the Rev-RRE-Crm1 transport pathway. Since the titer was not

completely restored in comparison to the control vector with no

CTE moieties but only HIV-1 RRE, the CTE appeared to be

having a negative impact on the availability of the vector RNA for

encapsidation. In the absence of Rev, the transport of RNA

containing both RRE and CTE would be dependent on Tap-Nxf1

pathway. However, even for vectors with four copies of CTE, the

titer did not approach that of the control vector regulated by Rev

and RRE. One possible explanation for low titers with vectors

Figure 5. Packaging of gene transfer vectors containing CTE or both CTE and SIVmac239 RRE by pGP-4xCTE. The vectors pN- EF1a-
EGFP-WPRE, pN- EF1a-EGFP-1xCTE, pN- EF1a-EGFP-2xCTE, and pN- EF1a-EGFP-4xCTE (A and C) and their corresponding SIV RRE containing vectors (B
and D) were individually packaged using pGP/4xCTE in HEK 293T cells as described in Materials and Methods. One set of transfections received pCI-
Neo (speckled bars) and a parallel set received pCI-HIV Rev (cross-hatched bars) The SEAP-adjusted titers are shown in panels A and B while the SEAP-
adjusted p24 levels are shown in panels C and D. Each experiment was carried out in duplicate. Error bar = 1 SD.
doi:10.1371/journal.pone.0028462.g005
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containing multiple copies of CTE could be that the vector RNA

was sequestered in the ‘wrong’ cytoplasmic compartment, such as

polysomes, making the RNA less available for packaging by the

assembling virion. Alternatively, the RNA may be less stable. We

hope to address these possibilities in future studies that will address

the stability, subcellular distribution and cytoplasmic fate of

packaging and gene transfer vector RNAs in producer cells.

In our previous study, we noticed that HIV-1 RRE could be

replaced with that of SIVmac239 RRE without a drop in titer

[24]. Moreover, this system displayed considerable tolerance to the

inhibitory effects of Rev M10. The SIV RRE based packaging

system also exhibited slightly higher basal titers in the absence of

Rev during virus stock production. We hypothesized that

replacing the HIV-1 RRE with that of SIVmac239 RRE in

Figure 6. Flow cytometry analysis of Jurkat T-cells transduced by HIV-1 vectors encoding EGFP or EGFP-2A-Rev M10. The histograms
show cell number along the Y-axis and EGFP expression along the X-axis. The packaging constructs used are indicated above the histograms, while
the transgene and the transport elements in the gene transfer vectors are shown below. The same packaging construct was used for each pair of
gene transfer vectors. The percentage EGFP positive population, as determined by marker/gate M1, is also shown. Representative data from an
experiment carried out in duplicate.
doi:10.1371/journal.pone.0028462.g006
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CTE-containing gene transfer vectors might improve vector titers

even in the absence of Rev during vector stock production.

Consistent with this premise, the titers of vectors with four copies

of CTE could be improved by replacing the HIV-1 RRE in the

gene transfer vectors with that of SIVmac239 RRE (Figure 5). It is

presently not clear how replacing HIV-1 RRE with that of

SIVmac239 improved titers. The HIV-1 RRE sequence contains a

39 splice acceptor site, as does the one from SIVmac239. It is not

clear how critical this splice acceptor site is for the vector. While

we have not created a CTE-containing vector lacking the RRE,

we have tested a vector with multiple mutations in the RRE that

renders it non-functional with Rev[10] with no positive impact on

the titer. We are in the process of designing additional studies, as

outlined above, to understand how SIV RRE improves titer of

CTE containing vectors in a Rev-free packaging system.

