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Human encroachment into natural habitats is typically followed by conflicts
derived fromwildlifedamage toagriculture and livestock. Spatial riskmodelling
is a useful tool to gain the understanding of wildlife damage and mitigate con-
flicts. Although resource selection is a hierarchical process operating at multiple
scales, riskmodelsusually fail to addressmore thanonescale,which can result in
themisidentification of the underlying processes. Here, we addressed themulti-
scale nature of wildlife damage occurrence by considering ecological and man-
agement correlates interacting from household to landscape scales. We studied
brown bear (Ursus arctos) damage to apiaries in the North-eastern Carpathians
as our model system. Using generalized additive models, we found that
brown bear tendency to avoid humans and the habitat preferences of bears
and beekeepers determine the risk of bear damage at multiple scales. Damage
risk at fine scales increased when the broad landscape context also favoured
damage. Furthermore, integrated-scale risk maps resulted in more accurate pre-
dictions than single-scalemodels. Our results suggest that principles of resource
selection by animals can be used to understand the occurrence of damage and
help mitigate conflicts in a proactive and preventive manner.
1. Introduction
Conflicts arising from wildlife damage to livestock and agriculture are one of
the most urgent and complex challenges for conservationists today [1,2]. To
mitigate these conflicts, public administrations often compensate farmers for
the economic losses caused by wildlife damage [3] and eventually encourage
measures to prevent this damage [4]. However, compensation and prevention
programmes systematically neglect landscape heterogeneity in damage risk [5].

An approach to effectively reduce the impact ofwildlife damage is tomodel risk
across space [5]. Froman ecological perspective, the riskof damage canbedescribed
as the probability of the selection of anthropogenic food resources by wild animals.
Resource selection is a scale-dependent process, i.e. inference at a broad scale may
not adequately explain resource use at a finer scale [6]. For example, the distance
to forests may be a strong predictor of livestock predation at intermediate scales
but weak at finer ones [7]. In addition, multi-scale resource selection studies show
that broader-scale features can constrain selection at finer scales, i.e. fine-scale fora-
gingdecisionsdependon the spatial heterogeneityof resources at broader scales [7].
That implies the need to integrate inferences across scales to understand the land-
scape characteristics that determine the probability of resource selection by animals.

Integrating the output of scale-dependent resource selection functions provides
the relativeprobabilityof selectionat a lower scale (e.g. selectionofafarm)conditional
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Figure 1. Conceptual diagram showing a multi-scale approach to model the risk of wildlife damage. The risk of damage is modelled at multiple scales indepen-
dently based on a priori specified scale-dependent predictions that test one or more general hypotheses. At each scale, the risk of damage can be extrapolated to a
larger spatial extension to inform about potential conflict zones in the case of dispersing individual and/or future population increases (A). The resulting predicted
probabilities of damage are multiplied at the smallest scale to produce a scale-integrated risk map (B). Finally, it is assessed if the damage risk at fine scale depends
on whether the context at larger scales favours damage or not (C). (Online version in colour.)
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upon the relative probability of selection at a higher scale (e.g.
selection of home range). This is useful for conservation andman-
agement because it allows the probability of selection to be
predicted and mapped with higher accuracy than single-scale
models [8]. In the case of conflict mitigation, public adminis-
trations and farmers try to prevent damage at different levels,
ranging from the national administrative level to the household
[5]. Providing scale-integrated riskmaps has potential to under-
stand the ecological processes underlying damage occurrence
and providing an effective tool for conflict mitigation.

In this study, we assessed the scale-dependent probability
of brown bear (Ursus arctos) damage to apiaries in the Polish
Carpathian Mountains (figures 1 and 2). The brown bear is
the most abundant terrestrial large carnivore in Europe [9].
Its distribution range has been increasing in the last decades
in Europe [9] and is expected to continue growing in the near
future [10]. Brown bear predation on domestic beehives is
widespread, and in some countries (e.g. Poland), it is nearly
the only type of human property that bears damage [11].

