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Abstract

While attentional effects in visual selection tasks have traditionally been assigned ‘‘top-down’’ or ‘‘bottom-up’’ origins, more
recently it has been proposed that there are three major factors affecting visual selection: (1) physical salience, (2) current
goals and (3) selection history. Here, we look further into selection history by investigating Priming of Pop-out (POP) and the
Distractor Preview Effect (DPE), two inter-trial effects that demonstrate the influence of recent history on visual search
performance. Using the Ratcliff diffusion model, we model observed saccadic selections from an oddball search experiment
that included a mix of both POP and DPE conditions. We find that the Ratcliff diffusion model can effectively model the
manner in which selection history affects current attentional control in visual inter-trial effects. The model evidence shows
that bias regarding the current trial’s most likely target color is the most critical parameter underlying the effect of selection
history. Our results are consistent with the view that the 3-item color-oddball task used for POP and DPE experiments is best
understood as an attentional decision making task.
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Introduction

Many studies have demonstrated that the attention system is

extremely sensitive to recent experiences of attentional selection

and deployment. For example, studies of the contextual cueing

effect assert that the lingering effects of past experience implicitly

shape the observer’s selection bias and facilitate visual search [1,2]

and eye movements [3]. More recently, it has been shown that the

reward associated with a recent context has an effect on the speed

of implicit learning of that context [4]. Even the most efficient

forms of salience-driven search, such as pop-out search (when a

target feature differs uniquely from all distractors, and the target is

always found equally quickly irrespective of the number of

distractors in the display) are sensitive to recent experience. One

demonstration is that responding to a red target among green

distractors is faster on trial N, when there was the same target and

distractor color assignment on trial N-1 (the Search Repeated

condition), compared to when they switched assignments (i.e., the

target was green among red distractors, the Search Switched

condition [5–7]). This phenomenon is called Priming of Pop-out

(POP), and the improvement in search performance is measured

both in reaction times (RTs) becoming faster and accuracy

increasing on Search Repeated trials compared to Search

Switched trials [5,6,8–19]. The Distractor Preview Effect (DPE)

[20–24], in contrast, describes how search performance deterio-

rates (i.e. search becomes slower and less accurate) when the

current target features were associated with non-target status on

the preceding trial. For example, responding to a red target among

green distractors is slower on trial N, when on trial N-1 all objects

were red (red was associated with non-target status) compared to

when all objects were green.

This evidence suggests that the human brain has evolved an

efficient visual system to find targets in the environment by shifting

attention and eye gaze toward task relevant information around

the observer. Traditional literature has shown two factors engaged

in this control of attention: (1) the observer’s goals, expectations,

and biases (top-down factors) [25–27], and (2) the salience of

objects in the world (a bottom-up factor) (e.g. [25,28–33]). Awh,

Belopolsky and Theeuwes [34] pointed out that the effect of

selection history could conflict with the observer’s goals [35–38].

They have thus suggested that selection history is an independent

factor underlying the modulations observed in attentional selec-

tion, separate from the observer’s explicit goal and the stimulus’s

physical salience [34].

Priming of Pop-out and the Distractor Preview Effect are both

effects primarily caused by changes in selection history. The

physical salience of the display does not change from trial to trial.

Likewise, the observer’s explicit goal always remains the same at

the initiation of a trial (i.e. finding an oddball). Thus, here we look

at a task with both POP and DPE conditions in order to better

understand the effects of selection history through modeling. In

this task, subjects need to make a saccade to an oddball color

(when present). We can generally ask, given a simple two color
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display, how does selection history affect the decision of which

color to select?

It is important to note that previous research has shown that the

critical factor underlining these two effects is the stage during

which target/distractor color assignments takes place, that is, the

process through which a color (say, green) is tagged as being the

color containing the target (in the current trial), while the other

color (say, red) is tagged as the color of the distractors. Thus, even

though in the surface the task may appear to be a ‘‘location’’

selection task (which of the items in the display should the saccade

be directed to) it is in fact a ‘‘color’’ selection task (which of the two

colors is the target color). Once the target color is found, saccading

to the target is trivial. With respect to the DPE, we know location

is unimportant from (at least) three previous studies. In Goolsby,

Grabowecky and Suzuki [12], where the DPE was first

documented, it was shown that changes to spatial features in the

previous trial (the ‘‘preview trial’’), like size of the items, number of

items in the previous trial, and eccentricity of the items, had no

effect on the magnitude of the DPE on the target-present trial.

Later, Lleras, Levinthal and Kawahara [21] demonstrated that the

DPE could be observed in a rapid serial visual presentation

(RSVP) task, in which items are presented sequentially in a single

(unchanging) location. On trial N-1, all items are of the same color,

while on trial N, one of the items has a different color (is an

oddball). As all items are presented at the same location, the DPE

is likely not dependent on the spatial positioning of the to-be

inspected items. Finally, and more crucially, Levinthal and Lleras

[20] demonstrated that when RSVP trials (all search items in the

same location, presented sequentially) are intermixed with spatial

DPE trials (three items presented simultaneously at three different

locations), an identical ‘‘spatial’’ DPE is found when the previous

trial was spatial (three items/three locations) compared to when it

was an RSVP sequence, showing that the spatial characteristic of

the previous trial had no impact on the DPE. Moreover, they

found an identical ‘‘single-location’’ DPE (in RSVP) when the

previous trial was an RSVP sequence compared to when the

previous trial was spatial, indicating that the DPE emerges from a

difficulty in selecting a specific color as being the target color (and

not with moving attention to a location), given that all items were

presented at the same location. Finally, it should be noted that in

2010, Yashar and Lamy [17] found an identical result with POP.

Thus, decision making regarding the color associated with target

status (not the location containing the target) is at the crux of these

two phenomena. It should also be noted that this is consistent with

the top-down instructions to the participants, who must find the

odd-colored item (not the odd-placed item), making color, not

location, the defining attribute of the target in these tasks.

The decision in this sort of forced two-choice task is

conventionally studied within the framework of a diffusion model.

