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Abstract: Toxin–antitoxin systems (TASs) are widely distributed in prokaryotes and encode pairs
of genes involved in many bacterial biological processes and mechanisms, including pathogenesis.
The TASs have not been extensively studied in Listeria monocytogenes (Lm), a pathogenic bacterium
of the Firmicutes phylum causing infections in animals and humans. Using our recently published
TASmania database, we focused on the known and new putative TASs in 352 Listeria monocytogenes
genomes and identified the putative core gene TASs (cgTASs) with the Pasteur BIGSdb-Lm database
and, by complementarity, the putative accessory gene TAS (acTASs). We combined the cgTASs
with those of an additional 227 L. monocytogenes isolates from our previous studies containing
metadata information. We discovered that the differences in 14 cgTAS alleles are sufficient to
separate the four main lineages of Listeria monocytogenes. Analyzing these differences in more details,
we uncovered potentially co-evolving residues in some pairs of proteins in cgTASs, probably essential
for protein–protein interactions within the TAS complex.

Keywords: toxin–antitoxin systems; Listeria monocytogenes; co-evolution

Key Contribution: Systematic annotation of TASs in a large number of L. monocytogenes assemblies.

1. Introduction

Toxin–antitoxin systems (TASs) were discovered because of their involvement in a biological
process called post-segregational killing (PSK), a plasmid maintenance mechanism based on two
plasmid-encoded genes: a toxin gene (T) and its antagonistic antitoxin (A) [1–3]. In this context,
the toxin and antitoxin are equally distributed in the two daughter cells; however, the instability of the
antitoxin will lead to an active toxin killing the cell lacking the plasmid because the antitoxin cannot
be replaced. This system also could be important under some stress (e.g., antibiotic in the medium),
where the toxin is released from its less stable antitoxin partner, leading to a transient metabolic
shutdown and growth arrest or cell death, similar to apoptosis in higher organisms. Of particular
interest, TASs have been associated with pathogenic bacterial intracellular infection and with quorum
sensing [4]. In addition, pandemic bacterial strains have been shown to carry more TASs compared to
non-epidemic related species [5].

TAS toxicity relies on various molecular mechanisms targeting diverse biological processes,
e.g., cell membrane integrity, assembly of the translational machinery, tRNA and mRNA stability,
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translation initiation and elongation steps, DNA replication, and ATP synthesis (see [6,7] for reviews).
For example, the toxins MazF or PemK target and cut both free mRNA and mRNA bound to the
translational machinery, while the toxin ParE targets DNA replication by inhibiting the DNA gyrase [6].
In terms of gene structure, TASs are usually found in operons with either AT or TA orientations.
Those TAS operons can be acquired from mobile genetic elements such as plasmids or phages, and are
also present in bacterial chromosomes [8], leading to complex heterogeneous genomic landscapes of
TASs with both horizontal and vertical transmissions.

Listeria monocytogenes (Lm) is a Gram-positive bacterium and opportunistic food-borne
pathogen [9–11]. It is the etiological agent of listeriosis in humans and animals causing abortion,
septicemia, gastroenteritis, and central nervous system (CNS) infections [12,13]. L. monocytogenes strains
are grouped into four distinct phylogenetic lineages called I, II, III, and IV [14–16]. Strains belonging
to lineages I and II are the most abundant isolates worldwide and particularly Lineage I is frequent
in disease [16,17], while Lineage III and IV strains are very rare and predominantly isolated from
(asymptomatic) animals [18]. In silico predictions using TADB2 reveal only two TASs in L. monocytogenes
EGD-e: lmo0113-0114 and lmo0887-0888 [19]. There are a few studies investigating TAS systems
in L. monocytogenes [20–22] focusing only on a few L. monocytogenes strains and a few TAS pairs.
The following TAS pairs were identified mainly using in silico methods in the strain ATCC19117
(with their corresponding gene names in L. monocytogenes EGD-e): lmo0113-0114, lmo0887-0888,
and lmo1301-1302, predicting their 3D structure and potential inhibitory peptides. This report also
showed by qPCR that lmo0113 is upregulated upon heat stress [21,22]. Another report investigated
the TAS lmo0887-888 of L. monocytogenes EGD-e in more detail, ruling out the classical MazF action,
but without demonstrating the exact role of this TAS in L. monocytogenes [20]. They showed that
lmo0887-888 does not affect the level of persister formation upon antibiotic treatment, but the expression
of σB-dependent genes opuCA and lmo0880 under sub-inhibitory norfloxacin treatment [20].