In the Carpathian population, bears mainly select forest-
dominated areas with a low density of roads and human settle-
ments [12,13]. The species sometimes roam in the surroundings
of agricultural fields,where theymay findnatural food resources,
such as berries and herbaceous vegetation [14], as well anthro-
pogenic resources like beehives [11]. We hypothesized that bear
damage to beehives would mostly occur in areas of high bear
habitat suitability with low human influence [13] but with a
high availability and accessibility of apiaries.

To evaluate this hypothesis, we modelled the risk of bear
damage to beehives at three scales encompassing (i) the scale
of a bear home range (hereafter landscape scale); (ii) the habitat
selection of bearswithin their home ranges and the distribution
of apiaries at the local scale (hereafter local scale) and (iii) the
microhabitat preferences of bears and the preferences of bee-
keepers in locating their apiaries (hereafter household scale).
We fitted one riskmodel at each scale and integrated the results
into a multi-scale risk map. We ran an additional model at the
household scale to evaluate to what extent the use of preven-
tive measures decreases the risk of damage. We finally
assessed whether the risk of damage follows a spatially
hierarchical structure, in which the broader landscape context
can shape bear damage response to household conditions.
2. Methods
(a) Study area
This study covers the Carpathian Mountain range in the Podkar-
packie Province, Poland (figure 2). This area is characterized by
gentle slopes and low to medium altitude mountains ranging
from 199 to 1199 m.a.s.l. The land is mainly covered by forest
(62%) and agriculture (32%). Human density averages 44 inhabi-
tants km−2, while the average density of roads is 3.2 km km−2.
Honey production is an important economic activity in the area,
mostly carried out in domestic exploitations. Many apiaries are
unprotected against bear damage. Others are close to buildings
or fenced with mesh fence, and only a few of them are well pro-
tected with electric fencing (see electronic supplementary
material, figure SA1). The average number of beehives per
apiary is 17.8 (s.d. = 18.21), ranging from just one to over a
hundred (see electronic supplementary material, figure SA1).
(b) Bear damage data
We compiled data on bear damage to apiaries from official records
collected through the damage compensation programme in the
Podkarpackie Province by the Regional Directorate for Environ-
mental Protection in Rzeszów. The compensation scheme has
been in place since 1999 and includes damage inspection and ver-
ification by trained personnel. After a preliminary exploration of
the data, we decided to use only data from 2010 to avoid potential
omissions and biases associated with limited knowledge by
farmers of the compensation scheme at the initial period of pro-
gramme implementation. Finally, we filtered out records with
imprecise or missing location of the attacked beehives.

We obtained data from 406 bear damage events to apiaries
from 2010 to 2017. All these records contained geographical
information in the form of geographical coordinates (68%
records) or the name of the nearest village—the latter were
mapped to the village (figure 2).

Damage to apiaries were transferred to 5 × 5 and 1 × 1 km
grids for the landscape and the local-scale analyses. At the land-
scape scale, we used the same 5 × 5 km grid as Fernández et al.
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Figure 2. Location of the study area showing the apiaries damaged by the
brown bear (Ursus arctos) in the Northern Carpathian Mountains (SE Poland,
Podkarpackie Province) in the period of 2010–2017. (Online version in colour.)
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[12],who providedmodelled probabilities of bear occurrence based
on habitat characteristics in the Northern Carpathians, including
our study area. From that grid, we selected 338 cells covering
the Carpathian Mountain rangewithin the Podkarpackie Province.
At the local scale, we used a grid of 8450 1 kmcells nested in the 5 ×
5 kmgrid. Finally, at the household scale,weused theGPS locations
of apiaries sampled during 99 days of fieldwork specifically con-
ducted for this study between August 2014 and June 2015 (see the
electronic supplementary material, appendix SA1). In addition to
these locations, we used data of damaged apiaries from compen-
sation records for the period of 2014–2017, since during these
years the damage inspectors systematically collected GPS locations
at damage sites. In total,we gathered information from293 apiaries,
of which 123 were damaged.