Ratcliff [39] developed a diffusion model (Ratcliff diffusion model;

RDM) that turns the sampling of evidence into a noisy, ongoing

evidence accumulation process. That is, evidence is sampled and

accumulated at each point in time. After some number of samples

(i.e., after some time), the accumulation of evidence can reach one

of two thresholds: the signal threshold or the noise threshold. Once

one of these criteria is reached, the decision is made to categorize

the perceptual evidence as signal or noise. Importantly, the time

course of the decision process can be predicted and modeled in

different situations. The power of this approach is that one can

make detailed predictions of human performance including

predicting RT distributions for correct and error responses [39–

42]. Therefore, this ‘‘diffusion’’ modeling approach has gained a

lot of popularity in recent years.

An advantage of the RDM (and other accumulator models) is

that it clearly separates different sources of variability in the model

results. In the RDM, differing selection results can be due to

changes in 3 central parameters: (1) the strength of incoming

sensory information, (2) the boundary separation, representing the

speed-accuracy tradeoff (SATO) strategy in the decision, and (3)

the tendency bias, representing an initial decision tendency

regarding the likely target color in the current trial. Finding the

parameter changes responsible for POP and the DPE will shed

light on how selection history affects attentional selection in the

current trial.

We must clarify that we are agnostic as to whether these

subjective beliefs (tendency bias) are explicit or implicit. In fact,

previous research on the DPE has shown that cueing each trial

ahead of time with information telling observers with 100%

certainty whether or not the next trial will have a target does not

affect the magnitude of the DPE [12]. Kristjansson, et al. [43]

studied patients with unilateral spatial neglect and found POP can

occur without awareness. Moreover, with healthy individuals,

POP has been demonstrated to be contingent on the conscious

perception of the target and implicit memory system [44]. Thus, it

is quite likely that these beliefs may be implicit or explicit.

In this study, we aim to determine whether the Ratcliff diffusion

model can successfully account for the changes in RTs and

accuracy brought about by changes in selection history, specifically

by looking at Priming of Pop-out [5–7] and the Distractor Preview

Effect [22,24,45]. If this is the case, we expect to discover, from the

model fitting, which factors (parameters in the model) are critical

in the attention selection decision process underlying the effect of

POP and the DPE.

Methods

Experimental Methods
All co-authors of this study affirm that the research was

conducted in accordance with the principles expressed in the

Declaration of Helsinki. Approval to conduct this research was

granted by the University of Illinois at Urbana-Champaign, Office

of the Vice Chancellor for Research, Institutional Review Board

(IRB). Written Informed consent was obtained from all partici-

pants before the experiments were conducted.

In classic POP and DPE experiments, subjects were asked to

find an oddball target and report a secondary feature of the

oddball. For example, subjects needed to find the odd color

diamond and then report the direction (left or right) of a missing

corner in this diamond [5,22,24]. In the present study, we adapted

these POP and DPE procedures to a saccade selection task in

which participants were simply asked to make a decision on

whether to saccade towards an oddball item (the color singleton) if

one was present, or hold the eyes at fixation when there was no

oddball item in the display [45]. After fixating the oddball,

participants were asked to press a button to complete the trial.

Saccade selection tasks have been used previously in oddball

tasks and many two alternative choice tasks [9,10,45–47]. It was

used in the present study because it requires fewer processing

stages than a manual response selection task. A saccade does not

involve the motor process of a hand, but more importantly, it

avoids a second decision about the cut-off side of a diamond.

Thus, observing eye-behavior in a saccade generation task allows

us to closely follow attentional decision making in the task [48].

We expected all subjects to show both Priming of Pop-out and

Distractor Preview Effects in our saccade selection task when

responding to the oddball [45,46].

Attentional Decision in Pop-Out Search
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Participants. Five students (P1, P2, P3, P4 and P5) from the

University of Illinois at Urbana-Champaign participated in this

experiment in exchange for monetary compensation. Each subject

participated in 5 sessions, and each session consisted of 5 blocks of

64 trials each. Therefore, there were 1600 trials for each

participant in total. Each session lasted about 50 minutes. Three

undergraduate students (P1, P2, and P5) had normal vision and

two (P3 and P4) had corrected-to-normal vision. We opted for a

psychophysical procedure (few subjects, many trials), so that the

data could be modeled effectively.

Apparatus. Eye movements were monitored through an

EyeLink 1000 system. A drift correction procedure was performed

between trials to ensure spatial accuracy of eye movement data.

Trials in which the fixation landed within 2 degrees of the target

(i.e. oddball) were classified as correct, and trials in which the

fixation landed within 2 degrees of the distractor were classified as

incorrect. Trials were excluded from analysis in the following

conditions: blinks, failure to fixate on the center dot at the

beginning of the trial, or failure to saccade within 2 degrees of any

object on the display during target-present trials. Stimuli were

presented on a 21-inch CRT monitor at a resolution of 10246768,

at 85 Hz. We recorded saccade latency, reaction time (time to

press the button to advance to next trial), and whether the initial

saccade was correct or not (i.e., whether it landed on the oddball

target or elsewhere).

Stimuli. Figure 1 depicts the stimuli and trial sequence in our

four search conditions. The stimuli and configurations used in the

present experiment were based on those used by Goolsby and

colleagues [12] and later by Caddigan and Lleras [45]. Three

diamonds were placed over an iso-accuity ellipse centered at

fixation, and with an equal central angle between each. There

were 12 locations on the ellipse. Therefore, there were four

different 3-item display configurations. The target itself was

randomly located at each of the three locations in any given

configuration. Diamonds were either green or red, and on each

trial, participants were instructed to make a saccade towards the

oddball if one was present. Once their eye reached the target

diamond, they pressed a button to finish the trial. The oddball

color was equally likely to be either red or green, so participants

did not know what color the target would be at the onset of the

trial.

Trial Sequence and Procedure. A pseudorandom sequence

of trials was generated as by previous studies [24,45]. To generate

each set of 32 trials, eight trial pairs (16 trials) appeared in random

order, representing the Search Repeated, Search Switched,

Distractor-color Previewed, and Target-color Previewed condi-

tions, with each color (green or red) used as a distractor. Because

all trials in the pairs of Search Repeated and Search Switched

conditions are target-present, while half of trials in the pairs of

Distractor-color Previewed and Target-color Previewed conditions

are target-present, there were 12 target-present trials (8 from the

POP condition and 4 from the DPE condition) and 4 target-absent

trials. An additional 16 trials were then randomly inserted in

between these trial pairs; half of these were target-absent trials, and

each color (green or red) appeared as a distractor four times for

each condition. This process resulted in variable numbers of

target-absent trials and target-present trials. The number of trials

in each of the four inter-trial search conditions was also variable.

