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Abstract: The kidney is an important organ for the maintenance of Ca2+ homeostasis in the body.
However, disruption of Ca2+ homeostasis will cause a series of kidney diseases, such as acute kidney
injury (AKI), chronic kidney disease (CKD), renal ischemia/reperfusion (I/R) injury, autosomal
dominant polycystic kidney disease (ADPKD), podocytopathy, and diabetic nephropathy. During
the progression of kidney disease, Ca2+ signaling plays key roles in various cell activities such as
necrosis, apoptosis, eryptosis and autophagy. Importantly, there are complex Ca2+ flux networks
between the endoplasmic reticulum (ER), mitochondria and lysosomes which regulate intracellular
Ca2+ signaling in renal cells and contribute to kidney disease. In addition, Ca2+ signaling also
links the crosstalk between various cell deaths and autophagy under the stress of heavy metals or
high glucose. In this regard, we present a review of Ca2+ signaling in cell death and crosstalk with
autophagy and its potential as a therapeutic target for the development of new and efficient drugs
against kidney diseases.
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1. Introduction

Through gradual evolutionary development, Calcium has become one of the most
important metal elements in living organisms. With a wide variety of biological functions
in living creatures, calcium ions (Ca2+) are involved in almost every process from birth to
death [1].

Ca2+ is primarily stored in bones in the form of CaPO3 (hydroxyapatite), where it
plays a structural role and also can be dissolved to serve as a source of Ca2+ in the blood [2].
In addition, Ca2+ is a ubiquitous, multifunctional signaling molecule that controls a wide
variety of life processes including muscle contraction, neuronal delivery, hormone secretion,
organelle communication, cell movement, fertilization, and cell growth. Because of the
critical role of Ca2+ in these vital activities, cellular Ca2+ concentration is strictly regulated,
and dysfunction of cellular Ca2+ homeostasis is closely associated with a great number of
diseases such as heart and hepatic diseases, aging, and type 2 diabetes, as well as certain
cancers [3–5].

The kidney is an indispensable organ for maintaining body Ca2+ homeostasis; the
Ca2+ signaling system in kidney cells regulates cellular processes and decides cell fate,
including cell proliferation, apoptosis, necrosis and autophagy, all of which are associated
with kidney disease [6,7]. Ca2+ homeostasis has a certain influence on renal function and
the occurrence and development of a series of nephropathies including acute kidney injury
(AKI), chronic kidney disease (CKD), renal ischemia/reperfusion (I/R) injury, autosomal
dominant polycystic kidney disease (ADPKD), podocytopathy, and diabetic nephropathy,
which will be discussed in the following sections.
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Based on the significance of Ca2+ signaling in the regulation of cell fate in the context
of kidney disease, this review focuses on cell death determined by Ca2+ signaling in kidney
cells and erythrocytes. We present a general overview of Ca2+ signaling in kidney disease,
as well as some types of cell death that are regulated by Ca2+ signaling. In addition, targets
of Ca2+ signaling to prevent kidney disease are discussed based on the available data.

2. Relationship between Ca2+ Signaling and Various Forms of Cell Death
in Kidney Cells

Ca2+ not only regulates the normal life activities of cells and organisms, but has also
been found to play an important role in the regulation of various cell deaths. Early death
of necrotic cells is associated with intracellular Ca2+ overload. It has also been found that
apoptosis is controlled by Ca2+ signaling, and other cell activity, including cell death of
erythrocytes (eryptosis), has also been shown to be regulated by Ca2+. Moreover, Ca2+

signaling is an important mediator of autophagy, which plays dual roles in cell survival and
death. The numerous Ca2+ channels on cell membranes, endoplasmic reticulum (ER), and
mitochondria, as well as alterations in lysosomes, modulate cytosolic Ca2+ levels associated
with cell necrosis, apoptosis, eryptosis and autophagy. We searched for original research
articles from the past two decades using the keywords “Ca2+” and “kidney disease” or
“kidney injury”, and “necrosis”, or “apoptosis”, or “eryptosis”, or “autophagy”, and/or
“endoplasmic reticulum (ER)”, and/or “mitochondrial”, and/or “lysosome” in the PubMed
database, then sorted by “best match” with the “summary” format. For review articles,
we referenced the information as mentioned in the study by Aromataris et al., such as by
number of databases sourced and searched, number of studies, type and country of origin
of the studies included in each review, and method of synthesis/analysis employed to
synthesize the evidence [8].