(c) Predictors of damage at different scales
We analysed the occurrence of bear damage to apiaries based on
scale-specific predictions within the bear range in the Podkar-
packie Province (see electronic supplementary material, table
SB1). Specifically, we ran one spatial correlation model per each
scale, plus an extra model at the household scale to assess the
effect of preventive measures on damage risk, i.e. four models:
landscape model, local model, household model and preventive
model. To delimit the bear range, we selected the 5 × 5 km cells
with bear presence based on [12] and on the location of
damage events occurring in 2010–2017. We also added cells
that had over 40% of forest cover and were adjacent to at least
three cells with bear presence to include places where bears
could potentially occur but be undetected. This selection resulted
in 159 (out of 338) and 3355 (out of 8450) cells of the 5 × 5 and 1 ×
1 km grids, respectively. All the apiaries used for the household
and the preventive models were located within this selected area.
To assess the probability of damage occurrence at each scale, we
classified all cells and apiaries with binary values, with 0 and 1
for undamaged and damaged cells/apiaries, respectively.

At the landscape scale, we expected the probabilities of bear
and apiary presence to be inversely correlated, i.e. bears occur-
ring in forested areas with relatively little human influence and
apiaries in more altered landscapes dominated by agriculture
(see electronic supplementary material, table SB1). For each 5 ×
5 km cell, we extracted the probability of bear presence from
[12]. We, then, calculated the probability of apiary presence by
modelling the location of apiaries recorded during our fieldwork
as a response to different environmental and socioeconomic pre-
dictors (see electronic supplementary material, appendix SA).
Finally, we calculated the damage probability as a function of
bear presence probability and apiary presence probability.

At the local scale, we calculated in each 1 × 1 km cell 12 pre-
dictors expected to influence the risk of bear damage to beehives
(see electronic supplementary material, table SB1). Specifically,
we predicted that damage occurrence is directly related to the
densities of humans, settlements and roads, to the proportion
of agricultural cover and to the length of forest edges, all of
which are higher at low altitudes and gentle slopes (see electronic
supplementary material, table SB1). We also expected that the
above predicted relationships would have nonlinear effects on
damage occurrence. For example, we expected damage risk to
have a positive relationship with human population density
until a certain threshold in which high human densities would
deter bears and shift the relationship into negative.

Finally, at the household scale, we predicted that the apiaries
that are more exposed to bears are more vulnerable to bear
damage, i.e. far from buildings and located within areas of high
probability of bear presence. Accordingly, for each apiary, we calcu-
lated the probability of bear presence, the distance to the nearest
forest patch, the distance to the nearest building, the number of
buildings in a radius of 200 m around the apiary and the forest
cover in the same 200 m radius. At this scale, we also aimed to
assess the influence of preventive measures in damage occurrence.
For that,we used a subsample of 151 apiaries (32 of themdamaged)
for which we had information about the type of measures used to
protect apiaries against bear damage. We only considered as pre-
ventive measures properly installed and working electric fences
(see electronic supplementary material, figure SA1). Other types
of fencing, such as wooden or simple wires, were classified as no
prevention. Since the immediate surroundings of apiaries may
also influence the occurrence of damage (e.g. less damage occurring
in apiaries far from the forest and surroundedbybuildings),we also
expected an interaction effect between the presence of electric fences
and the above explained predictors.