When a target-absent trial was inserted randomly before a target-

present trial, this could create a Distractor-color Previewed or

Target-color Previewed trial (eliciting a Distractor Preview Effect);

when a target-present trial was followed by another target-present

trial, this would add an additional Search Previewed or Search

Switched trial (subject to Priming of Pop-out).

Each trial started with the presentation of a central fixation

point. After a variable interval of 2000–2500 ms, the search

display appeared. In the target-absent condition, the search

display was presented for 600 ms, and subjects were expected to

maintain fixation throughout that interval. On target-present

trials, the search display remained visible until participants pressed

the button to indicate the end of the trial. We analyzed the data on

a given trial with respect to its relation to the preceding trial. In the

‘‘Search Repeated’’ condition (SRe), the color of target and

distractors repeated across consecutive trials, Figure 1a; mean

= 32 trials/session. In the ‘‘Search Switched’’ condition, the color

assignment between target and distractors on the current trial was

opposite to that of the previous trial (so, if on the previous trial, a

red target amongst green distractors was seen, there would be a

green target amongst red distractors on the current trial),

Figure 1b; mean = 36 trials/session. In the ‘‘Target-color

Previewed condition’’ (TP), the color of distractors on the

preceding target-absent trial became the color of the target on

the current target-present trial, Figure 1c; mean = 26 trials/

session. Finally, in the ‘‘Distractor-color Previewed’’ condition

(DP), the color of distractors on the preceding target-absent trial

was the same as the color of distractors on the subsequent target-

present trial, Figure 1d; mean = 24 trials/session.

Modeling Methods
The goal of our participants was to saccade to the color oddball

target as soon as possible (if present). Under our experiment

structure (the target is defined as either red or green in the whole

experiment), our participants first had to decide which of the two

colors was the target color. To model this task, we used the Ratcliff

Diffusion Model (RDM) [39], which models the decision making

process between two options. This model can shed light on which

parameters are critical for the DPE and POP, and more generally

for the effect of selection history.

In the RDM framework (Figure 2), the initial value of belief

regarding which color the target may be starts at a baseline level, z,

and accumulates towards one of two thresholds. These thresholds

represent the level of belief required to make a decision that a

color (green or red in our experiment) is the target in the trial. One

threshold is at a level of 0, and the other at a. Evidence

accumulates with a drift rate mean of v and standard deviation of s

(this is a scaling parameter that we set at 1). When the evidence

reaches a threshold, a decision regarding target color is made in

favor of the corresponding color threshold. As the entire reaction

time does not consist solely of the decision-making time, there is

also a parameter Ter, which represents time for processes other

than decision-making. The RDM parameters combine to produce

an estimate of sensory evidence accumulation in our tasks.

In our task, we always set the current trial’s target’s color at

threshold a (target-color threshold), and the distractor’s color at

threshold 0 (distractor-color threshold). Thus, evidence that accumu-

lates to a leads to a saccade towards the target (i.e. correct

saccade). Evidence that accumulates to 0 leads to a saccade

towards one of the distractors (i.e. incorrect saccade). The target

color may be red or green, and we combine these scenarios for

modeling. As an example, if a trial’s target is red in the ‘‘Search

Repeated’’ (SRe) condition of POP, the target color (red) competes

with the distractor color (green) to be decided as the target (see

Figure 1). When the accumulation of evidence reaches a confident

value of implicit belief (i.e. a, the target-color threshold, red in this

example) that red is the target, a decision is made, followed by a

correct saccade. However, when the accumulation of evidence

reaches a confident value of implicit belief (i.e. 0, the distractor-

color threshold, green in this example) that green is the saccade

Attentional Decision in Pop-Out Search
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target, a decision is made, followed by an error saccade. The

accumulator value at any time can be viewed as a comparison of

the accumulated evidence towards the target color versus the

accumulated evidence of the distractor color (in the above

example, the accumulator will be closer to a, at any given time

if there is more accumulated evidence that red is the target color).

The starting point z represents an estimate of biases towards a

certain color being the target in our tasks. When z = a/2, there is

no bias, as the start point is halfway between the thresholds.

Values of z.a/2 represent a bias towards target color, and z,a/2

represents a bias towards the distractor color. Thus, z/a, which we

will refer to as B from now on, gives a true estimate of the bias in a

trial. The drift rate, v, represents the comparative quality of

sensory information from the stimuli. A positive v signifies that the

target has a stronger signal in the display than the distractors (as it

should be when it is a pop-out target). A v with a larger magnitude

signifies a greater signal-to-noise ratio of the stimulus. The

boundary separation, a, relates to the speed and accuracy tradeoff

strategy (SATO strategy) of the decision to saccade. For example,

when the boundary separation is small, although the decision

process can hit the target boundary quicker, there is also a greater

chance that the process may hit the wrong threshold. Lastly, as

mentioned previously, Ter represents the non-decision time. This

can include processes such as stimulus encoding and motor

Figure 1. Samples of Four Search Conditions (Target Is Red and Two Distractors Are Green in Current Trial). (a) Search Repeated (target
color and distractor color are repeated across consecutive trials); (b) Search Switched (target color and distractor color are switched across
consecutive trials); (c) Target-color Previewed (the current target color was the color of objects in the preceding non-target trial); and (d) Distractor-
color Previewed (the current distractor color was the color of objects in the preceding non-target trial). Search Repeated and Search Switched
conditions comprise the POP search task, and Target-color Previewed and Distractor-color Previewed conditions comprise the DPE search task.
doi:10.1371/journal.pone.0089996.g001
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response delay. Together, understanding the parameters B, a, v,

and Ter can aid in understanding the underlying mechanisms of

choice tasks.

It is important to note that several other parameters are

included in the RDM in order to better fit empirical data. Sz, St,

and g are parameters that relate to inter-trial variability. Sz is the

range of z across trials, St is the range of Ter across trials, and g is

the standard deviation of v across trials.