To determine the suitability of the Rev-free packaging system

for delivery of anti-Rev transgenes, we first tested the CTE-based

packaging systems for their tolerance to the inhibitory effects of

exogenously expressed Rev M10. As expected the CTE-based

packaging system was indeed immune to Rev M10 expressed in

trans during vector stock production. In contrast, the control

packaging system containing the HIV-1 RRE and no CTE

modules was exquisitely sensitive to inhibition by Rev M10 and

exhibited a dose-dependent decrease in vector titer. Encouraged

by these results, we created gene CTE containing transfer vectors

encoding Rev M10 and the EGFP marker gene. For comparison

we tested this vector system to our earlier packaging system

containing SIVmac239 RRE. Both the CTE and the SIV RRE -

based packaging system were found to be superior to the HIV

RRE based one for production of Rev M10-encoding vector

Figure 7. Comparison of packaging systems for delivery of Rev M10 into Jurkat T-cells. Packaging plasmids pGP/HIV-1 350 RRE, pGP/SIV
1045 RRE and pGP/4xCTE were used to produce virus stocks with indicated gene transfer vectors. The virus stocks were used for infection of Jurkat T-
cells and vector titer was estimated. The titer of each Rev M10 encoding vector, was normalized to that obtained with the corresponding control
vector expressing only EGFP. The SEAP-adjusted titers for the control vectors are indicated above the corresponding bars. The Rev M10 encoding
vectors were tested at three different amounts as shown. Each experiment was carried out in duplicate. Error bar = 1 SD.
doi:10.1371/journal.pone.0028462.g007
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stocks. But the titers were much higher with the SIVmac239 RRE-

based packaging system than the one based on CTE. By

combining both CTE and SIV RRE in the same gene transfer

vector, we were able to create a Rev-free packaging system that

achieved high titers and proved useful for delivery of Rev M10

into T-lymphocytes.

There are several advantages to the packaging system described

in this study compared to our previous one based on SIV RRE

alone. The SIV RRE based packaging system requires Rev for

production of vector stock thus signaling the utilization of the

Crm1 RNA transport pathway. In contrast the CTE-based

packaging system described in this study is Rev-independent and

is expected to use the Nxf1/Tap-mediated RNA transport

pathway. Although we, and others, have previously used the

MPMV CTE in either packaging or gene transfer vectors, none of

the packaging systems to our knowledge have achieved the

efficiency of the present packaging system for production of high-

titer vector stocks. This packaging system also exhibited remark-

able resistance to the dominant negative mutant Rev M10 and

consequently provided the highest titers of vector stocks encoding

this transgene.

In a previous study we described Rev- free packaging cell lines

based on MPMV-CTE and proposed that the CTE-based systems

may be useful for delivery of the dominant negative Rev M10 [5].

Those packaging cell lines were restricted in their host-range due

to the use of HIV-1 envelope for pseudotyping vector particles.

Subsequently, we described packaging systems based on a

transient transfection approach to produce vector stocks to

improve the host range by use of amphotropic murine leukaemia

virus envelope or VSV-G envelope glycoproteins [9,27]. In those

studies we suggested that the usage of dissimilar RNA transport

elements could render the packaging systems safer. Since then,

other groups have also used CTE in packaging systems with

varying degrees of success. Mautino, et al, initially used CTE in

gene transfer vectors, but the CTE in these vectors were positioned

upstream of the transgene expression cassette [28,29]. In

subsequent studies, Mautino and coworkers used vectors with

the CTE downstream of the transgene expression cassette[29],

similar to what we used in our previous studies as well as in the

present one. However, their group did not describe a completely

Rev-free packaging system. The investigators also did not evaluate

multiple CTE modules in the gene transfer vector or packaging

constructs. More recently, Oh and coworkers described the

creation of Rev-independent packaging systems based on multiple

CTE modules [30]. These investigators also did not test their

packaging system for delivery of anti-Rev transgenes. Our results

are in general agreement with the observations of Oh and

coworkers but also exhibit differences. Thus both studies show that

increasing the number of copies of CTE in the packaging and gene

transfer vectors can result in enhanced titers and also decrease

Rev-dependency. We also noticed a decrease in overall titers with

increasing CTE modules in our study that could be restored by

using SIVmac239 RRE. The differences in the results of the two

studies may reflect differences in vector configurations. Thus the

vectors used in the two studies differed in the choice of internal

promoters (EF1apromoter in this study vs PGK in the study of Oh

et al), the use of RRE from either HIV-1 or SIVmac239 in

addition to the CTE modules in our study (no RRE in the CTE-

containing vectors described by Oh et al.) and the location of the

RRE with respect to the transgene expression cassette (upstream of

transgene expression cassette in our study vs downstream in the

study by Oh et al.). Furthermore, we demonstrated the utility of

our Rev-free packaging system for delivery of any anti-Rev genes

into T-lymphocyte cell lines. The present study therefore extends

the studies of Oh and coworkers as well as our own earlier

observations. Since, the HIV-1 RRE has been replaced with

SIVmac239 RRE, our packaging system may prove useful for

targeting other HIV-1 sequences such as the HIV-1 RRE,

Rev[31] and/or Env using antisense [32,33]or RNAi approach-

es[34]. The Rev-free packaging system could conceivably be used

to target host factors that are unique to the Rev-RRE-Crm1

nucleocytoplasmic RNA transport pathway, such as RNA

helicases, to thwart HIV-1 replication [35,36].