(d) Damage risk models
We used generalized additive models (GAMs) to analyse the
occurrence of bear damage to apiaries and predict the probability
of damage at the three scales (landscape, local and household)
and to assess the effect of preventive measures on damage risk
at the household scale (preventive model). We fitted all GAMs
with a binomial error distribution and a logarithmic link with
damage occurrence (1) versus absence (0) as a response to differ-
ent environmental and socioeconomic predictors (see above). For
the landscape and local models, we used data from the period of
2010–2015 to build the models and data from the period of 2016–
2017 to evaluate our predictions. For the household model, we
used all available data about apiaries located with GPS in the
period of 2014–2017. We used a maximum-likelihood method
to estimate smoothing parameters. We added a second penalty
in the null space for each smooth term in each model to allow
the model to reject the least relevant terms for predictions [15].
To avoid collinearity, we excluded the highly correlated variables
through a stepwise procedure based on the variance inflation
factor [16]. We only included the predictors with a variance
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Figure 3. Risk maps showing the relative probabilities of brown bear damage to apiaries in the Northern Carpathians (SE Poland) at three scales: 5 × 5 km (a),
1 × 1 km (b) and 0.25 × 0.25 km (c). The relative probability of damage was predicted at each scale based on the coefficients of GAMs run within the bear
distribution range (cells delimited by the blue line). That probability was then extrapolated to the potential bear habitat within the Podkarpackie Province to
inform about potential conflict zones in the case of future population increases. The relative probabilities of bear damage were multiplied at the smallest
scale to produce a scale-integrated risk map (d ). Predicted risk of damage for all maps was classified using the maximized sum of sensitivity–specificity. The
values below the threshold are considered as predicted absence of damage (grey colour). The values above the thresholds were divided into four equal-interval
classes of damage risk (the darker the orange colour, the higher the risk). The bar plots at the bottom-left of each panel show the relative frequency of the different
risk classes in the map (left bars represent predicted absences and right ones the classes of damage risk). (Online version in colour.)
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inflation factor lower than two using a correlation threshold of
0.60. We included in all models an interaction term of the geo-
graphical coordinates to account for spatial trends in the data
across large geographical distances [17]. For the preventive
model, we included the main term ‘prevention’ (as a categorical
linear predictor) plus two smothers for each significant predictor
in the household model (one smother for the group ‘prevention =
yes’ and another for ‘prevention = no’). This allowed assessing
the compounding effect of the presence of preventive methods
and the immediate landscape characteristics of the apiaries on
damage risk. We run spline correlograms on the occurrence of
predation events and on the residuals of all models to assess
for the remaining spatial autocorrelation. All statistical analyses
were performed in R (v. 3.5.1, R Development Core Team
2018) using the packages mgcv to run GAMs [18], ncf to assess
the spatial autocorrelation and mgcViz to visualize the results
of GAMs [19].
(e) Model evaluation
We measured the predictive capacity of the models on damage
occurrence using the area under the receiver operating character-
istics curves (AUC); the overall rate of correct classifications
(accuracy) and the proportions of correctly classified presences
(sensitivity) and absences (specificity) of damage to apiaries.
For each model, we set the optimal threshold for discriminating
damage using the maximized sum of sensitivity and specificity
in the receiver operating characteristic curve. For the landscape
and local models, we carried out an internal evaluation by com-
puting the performance metrics using data from 2010 to 2015
used to fit the model. We also performed an external evaluation
considering the ability of the model to predict bear damages to
apiaries using independent data for the period of 2016–2017.
For the household and preventive models, we only performed
the internal evaluation because we used all the observations for
which we had data on the described predictors to fit them.

( f ) Scale-integrated risk mapping
We extrapolated the risk of bear damage across the Carpathian
mountain range within the Podkarpackie Province (figures 1, 2
and 3). We performed this extrapolation beyond the bear distri-
bution area to inform about potential conflict zones in the case
of dispersing individual bears and/or future population
increases [13]. Specifically, we predicted the risk of damage at
each scale based on the coefficients of its corresponding risk
model. To extrapolate the risk of damage at the household
scale, we divided each of the 8450 cells of 1 km side into 16
cells of 0.25 km side (i.e. 135 200 cells of 0.25 × 0.25 km) and
calculated the predictors used in the household model at the
centroid of each 0.25 km-side cell.

We integrated the predicted risk of damage across scales at
the 0.25 × 0.25 km resolution. To that end, we characterized
each 0.25 km-side cell with the probability of damage estimated
at each of the three study scales, i.e. three values of damage prob-
ability for each cell. We then scaled the predicted probabilities in
each cell between 0 and 1 based on the following formula:

P(damage) ¼ (P(x)� Pmin)
(Pmax � Pmin)

:

We scaled the probabilities between zero and one to give
equal weight to the predicted risk at every scale. Finally, we cal-
culated the scaled-integrated probability of damage to apiaries
at each cell by multiplying the damage probabilities at the



Table 1. Results from GAMs analysing the occurrence of brown bear damage to apiaries in the Northern Carpathians (SE Poland) at three scales: landscape
(5 × 5 km), local (1 × 1 km) and household (apiary’s GPS coordinates). The estimated degrees of freedom (Edf ) for each smooth term are provided. Generally,
the higher the Edf the more nonlinear the smoothing spline with Edf = 1 indicating a linear function. However, since we added a second penalty in the null
space for each smooth term, Edfs ≤1 are not necessarily linear and an Edf near zero indicates that the effect of that smooth term is removed from the model.
The smoother effect of the interaction of the geographical coordinates is provided in electronic supplementary material, appendix SB.