In this article, we first identified putative core gene TASs in a larger set of 579 L. monocytogenes
genomes and discovered how some of these gene pairs have potentially co-evolved. In a second step
using putative accessory gene TASs, we correlated our phenotypic metadata to the presence/absence of
TAS genes, revealing the potential impact of specific TASs in the pathogenicity of L. monocytogenes strains.

2. Results

2.1. Identification of Core Gene TASs

The TASmania database [23] was queried to identify the putative TASs in the 352 Lm genomes
that are currently in the database (list of L. monocytogenes genomes in TASmania, Table S1, list of TASs,
Table S2). These 352 genomes were typed using the scheme cgMLST1748 at the Pasteur BIGSdb-Lm
web site [24] to obtain the core gene alleles for all strains. By comparing with the TASmania hits we
identified n = 14 core gene TASs (cgTASs) (Table 1) and their respective alleles (list of alleles in the 14
cgTASs, Table S3). The current knowledge on TASs in L. monocytogenes is rather scarce and our list
included the two cgTASs already identified by TADB2 (lmo0113-0114 and lmo0887-0888). TASmania
extended the number of TAS candidates by one order of magnitude in all L. monocytogenes strains,
but only a subset of them consists of core genes according to cgMLST1748.

Out of these 14 cgTASs, two cgTASs appear as orphans (lmo0168 and lmo0887). Their genetic
environment was studied in the annotations of the EGD-e strain [25]. In the case of lmo0168, no possible
partner was found, as the gene is surrounded by genes located on the other strand, confirming a
probable orphan antitoxin. The potential partner of lmo0887 is lmo0888, which likely is a toxin mRNA
interferase containing a pemK-like domain and a plasmid_toxin domain (according to TASmania), is a
mazEF (according to TADB2); however, it is not identified as a core gene according to the cgMLST1748
scheme and thus must be ignored in our co-evolution analysis below.
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Table 1. List of 14 putative cgTASs identified in TASmania L.monocytogenes. Gene locus names
are taken from the reference EGD-e annotation (NCBI accession number NC_003210.1). The term
“Guilt-by-association” refers to potential T or A proteins identified only by their neighborhood to a hit
in TASmania [23]. The alternative shading is used to group the pseudo-operon TAS loci.

Core Gene Locus Putative Type HMM Cluster Hit Description TAS Pair ID and
Orientation