Figure 8. Virus particle production by gene modified Jurkat T-
cells challenged with replication defective HIV-1. Jurkat T-cells,
either unmodified or transduced with the indicated vectors encoding
either EGFP (light grey) or EGFP-2A-M10 (dark grey), were challenged
with replication defective HIV-1 pseudotyped with VSV.G as described
in Materials and Methods. The HIV-1 capsid protein released into the
supernatant of the infected cells was measured by p24 ELISA. The
results were normalized to the p24 released from infected but
unmodified control cells. Each experiment was carried out in duplicate.
Error bar = 1 SD.
doi:10.1371/journal.pone.0028462.g008

Rev-Free HIV-1 Packaging System

PLoS ONE | www.plosone.org 10 December 2011 | Volume 6 | Issue 12 | e28462



Materials and Methods

Cell lines
Human embryonic kidney (HEK 293T) cell line was obtained

from the American Type Culture Collection (Manassas, VA)

(catalog number CRL-11268) and maintained in Dulbecco’s

modified Eagle’s medium supplemented with 10% fetal bovine

serum, 2 mM L-glutamine, penicillin (100 u/ml) and streptomycin

(100 mg/ml).

Human T lymphocyte (Jurkat-T) cell line was also obtained

from American Type Culture Collection (catalog number TIB-

152) and maintained in RPMI1640 supplemented with 10% fetal

bovine serum, 2 mM L-glutamine and 1.0 mM sodium pyruvate.

Plasmids
Packaging constructs. pGP/HIV 350 RRE and pGP/SIV

1045 RRE have been described earlier [24]. Briefly, these

constructs contain the gag/pro-pol coding region including the 59

splice donor site of the molecular clone pNL4-3 positioned

between the human cytomegalovirus immediate early promoter

and the bovine growth hormone polyadenylylation site. The

inserted sequence lacks the core packaging sequence present

between the splice donor site and upstream of the gag AUG codon.

The plasmid pGP/HIV 350 RRE contains the extended RRE of

pNL4-3 [37] while pGP/SIV 1045 RRE contains a 1045 nt

derived from SIVmac239. The packaging constructs pGP/

1xCTE, pGP/2xCTE and pGP/4xCTE, contain one two or

four copies of CTE derived from MPMV positioned downstream

of the gag/pro-pol sequence. In contrast to our previously described

CTE-containing packaging construct [9], the constructs in this

study do not use the polyA signal in the CTE but that of bovine

growth hormone (BGH). The plasmid pGP/1xCTE was

constructed in several steps. First, the CTE from pN-FS-

sCMVluc-CTE [9] was isolated using NotI and XhoI and

ligated into the same sites of pCDNA3 to create pCDNA3-CTE.

Next, the HIV-1 gag/pro-pol sequence was isolated from pgp [9] by

first digesting with XbaI followed by repair using T4 polymerase

and then digesting with NotI. The isolated fragment was inserted

between EcoRV and NotI sites of pCDNA3-CTE to create pGP/

1xCTE.

To create pGP/2XCTE, the MPMV CTE was isolated from

pN-FS-sCMVluc-CTE using SalI and XhoI and inserted into the

XhoI site of pGP/1xCTE to create pGP/2XCTE. To create

pGP-4XCTE, first, pgp was cut with XbaI, repaired using T4

polymerase and then digested with NotI. The isolated sequence

containing gag/pro-pol was inserted into pCDNA3 between EcoRV

and NotI sites to create pCDNA3-GP. Next a fragment containing

four copies of CTE was isolated from pN-GIT72-4xCTE (see

below) using XhoI and SalI and inserted into the XhoI site of

pCDNA3-gp to give pGP/4xCTE.