spline fits Edf smooth effects

landscape model (N = 157, adjusted R2 = 0.224, deviance explained = 21.3%)

s(probability of bear presence) 1.60*

s(probability of apiary presence) 0.91***

s(X-coordinate, Y-coordinate) 5.75** electronic supplementary material, figure SB2

local model (N = 3925, adjusted R2 = 0.040, deviance explained = 12.5%)

s(slope) ∼0 no effect

s(agricultural cover) 0.90

s(density of major roads) 1.23**

s(density of minor roads) ∼0 no effect

s(density of very small roads) ∼0 no effect

s(forest edge) 3.36***

s(X-coordinate, Y-coordinate) 12.8*** electronic supplementary material, figure SB3

household model (N = 293, adjusted R2 = 0.379, deviance explained = 36.4%)

s(probability of bear presence) ∼0 no effect

s(distance to nearest building) ∼0 no effect

s(distance to nearest forest patch) 1.28*

s(number of buildings in a 200 m radius) 1.80***

s(forest cover in a 200 m radius) 1.05^

s(X-coordinate, Y-coordinate) 16.97*** electronic supplementary material, figure SB4

s = spline; approximate significance of smooth terms based on p-values: 0, ***0.001, **0.01, *0.05, ^0.1.
∼0 = values less than 0.1.
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landscape, local and household scales following Decesare et al.
[20] as follows:

Scale� integrated probability of damage ¼ P(S1)� P(S2)� P(S3),

where P(S1), P(S2) and P(S3) are the relative probabilities of
damage for a given 0.25 km-side cell at the landscape, local
and household scales, respectively.
(g) Assessing whether the landscape context shapes
bear damage response to household conditions

We assessed if the damage risk at a fine scale depends on
whether the context at larger scales favours damage or not. For
that, we first selected the 0.25 km-side cells encompassing
damaged and undamaged apiaries (i.e. 272 cells). Then, we
characterized the selected cells according to whether they
were located within an area predicted as risky or safe in the
risk maps at the landscape and local scales (figure 3). As a
result, we had four subsets of the 0.25 × 0.25 km grid, compris-
ing apiaries located in (i) risky landscape conditions, (ii) safe
landscape conditions, (iii) risky local conditions and (iv) safe
local conditions. We used GAMs to predict the probability
of damage for each subset of data. We included as predictors
the variables previously identified as significant in the
household model.
3. Results
(a) Correlates of brown bear damage risk
The results from the landscape model showed that the prob-
ability of damage occurrence steadily increased with the
probability of apiary presence and, to a lesser extent, with
high probabilities of bear presence (table 1 and electronic sup-
plementary material, figure SB2). At the local scale, the
damage probability increased with the length of forest edge
and with low densities of major roads. It also increased with
low values of agricultural cover (table 1 and electronic sup-
plementary material, figure SB3). At the household scale, we
found that the risk of damage decreased with an increasing
density of buildings in a 200-m radius around the apiaries and
increased in apiaries locatednear forest patches and surrounded
by forests (table 1 and electronic supplementary material,
figure SB4). Overall, the occurrence of damage had a negative
relationship with the distance to the nearest forest patch (see
electronic supplementary material, figure SB4). Results from
the preventive model showed that apiaries with preventive
measures were those with higher risk of being attacked
(table 1 and electronic supplementary material, figure SB5).
Also, an increasing density of buildings in a 200m radius
decreased the probability of damage in apiaries with no



Table 2. Results from a GAM analysing the compounding effect of preventive measures and the surroundings of the apiaries on the occurrence of brown bear
damage to apiaries in the Northern Carpathians (SE Poland). The estimated degrees of freedom (Edf ) for each smooth term are provided. The smoother effect of
the interaction of the geographical coordinates is provided in the electronic supplementary material, appendix SB.