Parameter Constraints. For each subject, Sz, St, and g were

always constrained to be the same across all experimental

conditions, in order to focus solely on the change in Ter, z, a,

and v across conditions. Additional parameter constraints were

necessary to reflect the possible inter-trial modifications. For

instance, if on trial N-1, the display was all green (green was a

distractor color), then prior to trial N, there may be a bias against

the color green. This would be reflected as a bias away from the

target if the current display (trial N) contains a green target

(Target-previewed Condition, TP), or a bias towards the target if

the current display (trial N) contains a red target (Distractor-color

Previewed condition, DP). Thus, the bias, B, for the TP condition

is 0.5-nBDPE, while B = 0.5+nBDPE for the DP condition. Recall

that B = z/a = 0.5 signifies an unbiased starting point, one that is

equidistant from the target and distractor thresholds. Similarly, if

on trial N-1, the target was red, then prior to trial N, there may be

a bias against the color green, regardless of whether the next trial

has a green target or distractors. Thus, for the search repeated

condition, B = 0.5+nBPOP while for the search switched condition,

B = 0.5-nBPOP. A similar logic is used to constrain the drift rate, v,

across conditions. A subject has a baseline drift rate, v0, that can be

modified by the inter-trial effects through the sensory processing.

For the DP, TP, SRe, and SSw conditions, the drift rates are v0+
nvDPE, v0-nvDPE, v0+nvPOP, and v0-nvPOP, respectively. Note that

all nB’s and nv’s can be either positive or negative. Also, based on

the assumption that parameter modifications from these inter-trial

effects happen between trials as opposed to during the current

trial, the threshold separation, a, should be identical between a DP

and TP condition (see Figure 1a, b) or between SRe and SSw

condition (see Figure 1c, d) since the preceding trial was identical.

The same is true for the non-decision time, Ter. This gives us the

parameters aDPE, aPOP, TDPE, and TPOP. In total, we are fitting a

total of 12 model parameters: nBDPE, nBPOP, v0, nvDPE, nvPOP,

aDPE, aPOP, TDPE, TPOP, Sz, St, and g.

Fitting the RDM. The model was fit to the observed saccade

latency and accuracy data in each condition for each individual

participant. Our model was fit similar to Ratcliff and Tuerlinckx’s

Chi-Square Fitting Method [49]. For each experimental condi-

tion, for correct saccades, our saccade latency data was split into

six bins and then the model’s saccade latencies were compared to

subjects’ data in each bin to compute a chi-square value. The

points at which bins are split are referred to as quantiles, and were

set at 10%, 30%, 50%, 70%, and 90% of the cumulative reaction

time distribution. Due to our very limited number of error trials

(see Table 1), only one chi-square value, as opposed to six, was

computed for error trials, as done in [50]. Finally, we summed all

these chi-squared values across conditions. We had 28 chi-square

values (four conditions times seven values per condition) that were

summed to get the total chi-square value. We found the

parameters that minimized this chi-square value. Note that this

method differed from Ratcliff and Tuerlinckx’s method [49] only

in the number of error bins, and multiple studies have expressed

issues with the original method for high-accuracy experiments. It

should be noted that with using only 1 bin, the error chi-squared

value had to be excluded for subjects P1, P2, and P4 in the DP

condition (there was 100% accuracy). Additionally, for each

subject, trials that had reaction times more than 5 standard

deviations away from the mean were considered outliers and

excluded from the fitting. We fit our model using the Diffusion

Model Analysis Toolbox [51]. Modifications to the toolbox were

made in order to have one error bin and in order to allow the

constraint format of the bias parameter.

Analysis of Parameter Fits. To analytically determine

whether the model fit to the data was acceptable, we determined

a critical chi-squared value that our best-fit chi-squared values

could be compared with, as done in [52,53]. That is, we

determined the chi-squared value that would cause our model to

be rejected at a significance level of 0.05. Thus, if the chi-squared

Figure 2. An Illustration of the Ratcliff Diffusion Model. Evidence starts accumulating at starting point z (inter-trial variation Sz). It accumulates
with a drift rate mean of v and standard deviation of s (a scaling parameter not shown). The mean drift rate has an inter-trial variation of g. The
evidence accumulates towards one of two decision thresholds, which are separated by the boundary separation a. An additional parameter is the
non-decision time, Ter (inter-trial variation St).
doi:10.1371/journal.pone.0089996.g002
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value for a model fit was less than the computed critical value, then

that model cannot be rejected. This chi-squared comparison was

done for each subject. The degrees of freedom of the chi-squared

value is J*(K-1)-M, where J is the number of conditions (4 in our

case), K is the number of chi-squared values computed per

condition (7 in our case), and M is the number of model

parameters. Note that for subjects P1, P2, and P4, there is one

fewer degree of freedom because no chi-squared value was

computed for errors in the DP condition.

We also show the quality of fits using quantile probability plots

[49]. These plots simultaneously show the average reaction time

and accuracy at each quantile for every experimental condition for

both the model and the experimental data, and thus are an

excellent way of visualizing the fit of the model. Note that because

we only use quantiles for correct trials, only correct trials are

shown in our plots. We separately show the number of errors

predicted by the model versus the experimental data for each

experimental condition for each subject.

Optimal Sub-Model of the RDM. In order to provide a first

analysis of the RDM parameters critical to the phenomena of the

DPE and POP, we compare several ‘‘sub-models’’ in which one or

two additional parameters were constrained between conditions,

in order to find the best sub-model. That is, will constraining

certain parameters cause the quality of fits to drastically decrease,

and will constraining other parameters have minimal effect on the

model fits? This model comparison allowed us to identify the

critical parameters for modeling these effects (i.e., the parameters

without which fitting becomes poor). We compared the 12-

parameter model, which we will refer to as the ‘‘full’’ model, to 8

other models where parameters were constrained across all

experimental conditions: 1) no bias in all trials- nBDPE = 0 and

nBPOP = 0, so for all conditions B = 0.5; 2) no bias in DPE trials-

nBDPE = 0; 3) no bias in POP trials- nBPOP = 0; 4) drift rate

doesn’t change in all trials- nvDPE = 0 and nvPOP = 0, so for all

conditions v = v0; 5) drift rate doesn’t change in DPE trials-

nvDPE = 0; 6) drift rate doesn’t change in POP trials- nvPOP = 0; 7)

thresholds are equal in POP and DPE trials- aDPE = aPOP; 8) non-

decision times are equal in POP and DPE trials- TDPE = TPOP.