2.1. Ca2+ Mediates Necrosis in Kidney Injury

Necrosis is early cell death associated with intracellular Ca2+ overload, and has
been found to be regulated by intracellular Ca2+ release and/or extracellular Ca2+ influx.
Methylglyoxal, a physiological glucose metabolite, induces necrotic cell death in Madin-
Darby canine kidney (MDCK) renal tubular cells by stimulating both extracellular Ca2+

influx and ER Ca2+ release [9]. Oxidant tert-butyl hydroperoxide (TBHP) causes ER
lipid peroxidation and Ca2+ release in isolated rabbit kidney cortex microsomes, and
TBHP-induced necrotic cell death is reduced by an ER Ca2+ reuptake pump inhibitor,
thapsigargin [10]. Bothrops leucurus venom increases cytosolic Ca2+ in a concentration-
dependent manner, participating predominantly in necrotic cell death, which contributes
to the acute renal failure and nephrotoxicity in the isolated perfused kidney and cultured
renal tubular epithelia [11]. This suggests that intracellular Ca2+ release mediates necrotic
cell death induced by stress in kidney cells.

Transient receptor potential ankyrin 1 (TRPA1), a redox-sensing Ca2+-influx channel,
is upregulated in the renal tubules of patients with acute tubular necrosis, which is signif-
icantly associated with high incidence of renal function recovery [12]. Internalization of
stone-forming calcium crystals such as calcium phosphate (CaP), calcium oxalate (CaOx),
and CaP + CaOx in renal tubular cells via endocytosis promotes necrosis by store-operated
Ca2+ entry (SOCE), which causes prolonged Ca2+ entry and leads to a continuous rise in
intracellular Ca2+ levels [13]. This shows that the stimulation of Calcium-Sensing Receptor
(CaSR) by melamine causes a sustained rise in intracellular Ca2+ levels, leading to enhanced
ROS production and a dose-dependent increase in apoptotic and necrotic cell death in the
porcine renal proximal tubule cell line, LLC-PK1 [14]. However, the activation of CaSR by
L-ornithine can protect from H2O2-induced necrosis in proximal tubular cells and reduce
subsequent acute kidney injury (AKI), which is mediated by transient receptor potential
canonical (TRPC)-dependent receptor-operated Ca2+ entry [15]. Due to this nephropro-
tective role of L-ornithine, it can be a useful treatment to reverse kidney diseases. These
results suggest that the Ca2+-influx channels which mediate Ca2+ entry have dual roles



Cells 2021, 10, 3204 3 of 14

in renal epithelial cells. Sustained extracellular Ca2+ entry can contribute to renal cell
necrosis, while modulation of appropriate extracellular Ca2+ entry may protect against
kidney injury.

In addition, Na+/Ca2+ exchange is one of the main factors in reversal of intracel-
lular Ca2+ overload in animals with ischemia/reperfusion injury and contrast-induced
acute kidney injury [16,17]. KB-R7943, an inhibitor of Na+/Ca2+ exchange, significantly
attenuates renal damage and Ca2+ deposition in necrotic tubular epithelium, suggesting
that KB-R7943 may be an effective therapeutic agent for acute kidney injury. The use of
chemotherapy with ifosfamide is limited by the nephrotoxicity caused by its metabolite
chloroacetaldehyde. Chloroacetaldehyde induces sustained elevation of intracellular free
Ca2+ by inhibiting the Na+/Ca2+ exchanger, which contributes to necrotic rather than
apoptotic cell death and finally leads to nephrotoxicity [18]. Both KB-R7943 and chloroac-
etaldehyde contribute to the inhibition of Na+-dependent extrusion of intracellular Ca2+;
however, the former did not induce nephrotoxicity, which might due to different Ca2+ load
levels in the kidney cells.