Gene-transfer vectors. To create pN-GIT72-1xCTE, the

CPPT/CTS sequence from pN-GIT72/CPPT [38] was isolated

using BssHII and BsaBI and used to replace the corresponding

sequence in pN-GITC [27]. To create pN-GIT72-2xCTE, a NotI-

XhoI fragment, containing EMCV-IRES and one copy of CTE,

was isolated from pN-GIT72-1xCTE and ligated into pN-GIT72-

1xCTE digested with NotI and SalI which cuts at the 59 end of the

CTE thus resulting in a vector containing two copies of CTE.

The vector pN-GIT72-4xCTE, was created using a similar

cloning strategy using pN-GIT72-2xCTE. To create pN-EF1a-

EGFP-1xCTE, the EGFP-IRES-Tat-WPRE cassette between

BsabI and SalI sites in pNGI72-1xCTE was replaced with the

BsabI and SalI fragment from pN-Ef1a-EGFP-WPRE 27. The

vectors, pN-EF1a-EGFP-2xCTE and pN-EF1a-EGFP-4xCTE,

were created using a similar cloning strategy using pN-GIT72-

2xCTE and pN-GIT72-4xCTE. The vectors with both CTE and

SIV RREs, pN-EF1a-EGFP-1xCTE/SIV RRE, pN-EF1a-EGFP-

2xCTE/SIV RRE, pN-EF1a-EGFP-4xCTE/SIV RRE were

created by replacing the BsabI and SalI fragment in pNGIT72-

1xCTE, pNGIT72-2xCTE and pNGIT72-4xCTE with the ClaI

and SalI fragment containing SIVmac239 RRE from pN-EF1a-

EGFP-WPRE/SIV RRE.

The vectors encoding EGFP-2A-Rev M10 transgene, (pN- EF1a-

EGFP-2A-M10-1xCTE, pN- EF1a-EGFP-2A-M10-2xCTE, pN-

EF1a-EGFP-2A-M10-4xCTE) were created by replacing the BsabI

and SalI fragment in pNGIT72-1xCTE, pNGIT72-2xCTE and

pNGIT72-4xCTE with the BsabI and SalI fragment from pN-

EF1a-EGFP-2A-M10-WPRE. To create vectors encoding EGFP-

2A-Rev M10 and containing both CTE and SIV RRE (pN- EF1a-

EGFP-2A-M10-1xCTE/SIV RRE, pN- EF1a-EGFP-2A-M10-

2xCTE/SIV RRE, pN- EF1a-EGFP-2A-M10-4xCTE/SIV RRE),

the BsaBI and SalI fragment in pNGIT72-1xCTE, pNGIT72-

2xCTE and pNGIT72-4xCTE were replaced with the ClaI and SalI

fragment containing SIVmac239 RRE from pN- EF1a-EGFP-2A-

M10-WPRE/SIV RRE. Other constructs, pN-E EF1a-EGFP-

WPRE, pN- EF1a-EGFP-WPRE/SIV RRE, pN- EF1a-EGFP-

2A-M10-WPRE and pN- EF1a-EGFP-2A-M10-WPRE /SIV

RRE, have been described previously [24].

Vector stock production
Vector stocks were prepared by transient transfection of 293T

cells by the CaPO4-method as previously described [39]. Briefly,

16106 cells were seeded into 6-well tissue culture plates one day

prior to the transfection with the following plasmid cocktail: a

packaging constructs (1.5 mg), a gene-transfer vectors (usually

3.0 mg), and a VSV-G envelope expression construct (pMD.G,

0.2 mg). A tat expression construct, pCMVtat [5] was used for

those vectors that did not encode Tat. Other constructs such as

pCI-Neo, pCI-HIV Rev were used as indicated. Most transfec-

tions also included a SEAP expression construct to normalize for

transfection efficiency. The cell culture medium was replaced with

fresh medium the day following the transfection. The virus –

containing medium was harvested 48 to 72-hours later, clarified by

low-speed centrifugation and either used immediately for infection

or saved frozen at –80uC.