These models are compared using the Akaike information

criterion (AIC) and Bayesian information criterion (BIC). These

metrics compute the likelihood of the model fit to the experimental

data and penalize the number of parameters used in the model

(the model’s complexity). Quantitatively, AIC = 22ln(L)+2M,

where L is the likelihood of the model, and M is the number of

parameters in the model [54]. BIC = 22ln(L)+M*ln(n), where n is

the number of observed data points [55]. Both metrics are

included because AIC has a bias towards larger models [56], while

BIC has a bias towards smaller models [57]. For every subject, the

AIC and BIC of the sub-models are compared to the full model to

determine the importance of a parameter for a good model fit. For

an across subjects comparison, we add the AIC/BICs, which is

equivalent to finding the likelihood of the data across all subjects

(assuming subjects are independent) with the aforementioned

model complexity penalty.

Parameters of the RDM. Finally, we looked into the best-

fitting parameters of the full model. Are there parameter trends

that are consistent across subjects? We tested whether bias and/or

sensory parameter (i.e. drift rate) changes responsible for DPE and

POP (nBDPE.0, nBPOP.0, nvDPE.0, nvPOP.0) using a one-

tailed t-test. We tested whether thresholds and non-decision times

are different between DPE and POP trials (aDPE?aPOP, and

TDPE?TPOP) using a two-tailed paired t-test.

Results

Experimental Results
We scored a trial as correct if the initial saccade landed within 2

degrees of the oddball target and incorrect if it landed within 2

degrees of a distractor. Saccade latency was the time elapsed

between the onset of the search display and the first saccade with a

magnitude greater than 2 degrees.

Priming of Pop-Out. Table 1 shows search performance

across all four conditions for each individual. All five participants

had a shorter saccade latency in the Search Repeated (SRe)

condition than in the Search Switched (SSw) condition (all p’s,

0.05 except P3; two-tailed t-test). These results confirm that

generally participants showed Priming of Pop-out. Along with

faster RTs, participants had higher accuracy rates in the Search

Repeated condition than in the Search Switched condition, with

the exception that P4, whose accuracy was nearly perfect in both

conditions (98.7% and 98.9% in SRe and SSw condition,

respectively). This difference was significant for P1 and P3 (chi-

square test). In sum, generally our participants made a saccade to

foveate the color oddball faster and more accurately when the

target and distractor colors repeated across trials than when they

switched.

Distractor Preview Effect. To examine the DPE, we

compared Distractor-color Previewed (DP) trials and Target-color

Table 1. The Mean Saccade Latency and Accuracy in Four Search Conditions in Each Subject.

SRe SSw p TP DP p

P1 latency (ms) 279.2 301.5 ,0.001 305.8 288.2 ,0.001

accuracy (%) 98.1 94.0 0.024 92.0 100.0 ,0.001

P2 latency (ms) 304.0 320.3 0.049 332.3 295.1 ,0.001

accuracy (%) 98.5 95.1 0.106 94.6 100.0 0.016

P3 latency (ms) 285.9 293.6 0.233 332.6 307.8 0.010

accuracy (%) 94.4 79.2 ,0.001 88.1 97.2 0.004

P4 latency (ms) 374.8 389.9 0.016 408.5 390.7 0.165

accuracy (%) 98.7 98.9 0.869 97.3 100.0 0.092

P5 latency (ms) 315.3 331.4 ,0.001 329.7 315.9 0.076

accuracy (%) 98.3 96.9 0.276 97.5 99.4 0.170

P-values were calculated using a two-tailed t-test for latency and a chi-square test for accuracy.
doi:10.1371/journal.pone.0089996.t001
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Previewed (TP) trials. Saccade latencies were longer for all five

participants in the Target-color Previewed condition than in the

Distractor-color Previewed condition, as expected (Table 1). This

difference was significant in P1, P2 and P3, and marginally

significant in P5 (two-tailed t-test). Along with longer saccade

latencies, accuracy was also lower on TP than on DP trials for all

subjects. This difference was significant for P1, P2, and P3 (chi-

square test). Overall, this result shows that, when asked to saccade

to a visual oddball, participants were slower to do so (and less

accurate) when the color of the current target was the color of

distractors on the previous target-absent trial. Observers had a

measurable difficulty in foveating the pop-out under these

conditions (replicating [45]). It is worth noting that the Target-

color Previewed condition was the condition associated with the

worst level of performance across all subjects and all four

conditions: it consistently yielded the longest observed saccade

latencies. Finally, we also measured the frequency of false alarms

in the experiment, defined as saccades that were executed on

target-absent trials, that is, the proportion of target-absent trials in

which participants failed to maintain fixation on the center of the

screen. For subjects P1, P2, P3, P4 and P5, saccades were

erroneously made on these trials 0.94%, 4.84%, 10.59%, 0.98%

and 0.62% of the time, respectively.

Modeling Results
In the experiment, changes in saccadic latencies demonstrated

that every individual was affected by POP and the DPE. The

saccade selection task in the present study allowed us to then

model how these different types of recent experiences (from the

preceding trial) modulate the decision process of deploying

attention to a pop-out item.

Analysis of Parameter Fits. To quantitatively determine

whether our parameter fits were acceptable, we compared the chi-

squared values of each subject’s model fit (from the full model) to a

critical chi-squared value. If the value from the model fit is less

than the critical value, then the fit is deemed acceptable. For

subjects P3 and P5, the critical chi-squared value was 21.026

(12 df). For subjects P1, P2, and P4, the critical chi-squared value

was 19.675 (11 df). Table 2 shows that 4 out of 5 subjects have

model fit chi-squared values below the critical value, and P3 has a

value (23.202) slightly above the critical value of P3, 21.026. This

demonstrates that overall, the RDM provides acceptable fits to

POP and DPE data. P3 had the worst accuracy compared to other

subjects, particularly in SSw, which may be the reason why that

the model could not fit P3 as well as the other participants.

To look more in depth at the quality of fits, we provide quantile

probability plots (QPPs; Figure 3a) for correct trials and a

comparison of the number of error trials (Figure 3b). Overall, we

find that there are qualitatively very good fits, with the exception

of the model not fitting the data very well for error trials in subject

P5 and the top quantile (90%) of RTs of correct trials in subject

P3.