2.2. Ca2+ Signaling-Mediated Apoptosis Contributes to Kidney Disease

Apoptosis, or autonomous programmed cell death, is an important process for the
maintenance of the stability of the internal environment, and helps an organism better
adapt to its living environment. In kidney injury, apoptosis usually occurs in association
with necrosis, and Ca2+ signaling acts as an important regulator of apoptosis. Ca2+ over-
load leads to necrotic or apoptotic death in renal ischemia–reperfusion (I/R) injury [19].
Sustained ER Ca2+ release induces ER stress and oxidative stress and leads to apoptosis
in glomerular mesangial cells, which contributes to the progression of CKD [20]. CaSR is
a pleiotropic receptor capable of regulating Ca2+ homeostasis, and plays important roles
in kidney cells and cancers [21]. Activation of adiponectin receptors by AdipoRon and
activation of CaSR by cinacalcet increases intracellular Ca2+ levels, which inhibits apoptosis
in the kidneys induced by high glucose and ameliorates glomerular endothelial cell and
podocyte injury in type 2 diabetes-associated diabetic nephropathy [22,23]. This suggests
that regulation of cytosolic Ca2+ can control the apoptosis of kidney cells.

2.2.1. Endoplasmic Reticulum (ER) Ca2+ Signaling Mediates Apoptosis in Kidney Disease

It is well known that the ER is the largest pool of Ca2+ in cells, and it plays an impor-
tant role in regulating intracellular Ca2+ balance; however, its dysregulation causes cell
apoptosis. The ER Ca2+ homeostasis is mainly controlled by two Ca2+ releasing channels,
inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR), and one Ca2+

reuptake channel, sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Dysfunctions of
these ER Ca2+ channels cause a variety of kidney diseases, including ischemia/reperfusion
(I/R)-induced tubular injury, autosomal dominant polycystic kidney disease (ADPKD),
podocytopathy, and diabetic nephropathy [24]. It is reported that I/R induces renal tubule
apoptosis when activation of IP3R starts a cascade of Ca2+ release from the ER store [25].
In addition, inhibition of the phosphorylation of IP3R1 at S2681 increases IP3-induced Ca2+

release in cystic cells, which contributes to increased apoptosis in ADPKD [26]. Stressed
podocytes in the ER undergo phosphorylation of RyR2 at S2808, causing ER Ca2+ efflux
through leaky RyR2 which in turn activates cytosolic protease calpain 2, leading to podocyte
injury and podocyte apoptosis [27]. The evidence implies that significant reductions in
SERCA2 activity and expression in the kidney contribute to the development of diabetic
nephropathy through ER stress-mediated apoptotic pathways [28]. These results suggest
that Ca2+ channels in the ER play crucial roles in maintaining intracellular Ca2+ home-
ostasis in kidney cells, and that it is for this reason that renal cell apoptosis and kidney
dysfunction contribute to the development of kidney disease.
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2.2.2. ER-Mitochondrial Ca2+ Signaling Mediates Apoptosis in Kidney Disease

Mitochondria represent another intracellular Ca2+ store, and Ca2+ signaling mediates
the crosstalk between the ER and the mitochondria. Ca2+ released by IP3R under ER stress
is sequestered by mitochondria for mitochondrial respiration and ATP production, and
for regulating cell survival. Mitochondrial release of calpain or caspase-3 promotes the
change of ER Ca2+ channels, including cleavage IP3R or oxidizing RyR2. These changes
may dramatically increase mitochondrial and cytosolic Ca2+ levels and augment apop-
totic cell death [6]. In addition, cytochrome c released by mitochondria can bind to IP3R,
thereby blocking its functional inhibition and increasing the cytoplasmic Ca2+ concentra-
tion. The sustained increase of Ca2+ level feeds back to enhance cytochrome c release
and amplification of apoptotic signals [29]. ER-mitochondrial Ca2+ signaling plays a key
role in the increased apoptosis found in kidney disease. In diabetic nephropathic mice
the impaired activity and expression of SERCA2 causes ER Ca2+ depletion, which trig-
gers mitochondria-mediated apoptotic pathways [28]. Downregulation of mitochondrial
Ca2+ channel polycystin 2 enhances the expression of ER-mitochondrial tethering protein
mitofusin 2, which increases ER-mediated mitochondrial Ca2+ transfer and apoptosis and
thereby contributes to ADPKD [30]. In bilateral I/R injury kidney, ER protein sigma-1
receptor (Sig-1R) dissociates from BiP and binds to ER Ca2+ release channel IP3R3 at
ER–mitochondrial contact sites, while stabilized IP3R3 prolongs Ca2+ signaling to the
mitochondria and enhances apoptosis [31]. These results suggest that there is a complex
regulating Ca2+ signaling between the ER and mitochondria which is associated with
apoptosis and plays an important role in kidney disease.

