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Abstract

Summary: AlphaFamImpute is an imputation package for calling, phasing and imputing genome-wide genotypes in
outbred full-sib families from single nucleotide polymorphism (SNP) array and genotype-by-sequencing (GBS) data.
GBS data are increasingly being used to genotype individuals, especially when SNP arrays do not exist for a popula-
tion of interest. Low-coverage GBS produces data with a large number of missing or incorrect naı̈ve genotype calls,
which can be improved by identifying shared haplotype segments between full-sib individuals. Here, we present
AlphaFamImpute, an algorithm specifically designed to exploit the genetic structure of full-sib families. It performs
imputation using a two-step approach. In the first step, it phases and imputes parental genotypes based on the seg-
regation states of their offspring (i.e. which pair of parental haplotypes the offspring inherited). In the second step, it
phases and imputes the offspring genotypes by detecting which haplotype segments the offspring inherited from
their parents. With a series of simulations, we find that AlphaFamImpute obtains high-accuracy genotypes, even
when the parents are not genotyped and individuals are sequenced at <1x coverage.

Availability and implementation: AlphaFamImpute is available as a Python package from the AlphaGenes website
http://www.AlphaGenes.roslin.ed.ac.uk/AlphaFamImpute.

Contact: awhalen@roslin.ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

AlphaFamImpute is a software package for calling, phasing and
imputing genome-wide genotypes in full-sib families when individu-
als are genotyped with single nucleotide polymorphism (SNP) array
or genotyping-by-sequencing (GBS) data. Many applications in gen-
etics and breeding rely on the availability of low-cost high-accuracy
genotypes. GBS is an alternative to SNP arrays (Baird et al., 2008;
Davey et al., 2011; Elshire et al., 2011), where specific restriction
enzymes are used to focus sequencing resources on a limited number
of cut sites. GBS is particularly attractive for species without an
existing SNP array or as a low-cost alternative to SNP arrays (e.g.
Gorjanc et al., 2015, 2017).

GBS data, and in particular low-coverage GBS data, suffer
from a large proportion of missing or, when naively called, incor-
rect genotypes. Unlike SNP array data, where genotypes are called
directly from the genotyping platform, with GBS data genotypes
must be called from observed sequence reads. It is challenging to
accurately call an individual’s genotype when no reads or a small
number of reads are generated at a particular locus. Genotype call-
ing accuracy can be increased by considering the haplotypes of
other individuals in the population and detecting shared haplotype

segments between individuals (Davies et al., 2016; Gorjanc et al.,
2017).

Some existing software packages can be used for genotype call-
ing and imputation from GBS data, e.g. Beagle (Browning and
Browning, 2009), STITCH (Davies et al., 2016), AlphaPeel (Whalen
et al., 2018) or magicimpute (Zheng et al., 2018). However, these
software packages are not designed to exploit specific structure of
haplotype sharing observed in large full-sib families. As with trad-
itional imputation methods (e.g. Antolı́n et al., 2017; O’Connell
et al., 2014), we expect that the accuracy of genotype calling, phas-
ing and imputation from GBS data is highest when population struc-
ture is taken into account. In the context of an outbred full-sib
family, imputation can be simplified by recognizing that we only
need to consider the four parental haplotypes and identify of which
pair of haplotypes the offspring inherited at each locus. Here, we de-
scribe our software package AlphaFamImpute that leverages this par-
ticular population structure to improve the accuracy of calling, phasing
and imputing genome-wide genotypes and which decreases run-time
compared to existing methods. We focus on outbred full-sib families
because this represents a population structure commonly found in re-
search populations and in animal and plant breeding programs.
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2 Materials and methods

AlphaFamImpute performs imputation using a two-step approach.
In the first step, we call, phase and impute parental genotypes based
on the segregation states of their offspring. Segregation states indi-
cate which pair of parental haplotypes an individual inherits at each
locus (Ferdosi et al., 2014). We carry out this step iteratively. At
each locus, we use the segregation states to project the offspring
data to the corresponding parental haplotypes. We combine these
parental haplotype estimates with the parents’ data to call parental
genotypes at the locus. We then update the offspring segregation
states based on the called parental genotypes. Unlike magicimpute
(Zheng et al., 2018) or hsphase (Ferdosi et al., 2014), we do not call
the segregation states of the offspring at each locus, but instead store
segregation probabilities that are used to project the offspring geno-
types to the parents at each locus. This allows us to account for un-
certainty in the segregation states, particularly in cases where
individuals have low-coverage or missing data. In the second step,
we call, phase and impute the offspring genotypes by detecting
which haplotype segments the offspring inherit from their parents.
This process is carried out in a hidden Markov model framework
using multi-locus iterative peeling (Whalen et al., 2018). For a
detailed description of the approach, see Supplementary Materials.