Optimal Sub-Model of the RDM. In order to determine the

parameters of the RDM critical for modeling POP and the DPE,

we compared models that constrain these parameters across

conditions using the Akaike information criterion (AIC; Figure 4)

and Bayesian information criterion (BIC; Figure 5). Lower AIC/

BIC values signify a better model fit. A model comparison

demonstrates that the sub-model with nvDPE = 0 and nvPOP = 0

outperforms the full model. The AIC values for the v-constrained

model (nvDPE = 0 and nvPOP = 0) are less than the full model for 4

of 5 subjects (not P4) and have the lowest summed AIC value. As

AIC comparisons have a bias towards larger models, the fact that

the smaller (v-constrained) model has lower AIC values is robust.

Thus, the change in drift rate is likely to be an unimportant

parameter when modeling the inter-trial effects of the DPE and

POP.

The model with nBDPE = 0 and nBPOP = 0 is consistently worse

than the full model. It has AIC values higher than the full model in

all 5 subjects and has the largest summed AIC value. As AIC is

biased towards larger models, we also compare the BIC values,

which have a bias towards smaller models. Still, even with this bias

towards the B-constrained (Bias is constrained) model, the

summed BIC is larger than the full model, and is larger in the

majority of subjects. Together, the AIC and BIC results suggest

that bias is a critical model parameter when modeling POP and

DPE.

The model with aDPE = aPOP has a lower AIC value than the full

model in 4 of 5 subjects, but has a larger summed value than the

full model. However, this model has a smaller summed BIC value

than the full model, and still, 4 of 5 subjects have a lower BIC

value than the full model. The model with TDPE = TPOP has a

lower AIC value than the full model in 2 of 5 subjects (P2 and P5)

and has a larger summed value than the full model. However, this

model has a lower BIC value than the full model in 4 of 5 subjects

and has a smaller summed value than the full model. Thus, it is not

yet clear whether the a-constrained and T-constrained models are

better than the full model, and whether these parameters vary

between the DPE and POP conditions.

Parameters of the RDM. To further investigate the

parameters of the RDM critical to effectively modeling the DPE

and POP, we looked for parameter trends across subjects in our

full model (Table 2). We first tested whether a bias is important in

accounting for the DPE and POP, meaning testing whether

nBDPE.0 and nBPOP.0. nBPOP.0 in all 5 subjects and this

nBPOP.0 is significant (p = 0.001; one-tailed t-test). nBDPE.0 in

4 of 5 subjects and is significant (p = 0.047; one-tailed t-test). These

results support the model comparison results suggesting that bias,

nB, is a necessary parameter in models of both POP and the DPE.

A change in drift rate could also account for the inter-trial

effects, so we tested whether nvDPE.0 and nvPOP.0. However,

nvDPE.0 and nvPOP.0 are true in only 3 and 2 subjects,

respectively. Both test results are insignificant. These results again

Table 2. Best-Fit Parameters of Full Model.

P1 P2 P3 P4 P5 (Mean, SEM)

x2 8.617 14.928 23.202 3.693 18.871 (13.862, 3.496)

nvDPE 20.0839 20.0102 0.0187 0.0798 0.0201 (0.0049, 0.0266)

nvPOP 20.0168 0.0017 0.0582 20.1287 20.0187 (20.0209,
0.0303)

nBDPE 0.1852 0.1560 0.1038 20.0517 0.0621 (0.0911, 0.0415)

nBPOP 0.1437 0.0960 0.0889 0.1379 0.0666 (0.1066, 0.0148)

aDPE 0.0567 0.0749 0.1229 0.0749 0.0916 (0.0842, 0.0111)

aPOP 0.0640 0.0759 0.0832 0.0941 0.0933 (0.0821, 0.0056)

TDPE 0.2579 0.2497 0.2313 0.3275 0.2530 (0.2639, 0.0165)

TPOP 0.2466 0.2419 0.2415 0.3052 0.2537 (0.2578, 0.0121)

v0 0.6785 0.5084 0.7754 0.5854 0.6466 (0.6389, 0.0448)

Sz 0.0000 0.0000 0.0674 0.0000 0.0623 (0.0259, 0.0159)

St 0.0467 0.0726 0.0490 0.0903 0.0157 (0.0549, 0.0127)

g 0.2083 0.0000 0.5000 0.1439 0.0000 (0.1704, 0.0919)

doi:10.1371/journal.pone.0089996.t002
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support the model comparison results; a change in drift rate is

unlikely the cause of the DPE and POP.

We also tested whether there is a difference in both boundary

separations and non-decision times between the DPE and POP

conditions, that is, whether aDPE = aPOP and TDPE = TPOP. The best

Figure 3. Model Goodness of Fit. (a) Quantile probability plots for the correct trials. These compare reaction time distributions from the model
(lines) with empirical reaction times (x’s) for every experimental condition. (b) Number of error trials generated by the model (red) is compared to the
number of empirical error trials (blue) for every experimental condition.
doi:10.1371/journal.pone.0089996.g003
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Figure 4. AIC Model Comparison. Akaike information criterion (AIC) values are compared between several sub-models of the RDM. Each sub-
model has one or two constrained parameters compared with the full model. This comparison is done for every subject, and the sum of AIC values is
used for an across-subjects comparison. Note that AIC biases model selection towards models with more parameters.
doi:10.1371/journal.pone.0089996.g004
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Figure 5. BIC Model Comparison. Bayesian information criterion (BIC) values are compared between several sub-models of the RDM. Each sub-
model has one or two constrained parameters compared with the full model. This comparison is done for every subject, and the sum of BIC values is
used for an across-subjects comparison. Note that BIC biases model selection towards models with fewer parameters.
doi:10.1371/journal.pone.0089996.g005
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fit results show that aPOP.aDPE in 4 of 5 subjects, but the test for

whether aDPE?aPOP is insignificant (p = 0.97; two-tailed t-test).

TDPE.TPOP in 3 of 5 subjects, and the test for whether

TDPE?TPOP is insignificant (p = 0.31; two-tailed t-test). These

results show that the boundary separation and non-decision times

are not consistently different between DPE and POP conditions,

although there are large individual variations.

Note that all these parameter trends can also be found in a

model where Sz, St, and g are allowed to be different in DPE and

POP trials (Table S1). Additionally, none of these three additional

parameters are consistently different between DPE and POP trials.

Also, in the optimal submodel, where nvDPE = 0 and nvPOP = 0,

parameter trends (with the exception of the nv’s) are consistent

with the full model (Table S2).