lm0113 Toxin Guilt-by-association
Peptidase_M78

domain-containing
protein

1 AT

lm0114 Antitoxin TASMANIA.A78

Toxin–antitoxin
system, antitoxin
component, Xre

family

1 AT

lmo0168 Antitoxin TASMANIA.A8 Orphan antitoxin
mazE 2 A orphan

lmo0887 Antitoxin TASMANIA.A5
CopG family

ribbon-helix-helix
protein

3 AT

lmo1309 Antitoxin TASMANIA.A3
Chromosome

partitioning protein
ParB

4 TA

lmo1310 Toxin Guilt-by-association
DUF3440

domain-containing
protein

4 TA

lmo1466 Antitoxin Guilt-by-association
Cyclic-di-AMP

phosphodiesterase
PgpH

5 TA

lmo1467 Toxin TASMANIA.T1 PhoH family
protein 5 TA

lmo2041 Toxin Guilt-by-association

Ribosomal RNA
small subunit

methyltransferase
H

6 AT

lmo2042 Antitoxin TASMANIA.A2 Transcriptional
regulator MraZ 6 AT

lmo2790 Antitoxin TASMANIA.A1
ParB/RepB/Spo0J
family partition

protein
7 TA

lmo2791 Toxin Guilt-by-association Partition protein,
ParA homolog 7 TA

lmo2793 Toxin Guilt-by-association Uncharacterized
protein 8 AT

lmo2794 Antitoxin TASMANIA.A1 Nucleoid occlusion
protein 8 AT

In a second step, we added our own collection of L. monocytogenes strains [26] (n = 227) with their
cgMLST alleles (Table S4) and metadata annotation (Table S5). We extracted their non-redundant gene
alleles corresponding to the previously identified 14 cgTASs (Table S6). By clustering the non-redundant
cgTAS alleles patterns with nominal hierarchical clustering, we obtained the dendrogram (Figure 1)
showing that the 14 cgTASs are sufficient to separate the L. monocytogenes lineages (I, II, III, and IV).
These results are in agreement with previous MLST analysis using seven housekeeping genes [14].
This clustering allows for characterizing the lineage membership of strains that did not have metadata
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information available (e.g., Lm_gca_000729665 as Lineage I and Lm_gca_001466115 as Lineage II).
However, one cannot infer any causal role for the cgTASs in the lineage separation, as clustering the
alleles of some subsets of core genes among the 1748 core genes would potentially show the same
lineage split.Toxins 2019, 11, x FOR PEER REVIEW 4 of 15 
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Figure 1. Dendrogram of the non-redundant L. monocytogenes strains based on the cgTAS alleles.
The lineage coloration is based on the known lineages thanks to the metadata. Those without metadata
are tentatively colored according to the branch. Black = Lineage I; red = Lineage II; blue = Lineage III;
green = Lineage IV; light blue = Listeria innocua as outgroup (wrongly annotated L. monocytogenes in
ENA).

2.2. Co-Evolution Analysis

We analyzed the six complete cgTAS pairs for co-evolutionary residues and excluded the orphan
cgTASs (lmo0168 and lmo0887). We grouped the sequences by gene, translated them to proteins
and fused the toxin (T) alleles with the corresponding antitoxin (A) alleles per genome in a multiple
sequence alignment (MSA) using our own Perl script and MAFFT [27]. With this MSA, the BIS2Analyzer
server [28] was able to identify potential co-evolutionary residues, i.e. a mutated amino acid in a toxin
associated to another mutated residue in the cognate antitoxin of the same TAS (e.g., red arrows in
Figure 2 and Table 2). Only two cgTAS pairs (lmo1466-1467 and lmo1309-1310) revealed co-evolving
residues between the two partners. For instance, the residue at location 435 (within the first partner
lmo1466) co-evolves with the residue at location 828 (within the second partner lmo1467) (Figure 2a and
Table 2). More than one residue per partner can be co-evolving as shown with the pair lmo1309-1310
(Figure 2b and Table 2). One cgTAS pair (lmo2793-2794) had co-evolving residues visible on the MSA
using Jalview (Figure 2c red arrows), but it failed to reach a significant p-value (<0.05) in BIS2Analyzer.
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Figure 2. The MSA of the fusion pseudo-protein (first partner in orange, second partner in green) with 
the co-evolving amino acid residues highlighted (inter-protein = red arrows; intra-protein = blue 
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Figure 2. The MSA of the fusion pseudo-protein (first partner in orange, second partner in green)
with the co-evolving amino acid residues highlighted (inter-protein = red arrows; intra-protein = blue
arrows) within Jalview [29]. In that view, all common residues letters are hidden, only varying residues
are displayed with their letters. The numbering at the top corresponds to the amino acid positions
along the artificially fused protein sequence (same numbers and colors as Table 2). For clarity, only the
red arrows (inter-protein) are labeled with residues highlighted in Table 2.
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Table 2. List of residues that are inter-protein co-evolving for each pair of cgTASs according to
BIS2Analyzer. Positions numbered for the fusion pseudo-protein; orange = residues in the first partner;
green = residues in the second partner. See Materials and Methods for more details. (Intra-protein
co-evolving residues are shown in Table A1). Add fusion protein info.

cgTAS p-Value Positions from BIS2Analyzer Jalview Confirmed

Lmo1466 - 1467 1.126763e-14
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By subtracting the cgTAS hits from the L. monocytogenes strains in TASmania, all other TASs are 
classified as accessory TASs (acTASs) (Table S7, Figure A1). In order to obtain a better understanding 
of the role of accessory TASs, we performed a gene analysis with a set of 227 L. monocytogenes strains 
[26] for which we have the corresponding metadata (Table S5). These isolates are not part of the 
TASmania database, so we processed them by first predicting protein genes with Prodigal [30] and 
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BIS2Analyzer.