Our two-step approach builds closely on previous research. It can
be interpreted as: (i) a sampling scheme for multi-locus iterative peeling
(Meuwissen and Goddard, 2010; Whalen et al., 2018); (ii) a probabilis-
tic extension of hsphase for full-sib GBS data (Ferdosi et al., 2014) or
(iii) an adaptation of magicimpute to specifically handle low-coverage
GBS data with outbred full-sib individuals (Zheng et al., 2018).

3 Software

AlphaFamImpute is written in Python 3 using the numpy (Walt
et al., 2011) and numba (Lam et al., 2015) libraries. It runs on
Windows, Linux and Mac. As inputs, AlphaFamImpute takes in:
(i) a genotype file or a sequence read count file, which, respectively,
give the ordered genotypes or sequence read counts for each individ-
ual; (ii) a pedigree file which splits the population into full-sib fami-
lies and (iii) an optional map file which allows AlphaFamImpute to
be run on multiple chromosomes simultaneously. AlphaFamImpute
outputs either called genotypes or genotype dosages.

4 Example

We demonstrate the performance of AlphaFamImpute on a series of
simulated datasets. Each dataset consisted of 100 full-sib families
with outbred parents and either 4, 8, 20, 30, 50 or 100 offspring per
family. We generated parental haplotypes for 200 parents on a sin-
gle 100 cM chromosome with 1000 loci using MaCS (Chen et al.,
2009) with an ancestral genetic history set to mimic cattle (Villa-
Angulo et al., 2009). We then dropped the haplotypes through the
pedigree of full-sib families using AlphaSimR (Gaynor et al., 2019).
We generated GBS data by assuming the number of reads at each
locus of an individual followed a Poisson distribution with mean
equal to a coverage level of 0.5�, 1�, 2� and 5� and that there was
a 0.1% sequencing error rate on a per-read basis. The parents either
had no GBS data, had low-coverage GBS data at the same coverage
as offspring or had high-coverage (25�) GBS data. We measured im-
putation accuracy as the correlation between an individual’s true
genotype and their imputed genotype dosage averaged across 10
replicates of 100 full-sib families. We compared AlphaFamImpute
to Beagle 4.0 (Browning and Browning, 2009) running both with de-
fault parameters.

Figure 1 (top) presents the imputation accuracy for all of the sim-
ulations. A more detailed analysis of the phasing and imputation ac-
curacy is provided in Supplementary Materials. Imputation
accuracy for AlphaFamImpute increased with higher GBS coverage,
a larger number of genotyped offspring and more information on
the parents. Imputation accuracy was high in a range of cases: if the
parents were sequenced at high-coverage imputation accuracy was

0.995 with 15 offspring sequenced at 1�; if the parents were
sequenced at the same coverage as the offspring, imputation accur-
acy was 0.990 with 10 offspring sequenced at 2� and if the parents
had no data, imputation accuracy was 0.997 with 20 offspring
sequenced at 2�.

The primary factor determining imputation accuracy was the
total sequencing resources spent on a family. Low sequencing cover-
age on the parents could be compensated by sequencing additional
offspring or sequencing those offspring at higher coverage. When
only a few offspring were available this could be compensated by
sequencing those offspring at higher coverage. Imputation accuracy
may also be affected by the total number of loci sequenced.

Compared to Beagle, Figure 1 (bottom), the imputation accuracy
of AlphaFamImpute was higher when the parents were sequenced at
low-coverage or were not sequenced. When the parents were not
sequenced, and 20 offspring were sequenced at 0.5�, the imputation
accuracy of AlphaFamImpute was 0.87, while the imputation accur-
acy of Beagle was 0.76.

The computational requirements of AlphaFamImpute were low.
When imputing 100 full-sib families with 100 offspring each (total
200 parents and 10,000 offspring) AlphaFamImpute took 54s and
used 302 megabytes of memory for 1000 loci on one chromosome. In
comparison, Beagle took 11h and used 284megabytes of memory.

5 Conclusion

In this paper, we have described the AlphaFamImpute software
package for performing fast, high-accuracy calling, phasing and
imputing genome-wide genotypes in full-sib families from GBS data.
This program will improve the quality of genome-wide genotypes
from low-coverage GBS in a range of research and breeding
applications.
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Fig. 1. Imputation accuracy for the full-sib offspring as a function of their sequenc-

ing coverage, number of offspring and parent sequencing coverage. Results shown

for both AlphaFamImpute (top) and Beagle (bottom)
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