Titration of vector stocks
This was done as previously described using either naı̈ve 293T

cells or Jurkat-T cells as targets. Briefly, 250,000 Jurkat T-cells

were plated in 24-well plates on the day of the infection in 0.5 ml

of medium containing 10 mg of polybrene/ml. An aliquot of

vector stock was added to the medium. The following day, an

additional one ml of fresh medium was added. The cells were

harvested 48- to 72-hours later, washed and fixed overnight with

4% paraformaldehyde, pH 7.4. The cells were resuspended in

PBS and the percentage of infected cells were determined by

flow cytometry. The infectious or transducing units were

calculated from the percentage of infected cells and the volume

used for infection. For titer determination on 293T cells, the cells

were seeded the previous day in 6-well plates. On the day of

infection, the medium was replaced with fresh medium

containing 10 mg/ml of polybrene to which an aliquot of virus

stock was added. 48-72 hours later, the cells were harvested by

trypsinization, fixed with formalin and the percentage of infected

cells determined by flow cytometry as described above for Jurkat

T-cells.
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Challenge experiments
Jurkat T-cells transduced with the indicated vectors were sorted

to greater than 90% purity by using a cell sorter. The cells were

infected with VSV-G pseudotyped pNL4-3-Vpr-Nef-HSA+ virus.

The challenge virus was prepared by transient transfection of

293T cells as previously described [24]using pMD.G and pNL4-

3.HSA.R-E- that encodes for pNL4-3-Vpr-Nef-HSA+ virus[40].

The following day, the cells were washed six times with fresh

medium and resuspended in fresh medium. An aliquot of the

medium was saved for p24 analysis. The spent medium was

harvested every three days at which time the cells were also split at

a ratio of 1:5 or 1:10. The harvested and cleared spent medium

was assayed using p24-ELISA.

Assays
HIV-1 p24 ELISA was done using a commercial kit obtained

from PerkinElmer, (Massachusetts, USA). SEAP activity was

measured by a chemiluminescent method with a commercial kit

(Phopha-Light System) obtained from Applied Biosystems, (Mas-

sachusetts, USA).

Supporting Information

Table S1 Statistical analysis of titer differences be-
tween different vectors shown in Figure 5A and 5B using
Student’s t-test (two-tail).
(DOCX)

Acknowledgments

The author wishes to thank Dr. Ronald Desrosiers for p239SpE39 (catalog

# 830) and Dr. Nathaniel Landau for pNL4-3.HSA.R-E- (catalog # 3417)

made available through the NIH AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH. Special thanks to Mr. Kevin

Weller of the Vanderbilt University Flow Cytometry Core for help with

sorting and analysis. Technical assistance was provided by Ms. Margo

Kamel. The author thanks Dr. Friedrich Schuening for continued

encouragement and support, and Dr. Michail Zaboikin for critical review

of the manuscript.

Author Contributions

Conceived and designed the experiments: NS. Performed the experiments:

NS. Analyzed the data: NS. Contributed reagents/materials/analysis tools:

NS. Wrote the paper: NS.

References

1. Srinivasakumar N (2001) HIV-1 Vector Systems; Buchschacher GL, editor:

Springer Science+Business Media B.V., Formerly Kluwer Academic

Publishers B. V. 51–81 p.

2. Jeang KT, Chang Y, Berkhout B, Hammarskjold ML, Rekosh D (1991)

Regulation of HIV expression: mechanisms of action of Tat and Rev. Aids. pp

S3–14.

3. Hammarskjold M, Heimer J, Hammarskjold B, Sangwan I, Albert L, et al.
(1989) Regulation of human immunodeficiency virus env expression by the rev

gene product. J Virol. pp 1959–1966.

4. Malim M, Tiley L, McCarn D, Rusche J, Hauber J, et al. (1990) HIV-1

structural gene expression requires binding of the Rev trans- activator to its

RNA target sequence. Cell. pp 675–683.

5. Srinivasakumar N, Chazal N, Helga-Maria C, Prasad S, Hammarskjold ML,

et al. (1997) The effect of viral regulatory protein expression on gene delivery by

human immunodeficiency virus type 1 vectors produced in stable packaging cell

lines. J Virol 71: 5841–5848.

6. Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, et al. (1994) A small
element from the Mason-Pfizer monkey virus genome makes human

immunodeficiency virus type 1 expression and replication Rev- independent.

Proc Natl Acad Sci U S A 91: 1256–1260.

7. Ernst RK, Bray M, Rekosh D, Hammarskjöld ML (1997) A structured retroviral
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