spline fits Edf smooth effects

prevention model (N = 151, adjusted R2 = 0.449, deviance explained = 49.1%)

prevention (yes)a 1.70 (± 0.73)* —

s(distance to nearest forest patch): prevention = no ∼0 no effect

s(distance to nearest forest patch): prevention = yes ∼0 no effect

s(number of buildings in a 200 m radius): prevention = no 0.92**

s(number of buildings in a 200 m radius): prevention = yes ∼0 no effect

s(forest cover in a 200 m radius): prevention = no ∼0 no effect

s(forest cover in a 200 m radius): prevention = yes ∼0 no effect

s(X-coordinate, Y-coordinate) 14.13** electronic supplementary material, figure SB5
aLinear fit for which is reported the estimate ± standard error instead of the Edf.
s = spline; approximate significance of smooth terms based on p-values: 0, ***0.001, **0.01, *0.05, ^0.1.
∼0 = values less than 0.1.
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preventive measures (table 2 and electronic supplementary
material, figure SB5).

Risk models showed medium to high predictive accuracy
according to the internal evaluation: AUC= 0.79–0.95. The pre-
dictive accuracy was lower for the external evaluation: AUC=
0.68–0.63 (see electronic supplementary material, table SB2).

(b) Scale-integrated risk map
The scale-integrated risk map predicted that 66% of the bear
range in the Podkarpackie Province is at some level of risk of
bear damage to apiaries, of which 1% is considered to be at
high or very high risk (figure 3 and electronic supplementary
material, table SB2). The spatial location of high-risk zones
within the bear range was consistent across scales. Consider-
ing the potential bear habitat within the Podkarpackie
Province, 32.7% of the area was at moderate risk, and 0.3%
at high risk. The scaled-integrated risk map had a high classi-
fication accuracy (AUC = 0.856, figure 3).

(c) Landscape context can shape bear damage response
to household conditions

The predicted risk of damage at the household scale depended
on the risk predicted at larger scales. In other words, broad
landscape characteristics determined to what extent the
immediate surroundings of the apiary influence its vulner-
ability. Specifically, an apiary surrounded by several
buildings and more than 80 m away from the forest edge is
up to three times more likely to be damaged by a bear when
it is inside (versus outside) a landscape that favours damage
(figure 4). To a lesser extent, the probability of damage at the
household scale also increased when the environmental
characteristics at the local scale favour damage (figure 4).
4. Discussion
(a) Patterns and correlates of damage risk
Our results illustrate that the spatial patterns of bear damage to
apiaries are a complex ecological issue modulated by multiple
environmental factors and their interactions across several
scales. We found that high risk of damage is associated with
areas of interface between agricultural landscapes that are suit-
able for beekeeping (landscape scale) and forest patches that
facilitate the movement of bears within their home range [21]
(local and household scales). In addition, we found that a
high building density in the immediate surroundings of an
apiary (household scale) was related to low risk of damage.
The overall interpretation of these results confirms, as we
hypothesized, that the habitat preferences of bears (to find
resources) and beekeepers (to install apiaries) together with
the bear’s natural tendency to avoid humans determine the
risk of bear damage to apiaries at multiple scales.

Our results showed that local-scale patcheswith a high den-
sity of forest edges, roads and agricultural land are susceptible
to bear damage. Similar patterns have been observed for other
wildlife indifferent landscapes. For instance, the riskof livestock
predationby leopards (Panthera pardus) inBhutanorof croppre-
dation by Asian elephants (Elephas maximus) in India also
increased in agricultural fields and near roads, respectively
[22,23]. Overall, this pattern shows that the risk of damage at
medium scales depends directly on the availability and accessi-
bility of farms and crops, both of which are higher in the
surroundings of rural human settlements. The conversion of
natural ecosystems to agricultural land has steadily increased
over the 20th century and is projected to keep increasing glob-
ally [24]. As wilderness becomes converted into agricultural
land, conflicts arising fromdamage are also expected to increase
[25,26]. Conversely, and in spite of the general trend of agricul-
ture expansion, many regions (e.g. Europe) have experienced a
conversion fromagriculture into forest habitatmainlyas a result
of socio-political dynamics like the rural exodus [27]. Land
abandonment in rural areas can facilitate conflicts. For example,
the decrease and ageing of local population in central Japan has
increased the incidence of leaving unattended fruit trees and
unharvested crops, which attract Asiatic black bears (Ursus thi-
betanus) and Japanesemacaques (Macaca fuscata) to villages [28].