2.3. Accessory Gene TAS Analysis

By subtracting the cgTAS hits from the L. monocytogenes strains in TASmania, all other TASs are
classified as accessory TASs (acTASs) (Table S7, Figure A1). In order to obtain a better understanding of
the role of accessory TASs, we performed a gene analysis with a set of 227 L. monocytogenes strains [26]
for which we have the corresponding metadata (Table S5). These isolates are not part of the TASmania
database, so we processed them by first predicting protein genes with Prodigal [30] and annotating
them with the TASmania HMMs [23]. Finally, we built a heatmap of those acTASs (Table S8) for
antitoxins (Figure 3a) and toxins (Figure 3b) after removing the core genes and the redundancy as
described above.

Figure 3a shows on the rightmost column that the antitoxin cluster A32 (HTH_3) is the most
abundant and is more frequently found in animal cases of Lineage II. In TASmania, this A32 antitoxin
cluster is observed as being paired with at least six different toxin clusters (T2, T13, T14, T38, T48, and T85,
whose nearest Pfam identifiers are HipA_C, Zeta_toxin, HipA_C, RelE, Gp49 and Gp49, respectively).
All of these pairs were analyzed for their co-occurrence in the L. monocytogenes strains above, but no
candidate pair seems to exist in Lineage I, while only A32.T2 (nearest Pfam HTH_3.HipA_C) can be
found rarely in Lineage II (Table A2).

In Figure 3b, a small, interesting group of isolates carry one or two genes having a hit to the T138
(nearest Pfam AbiEii) toxin cluster. It is mainly found in Lineage I isolates causing rhombencephalitis,
12 out of 15 (9 in cattle, 2 in goat, and 1 in sheep). The three remaining isolates are not rhombencephalitis,
but could be related by their proximity to animals: 1 sheep abortion and 2 environmental isolates.
In addition, one case carrying T138 in Lineage II, a cattle rhombencephalitis, is reported. This renders
this toxin quite interesting regarding rhombencephalitis. However, in the L. monocytogenes strains
of TASmania, no antitoxin partner is known for this toxin that seems to be often encoded in a
prophage region.
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Figure 3. Heatmaps of the counts of accessory genes for (a) Antitoxins and (b) Toxins in 227 L.
monocytogenes isolates. Metadata is given on the left side of the heatmap: lineage classification, source
description, source type, and isolation year.



Toxins 2020, 12, 29 8 of 14

For the 352 L. monocytogenes strains described in TASmania unfortunately, no metadata is available,
but the list of acTASs and their abundance is similar to our annotated dataset, with A32, A1, A2,
and A34 (nearest Pfam HTH_3, ParBc, MraZ, and Omega_Repress/Rep_trans, respectively) being the
most prevalent antitoxin clusters, and T9, T1, T57, T7, and T44 (nearest Pfam ParE, PhoH, PemK_toxin,
Gp49, and HicA_toxin, respectively) being the main toxin clusters, as shown in Figure A1.

Using TASmania, a closer look at the Pfam annotation of the toxin clusters highlights the diversity
of the TA systems uncovered in L. monocytogenes. Indeed, ParE targets the DNA gyrase and, along with
Gp49, belongs to the Pfam clan called “plasmid_antitox CL0136”, whose members are originally
described as plasmid-encoded TASs involved in plasmid maintenance. The PhOH domain is found
in cytoplasmic proteins predicted as ATPase and which are induced by phosphate starvation [31].
PemK toxins belong to the Pfam superfamily of CcdB/PemK (CL0624) known as growth inhibitors
that can bind to their own promoter and act also as endonucleases. HicA is an mRNA interferase
that binds to target mRNA potentially in a translation-independent manner. The Firmicutes phylum
has a prevalence of ParE and PemK like toxins in chromosomal TASs, which correspond to the
prevalence in L. monocytogenes (Figure A2). More experimental investigation is required to confirm
these putative TASs and to understand the conditions that regulate their expression in L. monocytogenes
of various pathogenicity.