Discussion

This study aimed to clarify the mechanisms underlying the

attentional modulations caused by selection history, in particular

by examining Priming of Pop-out (POP) and the Distractor

Preview Effect (DPE). To do this, we fit the Ratcliff diffusion

model (RDM) to eye movement data from an experiment that

included a mix of POP and DPE search conditions where the

oddball was defined by the item with a unique color in the search

array. The experiment showed that a saccade to the target in trial

N is faster when the current target color was also the target color in

trial N-1, and it was slower when the current target color was the

color of all three objects in trial N-1 (i.e., there was no oddball and

no saccade triggered). In other words, we replicated Priming of

Pop-out [5–7] and the Distractor Preview Effect [20–24,45] in an

experiment that allowed us to model both of these effects in each

participant. We first showed that the RDM can accurately model

these inter-trial effects. The results of this modeling suggest that a

bias (i.e. nB in the model) towards the current target’s color (or

away from the distractor’s color) is a necessary parameter for both

POP and the DPE to occur, while the change in the strength of the

representation of the stimuli feature (nv), boundary separation (a)

and non-decision time (Ter) are less likely the factors underlying of

the DPE and POP. Finally, the success of the modeling implies

that, indeed, these two tasks can be understood as attentional

decision making tasks, in which the attention system must quickly

decide the target/distractor status assignments to two colors

presented in the display.

Behavioral Correlates to RDM Parameters
In order to better understand the meaning of our results, it is

useful to look at how the RDM parameters have been modulated

in past experiments. When the relative proportions of stimuli vary

between conditions, the bias parameter has changed most [58]. A

previous disproportionate occurrence of conditions is an example

of an effect of selection history, thus supporting our finding that

selection history is primarily represented in the RDM through the

bias parameter. Their study also found that minor modulations in

drift rate also accompanied a change in stimuli proportions, while

our study did not find any robust changes in drift rate during the

DPE and POP. The drift rate parameter has been consistently

shown to change due to changes in stimulus quality and

discrimination ability (the relative bottom up salience of stimuli)

[58,59]. As the bottom-up salience of targets in all trials was

constant across experiments, it is not surprising that we did not see

a consistent effect on drift rate. The boundary separation alters

due to emphasis on speed or accuracy (the speed accuracy

tradeoff, SATO), and thus depends on task difficulty [58–60]. In

our experiment, subjects’ speed-accuracy goals remained consis-

tent between conditions, and the fact that we found no robust

difference in boundary separation suggests that DPE conditions

are not intrinsically easier or harder than POP conditions. Lastly,

the bias parameter has also shown to be modulated by differing

reward rates for different conditions [59], which was not tested in

our experiment. In sum, our finding that POP and the DPE,

which are caused by differences in selection history, are dependent

on changes in the bias parameter, is mostly consistent with

previous experimental and modeling results.

Neural Correlates for Priming of Pop-out and the
Distractor Preview Effect

Single neuron recordings have been done in primates doing

oddball search tasks in which Priming of Pop-out occurs [46,61].

These studies showed that having the same target in the previous

trial as the current trial (the search repeat condition) led to an

increased firing rate in many frontal eye field (FEF) neurons

compared to when the current trial’s target was a distractor in the

previous trial.

There have not previously been neural recordings of the

Distractor Preview Effect. However, it is possible to make

predictions given our modeling findings, as diffusion models and

other related accumulator models have been shown to mimic

neural activity [62–66], including the neural correlates of oddball

visual search [67]. We found here that POP and the DPE can be

explained in the RDM by a change in the same parameter,

suggesting that the neural causes of the two effects may be similar

as well.

POP and the DPE have both been investigated in humans using

fMRI. In Kristjansson et al. [68], the authors examined the same

color Pop-out task as we used here (although they did not include

DPE trials). They found that the FEF and intraparietal sulcus (IPS)

responded more when the target had changed color from one trial

to the next, implying that the dorsal attention network was

responsible for maintaining the change in belief about the likely

target identity across trials. Complementing those results, recently

Scalf, Ahn, Beck and Lleras [69] studied only DPE trials under

fMRI, using categorical oddball displays (find house amongst faces

or vice-versa). They found that the DPE was significantly

associated with changes in the ventral attention system (bilateral

IFG, right angular gyrus and right supramarginal gyrus, as well as

the right middle frontal gyrus). This is interesting because

contrasting the two sets of fMRI data one can conclude that

POP and DPE ‘‘live’’ in different attention networks, even though

our data suggests that both of these selection history effects are

represented analogously, via changes in bias about the target color.

Bias Modulation Is the Major Factor Underlying POP and
the DPE

The modulation of the bias parameter could signify multiple

internal effects. One possibility is that it could represent perceptual

saliency (or perceptual gain). We believe this is unlikely, as

perceptual saliency would most likely be represented in the same

manner as physical saliency, i.e. through the drift rate parameter

[58,59]. Another possibility is that the bias parameter could

represent a bias of belief. This is likely, as increasing the

probability of a target, which has been shown to modulate the

bias parameter [58], would change someone’s internal belief about

the likelihood of the target.

This parameter interpretation suggests that search facilitation in

the SRe condition of POP is because of a positive bias effect:

seeing the target color on a trial increases the bias of belief that the

target will again be that specific color on the subsequent trial. This
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result is in line with accounts proposing no contributions of

changes in perceptual salience as an underlying mechanism

behind POP (e.g. [70–73]).

Similar to POP, our modeling results show a reliable

modulation of bias in DPE.

Generally, the modeling results regarding the bias parameter in

the DPE are well in agreement with a number of studies by Lleras

and colleagues [20,22,45] showing that that DPE is a top-down

attentional bias. This bias prevents attention from shifting towards

features associated with target-absent status. Lleras, Kawahara

and Levinthal [21] have suggested that the DPE can be very taken

as an example of an attentional repulsion effect centered on the target

itself (and its history): it is not so much the case that distractors

attract more attention onto themselves on Target-Previewed trials

(compared to DP), but rather that it is much harder to move

attention towards the target on those trials because of the history

associated with the target’s color (i.e., its recent assignment of non-

target status, see also Caddigan and Lleras [45]). Lleras et al. [21]

studied a temporal search task version of the DPE studied here:

participants were asked to find the color (or category) oddball on a

rapid serial visual presentation (RSVP) task. Performance on the

trial subsequent to a target-absent RSVP stream was near floor

when participants had to select an item of the color of the items on

the preceding target-absent RSVP stream (i.e., a Target-color

Previewed condition, in RSVP presentation), whereas little

difference was found between Distractor-color and Neither-color

Previewed conditions. This pattern observed in the temporal

version of the DPE is well in line with a ‘‘target-repulsion’’ account

of the DPE. Interestingly, as noted in the Introduction, the repulsion

bias ‘‘transfers’’ across search tasks: that is, when RSVP search

trials are intermixed with spatial search trials (find the oddball in a

static display), a DPE is observed irrespective of the type of target-

absent trial type (RSVP or spatial), and irrespective of the target-

present trial type [20]. This seems to also be the case in POP [17].