Yet, the accessibility of farms and agricultural land (and,
thus, the risk of damage) may well be compromised by
the landscape characteristics in their most immediate
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surroundings. Results from our household model showed
that the risk of damage was at its minimum when apiaries
were surrounded by several buildings and located far
enough from forest patches (table 1 and figure 4; electronic
supplementary material, figure SB4). This evidence that the
fear associated with human presence influences the decisions
of bears to feed on available energy-rich resources, such as
honey and larvae from beehives. Similar patterns have been
observed in the use of human-derived foods by other con-
flict-prone species, such as tigers (Panthera tigris) and
African elephants (Loxodonta africana) [22,29]. This trade-off
between energy demands and fear (i.e. using accessible and
abundant food resource versus avoiding dangerous situ-
ations) has been suggested to shape the spatial ecology and
decision-making of wild animals [30] and seems to also
shape animal behaviours driving the occurrence of damage.
That could explain why the apiaries without electric fences
but surrounded by buildings (something relatively common
in the study area) tend to have lower damage probability
than apiaries with electric fence but installed inside or very
close to forest patches and with no buildings around (table 1;
electronic supplementary material, figures SB6 and SB7).
Although electric fences can be very effective in preventing
damage [31], their effectiveness is significantly reduced when
they are poorly maintained and they are not reinforced with
additional preventive measures [32,33], which is frequent in
our study area (see electronic supplementary material, figure
SA1). Furthermore, animals with high cognitive abilities, like
the brown bear, are known to damage the same farms repeat-
edly across years and to be able to learn how to skip
preventive measures at particular farms [33]. This suggests
that, in the absence of effective prevention, anthropized areas
(e.g. urban settlements) can act as a protective shield for
farms against wildlife damage.

Although our risk models at the landscape and local scales
were accurate in extrapolating the risk of damage to the poten-
tial bear habitat within the Podkarpackie Province (AUC≥ 0.9;
electronic supplementary material, figure SB9), they were lim-
ited in predicting the presence and absence of damage for the
two subsequent years (AUC between 0.65 and 0.68; electronic
supplementary material, table SB2). That limitation is likely
connected to spatio-temporal variation in missing covariates
[34] that can also influence the movement and behaviour
of bears (e.g. the availability of food resources; [35]). Indeed,
we found that the geographical coordinates used to account
for spatial structure in damage patterns in our risk models
were significant at every scale (table 1), which can be an indi-
cation of missing relevant, spatially structured covariates. For
example, the presence of supplementary food provided in
natural habitats for wildlife is known to alter the movement
behaviour of many animals (including bears in temperate
forest ecosystems [36]) and can sometimes increase, instead
of decrease, the occurrence of damage [37]. That may be the
case when feeding sites, which attract wildlife, and beehives
are located close to each other. Other factors that can influence
the spatio-temporal patterns of damage occurrence are related
to the dispersal movements of juveniles [21] or female bears
with cubs seeking human infrastructure to prevent infanticide
[38]. Including data on species demography and individual
movements can help gain a better understanding on the
processes shaping the occurrence of damage, as well as
achieving more accurate predictions.
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(b) Integrating damage response to habitat
characteristics across scales

By combining the results of risk models across multiple scales,
we have demonstrated that the broader landscape context
can shape animal responses to the immediate environmental
characteristics of a farm. For example, the probability of
damage to an apiary greatly increased (up to three times; 0.6
versus 0.2) when it was located in cells predicted at risk at
the landscape scale (figure 4). This supports previous findings
showing that resource selection at fine scales can be con-
strained by habitat selected at coarser scales [8]. For example,
Lipsey et al. [8] demonstrated that the fine-scale probability
to select grasslands by Sprague’s Pipit (Anthus spragueii)
increased with the proportion of grass at broader landscapes.
These conditional relationships in resource selection among
scales are rarely tested in risk mapping, and yet, help to gain
a more integrative understanding of how animals select
different types of resources and are prone to conflict.