3. Discussion

Toxins and antitoxins have many roles in the bacterial cells by targeting a broad range of biological
processes. Their role in pathogenic bacteria involves plasmid and pathogenicity island maintenance or
biofilm formation [4]. We previously stated [23] that the TASs identified in the TASmania database
are putative TASs predicted purely in silico by computational means and would benefit from in vivo
validation. This is also the case in this report; all TASs that we identified in L. monocytogenes are
candidates to be confirmed experimentally.

We obtained those candidates by combining large-scale database searches leveraging on the
“guilt-by-association” neighborhood criteria (“guilt-by-association” refers to potential T or A proteins
identified only by their neighborhood to a hit in TASmania) with the available metadata.

By looking at L. monocytogenes core genes, we identified 14 putative cgTASs that were analyzed
for potential co-evolving residues. In addition, clustering their alleles confirmed the L. monocytogenes
lineage separation. However, this lineage split is not necessarily due to the presence of these cgTASs.
One of the cgTASs (lmo0168) appears as a putative orphan antitoxin (nearest Pfam “MazE_antitoxin”).
Whether this putative antitoxin is expressed and functional remains unclear. If expressed, one could
speculate about an interaction in trans with the toxin of another TAS.

Since we unraveled the possibility of co-evolving residues, further work is needed to demonstrate
these hypothetical protein–protein contacts between those residues. Interestingly, co-evolution was
reported for a Type III toxin between amino acid residues of the toxin CptIN and nucleic acids of its
cognate antitoxin ncRNA [32]. An intriguing gene is lmo0888, which is recognized as part of a TAS
together with lmo0887, but it is not defined as a core gene contrary to its partner lmo0887. It is not clear
to us why this happens, as, intuitively, the whole pair should be part of the core genes. One possible
explanation could be that this gene is found in multiple copies in part of the L. monocytogenes genomes
and thus was removed from the core genes [24].

Additional knowledge or hypotheses on TASs could be extracted, such as TAS association with
diseases. For instance, when looking at the phenotypic link to acTASs, the toxin cluster AbiEii T138 is
of particular interest given its frequent association with rhombencephalitis in ruminants. Even though
not all strains isolated from rhombencephalitis harbored this toxin, the association of toxin T138
with ruminant rhombencephalitis was significant (p-value = 0.0413, X2 test). Looking at the TASs,
no obvious partner antitoxin is found for this toxin probably because it is part of a prophage region
that is usually less well annotated. Further work remains to be done to demonstrate which pathway or
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target is activated. The presence of this prophage should be validated for its suitability as a diagnostic
tool in the surveillance of animal farms.

By using large-scale in silico analysis of toxin–antitoxin systems in Listeria monocytogenes,
we demonstrated that knowledge could be extracted from combined genome sequences and associated
metadata. This includes potential co-evolutionary residues, the detection of putative new toxin or
antitoxin partners, as well as the suspected role for a specific prophage TAS in rhombencephalitis
in ruminants.

4. Materials and Methods

4.1. Data Used

Sequences were obtained from ENSEMBL.Bacteria [33] (352 L. monocytogenes strains chosen
because they are included in our TASmania database) and from our previous work PRJEB15123,
PRJEB15195 [34,35], and PRJEB22706 [26] (227 L. monocytogenes strains collected by our group with
their associated metadata).

4.2. Identification of Putative TAS Genes using the TASmania Database

TAS candidates were extracted from our TASmania database https://bugfri.unibe.ch/tasmania [23]
in all 352 L. monocytogenes strains included in the TASmania database with an R script directly querying
the database. This list of candidates (Table S2) allows for the discovery of new TAS pairs.