2.3. Ca2+ Mediates Eryptosis in Kidney Injury

Eryptosis, also known as suicidal erythrocyte death, is characterized by cell shrink-
age and phosphatidylserine (PS) exposure at the erythrocyte surface. Eryptotic cells are
phagocytosed and thus rapidly cleared from circulating blood. Eryptosis is the key event
in eliciting renal anemia associated with CKD and anemia in end stage renal disease [32].
The mycotoxin ochratoxin A, an agent responsible for endemic Balkan nephropathy, is
known to trigger anemia with suicidal cell death or eryptosis of erythrocytes by Ca2+-entry
and increased cytosolic Ca2+ levels [33]. In addition, the uremic toxin indoxyl sulfate also
induces suicidal erythrocyte death by stimulating extracellular Ca2+ entry, which may
contribute to anemia in end stage renal disease [34,35]. Vanadate VO4

3− intoxication in
the kidney also induces eryptosis through increased cytosolic Ca2+ levels, which could
contribute to the development of anemia in chronic renal failure [36]. A vitamin D-rich
diet in mice can augment the stimulation of PS exposure and cell shrinkage without signifi-
cantly modifying the Ca2+ concentration in freshly drawn erythrocytes, suggesting that
the effect of vitamin D treatment is presumably not effective in stimulating Ca2+-entry [37].
These studies indicate that dramatic Ca2+ entry or increasing cytosolic Ca2+ levels could
contribute to eryptosis, which consequently causes kidney disease.

2.4. Ca2+ Signaling Regulates Autophagy in Kidney Diseases

Macroautophagy/autophagy, an evolutionarily conserved process in eukaryotes,
plays an important role in intracellular material recycling. In the process of autophagy,
some damaged organelles and harmful proteins are wrapped by the autophagosomes with
a double membrane structure, then sent into lysosomes or vacuoles for degradation and
reuse [38]. Ca2+, as an important messenger molecule that regulates cell death, is also
involved in the regulation of autophagy [39].

It has been suggested that intracellular Ca2+ signaling mediates autophagy in renal
tubular cells. An in vivo study has shown that the key regulator of the autophagy path-
way, mTOR, is involved in tubular repair after AKI [40]. In conditionally immortalized
proximal tubular epithelial cells (ciPTEC) generated from an ADPKD1 patient, activation
of CaSR increased intracellular Ca2+ release and decreased mTOR activity [41]. Increased
Ca2+ influx in renal proximal tubular cells inhibits mTOR-dependent autophagy, thereby
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rendering cells more susceptible to death [42]. This indicates that the mTOR-dependent
autophagy regulated by intracellular Ca2+ release or Ca2+ influx controls the development
of kidney disease.

The canonical transient receptor potential channel 6 (TRPC6), a major Ca2+ influx
channel in renal cells, plays an important role in such renal diseases as diabetic nephropa-
thy, immune-mediated kidney disease, renal fibrosis, glomerular disease and CKD [43].
An in vitro study in renal proximal tubular cells showed that the cytoprotective role of
autophagy was suppressed by TRPC6-mediated Ca2+ influx [42]. The same study showed
that TRPC6 knockout promoted autophagy flux and alleviated tubular apoptosis upon
renal I/R, a major cause of AKI [44]. The transient receptor potential non-selective cation
channel, subfamily M, member 3 (TRPM3) is another Ca2+ channel that conducts Ca2+

flux to regulating autophagy. Increased expression of TRPM3 leads to Ca2+ influx and
stimulates autophagy through the CAMKK2/AMPK/ULK1 pathway, which promotes
the growth of clear cell renal cell carcinoma (ccRCC) [45]. These results suggest that Ca2+

channels on the cell membrane mediate Ca2+ influx and suppress autophagy, which may
contribute to kidney injury or diseases.