To the best of our knowledge, this is the first study inte-
grating scale-dependent responses of animals in the use of
farm products. The majority of damage risk assessments to
date are based on scale-specific models [5]. Just a few studies
have assessed the probability of damage at multiple scales by
identifying scale-dependent patterns of livestock predation
[22] or the best grain to improve damage predictions [39].
Here, we showed that combining the extrapolations from
single-scale risk models into an integrated-scale risk map
greatly improved the spatial prediction accuracy (figure 3;
electronic supplementary material, figure SB9 and table
SB7) and overcame the limitations of single-scale risk map-
ping on predicting conflicts from other time lapses (see
electronic supplementary material, figure SB10). Previous
studies integrating the scale-dependent response of animals
to the availability of natural resources also resulted in more
accurate predictions than traditional, scale-specific models
[8,20]. Our study adds evidence that scale integration can
be applied to the particular case of wildlife damage to farm
products to predict more accurately where conflicts are
more likely to occur.

The recommendations derived from scale-integrated risk
maps can avoid wasting resources in management actions
based on inaccurate recommendations from scale-specific
risk maps. For example, the map based on the landscape
model wrongly identified a small region in the northwest
part of our study area as a priority for conflict mitigation
(figure 3). The northwest has, in fact, an optimal habitat to
install apiaries (see electronic supplementary material,
figure SA4); however, it is relatively far from the current
bear distribution and its local context does not favour
damage (see local-scale risk map in figure 3). Accordingly,
the joint probability of damage rescaled to the landscape
scale (see electronic supplementary material, figures SB9
and SB10) reduced by 75% the area identified as at risk in
the northwest. Furthermore, rescaling the risk of damage
from the integrated risk map at the finest scale to the broadest
landscape scale increased the prediction sensitivity in com-
parison with the predictions derived from the single-scale
map (i.e. 90%—versus 82%—of damage locations were ident-
ified correctly, see electronic supplementary material, figure
SB10). Although the management and decisions on conflict
mitigation strategies are taken on broad scales, these scales
do not accurately reflect the spatial heterogeneity of
damage occurrence [5,40]. Summarizing the results from
scale-integrated risk maps from fine to large scales can help
to avoid mismatches between the scales of inference and
management action and thus, provide better information to
managers and policymakers for damage prevention [41].
(c) Implications for conservation
Proactive andpreventive approaches tomitigate conflicts arising
fromwildlife damage are proved to bemore successful over time
than reactive approaches [31]. Yet, most efforts invested in con-
flict mitigation around the world are allocated to reactive
approaches (e.g. compensation programmes), thus, compromis-
ing the real success of conflictmitigation actions [3,4]. Given that
resources for conflict mitigation are usually limited, prioritizing
theareas in the landscapeand theparticular farmsthat shouldbe
protected first would be highly beneficial for damage preven-
tion. Our multi-scale approach allows identifying risk areas on
the broad landscape context and, in those areas, selecting the
most vulnerable households in which to subsidize preventive
measures. Following our case study, beekeepers working in
landscapes that favour damage could reduce the probability of
experiencing bear damage by more than threefold if they
would locate their beehives at least 300 m away from the forest
patches and in thevicinityof several buildings (figure 4 and elec-
tronic supplementary material, figure SB4). We believe that our
approach may be used as a guideline for future damage risk
assessments of other wildlife species and in other parts of the
world and, thus, help to effectively reduce damage occurrence
and enhance human–wildlife coexistence.

Conflicts arising fromwildlife damagearepredicted to grow
due to the recovery and expansion of some wild animal popu-
lations into human-dominated landscapes [9] and due to the
increasing transformation of natural areas into agriculture
fields [24–26]. The use of agriculture lands and suburban
areas by wild animals can become an ecological trap for them,
impacting species demographyand even leading to local extinc-
tions [42]. Indeed, conflict with humans is one of the main
threats for the survival of many species of large carnivores
and herbivores [25,26]. That is worrying because they play
an essential role in ecosystem functioning worldwide [43].
Unfortunately, given the current human population growth,
stopping agriculture expansion into natural areas and the con-
flicts arising from it may be an unrealistic short-term goal [44].
However, using risk models to predict where damage is more
likely to occur and have a proactive and preventive attitude
towards conflicts is something that farmers, conservation
practitioners and policymakers can start doing today.
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