4.3. Identification of Core Gene TASs

In a first step, typing of all the 352 L. monocytogenes strains was performed at the BIGSdb-Lm
https://bigsdb.pasteur.fr/listeria/database [24] with a full genome sequence query on the cgMLST1748
scheme, in order to identify the alleles of each of the 1748 core genes. In the second step, the candidate
TAS genes of TASmania were crossed with the core genes, leading to a list of 14 core gene TASs (cgTASs)
(Table 1). Core genes (cgMLST1748) are 1748 genes that were identified among all L. monocytogenes
comparing thousands of L. monocytogenes genomes [24]. Accessory genes are only found in a subset of
L. monocytogenes strains.

Another set, including 227 L. monocytogenes field isolates not belonging to TASmania, was added
to the study. For these isolates, we knew the cgMLST profiles from a preceding study (Aguilar-Bultet,
manuscript in preparation). The cgTAS genes identified above were identified in these 227 genomes by
BLASTn and combined with the alleles of the 352 L. monocytogenes strains. From this, a matrix with
allele information of all isolates, but containing only the 14 cgTAS loci previously identified from the
combination TASmania-BIGSdb, was obtained.

4.4. Removing Redundancy and Clustering

First, the strains containing more than 50% of alleles with no hits in the 14 core gene set were
removed. Second, only one genome was kept as representative for all the strains with 100% identical
cgTAS allele patterns (in the 14 cgTASs).

The representative cgTAS patterns (Table S6) were clustered according to the cgMSLT allele
identifiers using the Nominal Clustering nomclust R package [36]. The Nominal Clustering performs
hierarchical cluster analysis (HCA) with objects characterized by nominal (categorical) variables with a
distance measured by the Goodall 1 dissimilarity measure. The dendrogram obtained with hclust was
then plotted with plot as a fan with labels colored according to the lineages (Figure 1).

4.5. Identification of Accessory Gene TASs

The accessory gene TASs (acTASs) were deduced by subtracting the cgTASs from the list of TASs
extracted from TASmania. Redundancy among the 100% identical acTAS pattern was removed by

https://bugfri.unibe.ch/tasmania
https://bigsdb.pasteur.fr/listeria/database
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keeping a single representative genome. The heatmaps were calculated with R package pheatmap,
allowing for the addition of metadata (Tables S5 and S8).

4.6. Identification of Potential Co-Evolving Residues

The BIS2Analyzer web site [28] was used to identify potential co-evolving residues. The input
MSA for each of the 6 cgTAS pairs was built with an in-house Perl script and computed with MAFFT
(File F1). The Dimension parameter was set to 2, allowing up to 2 exceptions on a column, and all other
parameters were kept as defaults (Table 2). The residue positions and p-values (Fischer test) were
evaluated by the CLAG score [37] and the server, respectively.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/1/29/s1,
Table S1: genomes, Table S2: all TAShits, Table S3, 14cg TAS Allele, Table S4: All Sample Allele, Table S5:
metadata, Table S6: NonRedundant 14cgTAS TASmania BIGSdb Allele, Table S7: acTAS TASMANIA, Table S8:
acTAS_additionalstrains.
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Figure A1. Heatmaps of the counts of accessory TAS genes (non-redundant for the strains) for (a)
Antitoxins and (b) Toxins in 322 L. monocytogenes of TASMANIA. The closest Pfam name is given to the
TASMANIA cluster.
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Figure A2. Comparison of the Firmicutes toxin closest to the Pfam family distribution between plasmid
and chromosome. For simplicity, only TASs from the non-ambiguous two-gene AT/TA pseudo-operons
were analyzed. The xT/Tx or Ax/xA pairs were ignored. L. monocytogenes strains, as Firmicutes in
general, present a high prevalence of PemK and ParE-like chromosomal toxins, while YoeB and HicA
toxins are more prevalent in plasmids.
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Table A1. List of residues that are significantly co-evolving intra-protein for each pair of cgTASs.

Lmo1466-1467 4.024153e-16
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