The 3-Item Pop-Out Task Is an Attentional Decision
Making Task

When viewed from this modeling framework, we propose that

the task we have been studying in the POP literature may actually

not be a strict ‘‘pop-out’’ task. By that, we mean that the three-

item display used consistently in this literature may not carry

sufficient information to truly induce a feature-based pop-out

effect (i.e., an entirely bottom-up driven reaction to the display). In

larger display sizes, the color-contrast signal between the target

and the surrounding distractors may be sufficiently large to induce

a bottom-up contrast that drives the eye to the pop-out (a true

feature-based pop-out), but that may not be so for three-items

displays. In fact, displays with larger set sizes do produce faster

RTs than those with smaller set sizes [5,74], and in fact, POP

magnitude is smaller with larger set sizes [47]. In other words, the

displays with the less striking pop-out effect give rise to the most

priming of pop-out, and the displays with the most striking pop-out

(as evidenced by faster overall RTs) give rise to smaller amounts of

priming. A further observation regarding POP and DPE is that

neither is observed when the task is simply to detect the presence/

absence of a color pop-out in a display, which again implies that it

is the assignment of colors to attention-roles (target/distractor) that

underlies these effects. A final observation regarding POP is that,

when one uses 3-item displays, the featural contrast between target

and distractors on a given trial (i.e., how alike the target and

distractor colors are) does not affect the magnitude of the priming

effect, yet it does affect the overall RT, with faster overall RTs for

larger color differences [75]. Thus, the magnitude of the color

contrast appears to bear little to no relation to POP magnitude in

three-items displays. This again suggests that POP is not a priming

of ‘‘the phenomenon’’ of visual pop-out, but more likely reflects

the attentional decision making ‘‘benefit’’ of repeating the same

target/distractor color assignment across consecutive trials (a

cognitive as opposed to perceptual effect). Thus, we propose that

the ‘‘3-item pop-out’’ task is better understood as a ‘‘3-item

attentional decision making’’ task.

In sum, the arguments above are meant to emphasize that the

three-item display likely does not induce a purely bottom-up

guidance of attention in the first place, which likely explains why

Priming of Pop-out is so dependent on observers’ goals and

motivations [8,35,36]. We also believe that it is precisely because

the task is an attentional decision making task that our model was

able to successfully fit the data, and why it is that the logic of

adaptation in bias applies in understanding the effect of selection

history in POP and DPE so well.

Limitations of the Current Modeling Approach
While our display had three objects, the Ratcliff diffusion model

that we used models the competition between two choices, rather

than three. That is, our model did not include the location decision

that was made in the actual task. It is thus possible that the RDM

can’t fully capture the internal mechanisms of POP and the DPE.

We made the choice to model color competition because we

believe that the critical decision to make in a trial was whether the

green color or red color was the target when an oddball was

present [17,20,21]. Using a two-competitor model was likely

acceptable for several reasons. First, Krajbich and Rangel [76]

found that a model using three competitors had similar predictions

of choice, reaction time and eye movements as a model using two

competitors. They therefore suggested that the brain uses similar

computation processes in the selection between two or among

three choices. Moreover, they found that the resulting parameter

values were comparable. Second, if the two-choice model was

unable to describe our task, our study would not have yielded high

quality model fits. Third, a behavioral signature of pop-out tasks is

their independence of the number of items in the display, so it

seemed contrary to the behavioral evidence to model the effect

with three accumulators. That said, it will be important in the

future to pursue modeling work to determine whether there are

advantages to using a model with three accumulators, in particular

whether this model can better determine the underlying mecha-

nisms of POP and the DPE. One advantage may be modeling the

role of location repetition in the oddball task [6,7]. It may be

possible to model color and location priming repetition effects

concurrently to see if the color priming effects and the location

priming effects are independent (see Maljkovic and Nakayama,

2000 [7]).

The RDM used here can only reflect relative bias; for instance, it

does not dissociate whether the bias is towards a target or away

from a distractor. However, it has been previously shown in many

studies that POP can be due to dissociable effects on the target and

distractors [17–19,77,78]. Models with additional free parameters,

such as the leaky competing accumulator model [79], may be able

to dissociate these effects in a modeling framework, and should be

investigated in future work.

Another potential limitation of our modeling is our small sample

size (N = 5). This was limited due to the large number of trials per

subject. However, our main result that the bias parameter is

critical for modeling both the DPE and POP is relatively consistent

across subjects and is statistically significant (see Modeling Results). It

would be valuable to increase the sample size in order to better

understand the variation in other parameters across subjects. For

instance, it is possible that there are additional parameter
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variations related to the DPE and POP that are found in just a

fraction of the population.

Significance
In our study, we used saccades as the response modality,

allowing us to focus our analysis on the first act of selection on

each trial. Note that all-but-two papers on Priming of Pop-out

have used manual responses in the search task. The use of saccade

latency as well as accuracy allowed us to model, for the first time,

the attentional decision processes that underlie Priming of Pop-out

and the Distractor Preview Effect, two robust inter-trial effects

caused by changes in selection history. We importantly found that

a diffusion model was able to accurately model these two effects.

The modeling results allowed us to identify contributing factors to

these two effects (thereby contributing to the literature on these

two effects and selection history in general) and more generally, to

further understanding of behavioral correlates of diffusion model

parameters. The results are consistent with the idea that these two

phenomena are not ‘‘visual priming’’ effects, but rather attentional

priming effects, where the behavioral benefits/costs emerge from

an attentional-decision making process that is tasked with

determining, on every trial, the target/distractor assignments to

the colors in the display.

Supporting Information

Table S1 Best-Fit Parameters of Expanded Model.

(DOCX)

Table S2 Best-Fit Parameters of Optimal Sub-Model.

(DOCX)
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