In addition, intracellular modulators of Ca2+ could mediate autophagy, and play
important roles in kidney disease. Stromal interaction molecule 1 (STIM1) is a key regulator
of ER Ca2+ which can activate store-operated Ca2+ entry (SOCE) upon sensing ER Ca2+

depletion. In podocytes cultured in the serum of diabetic nephrotic rats, silencing STIM1
can reverse decreased autophagy and increased epithelial–mesenchymal transition (EMT)
by restoring Ca2+ homeostasis [46]. In podocyte cells of ADPKD, autophagy is defective
and EMT is enhanced in cystic kidneys, which could be reversed by reducing ER Ca2+

release to silence high levels of STIM1 [47–49]. In epithelial kidney cells of ADPKD patients,
autophagy is inhibited because of the lack of interaction between BECN1 and mutant PKD2
(encoding polycystin 2, PC2), which prolongs the increase in intracellular Ca2+ levels [50].
The apolipoprotein L (APOL) could function as an ion channel in intracellular membranes
and be involved in regulating programmed cell death. APOL1 variants interfere with
autophagy by antagonizing Ca2+-dependent binding of APOL3 to neuronal calcium sensor
1 (NCS-1) and interacting with PI4-kinase IIIB in podocytes, which aggravates kidney
inflammation [51]. The roles of these intracellular modulators of Ca2+ suggests that there
are also complex networks of intracellular Ca2+-regulated autophagy in kidney disease.

2.5. Lysosomal Ca2+ Signaling in Kidney Diseases

Lysosomal Ca2+ contributes to autophagy and is important for lysosomal degrada-
tion. Lysosomal degradation is mediated by a class of Ca2+-activated proteases, Calpains
(CAPNs), on lysosomes [52]. Lack of PKD1 impairs lysosomal acidification in a CAPN
protease-dependent manner, and loss-of-function mutations in PKD1 or PKD2 result in
ADPKD [53]. However, in cystinotic ciPTEC lines lysosomal Ca2+ stores are unaffected,
while some extracellular agonist-induced Ca2+ responses may contribute to disease patho-
genesis [54]. Therefore, whether lysosomal Ca2+ signaling contributes to the development
of kidney diseases also depends on renal cell type.

In addition, intracellular Ca2+ distribution between the ER, mitochondria and lyso-
somes may affect the function of lysosomal degradation. The mitochondria contact the
ER membrane through the mitochondria-associated membrane (MAM), which provides
communication between these two organelles and mediates Ca2+ transfer from the ER to
the mitochondria. Moreover, MAM-mediated ER–mitochondria Ca2+ crosstalk regulates
apoptosis and autophagy, which contributes to the pathogenesis of kidney disease [55].
It has been shown that Ca2+ redistribution from the ER to the mitochondria regulates
apoptosis and autophagy and contributes to lead-induced nephrotoxicity in primary rat
proximal tubular cells [56,57]. Along with the Ca2+ release channel IP3R and the Ca2+

reuptake pump SERCA, the ER delivers cytosolic Ca2+ to the lysosomes in “piston-like”
fashion [58]. Ca2+ uptake by lysosomes is speculated to regulate lysosomal pH [59]. The
lysosomal acidic environment is mainly regulated by lysosome V-ATPase, and has been
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supposed to be regulated by a Ca2+/H+ exchange, although this has not been identified in
mammalian cells [60,61]. In hepatic cell HepG2, Cd induced Ca2+ release from the ER store
to the cytosol, which caused disruption of the lysosomal acidic environment, resulting
in degradation. However, the Cd-disrupted lysosomal pH was restored by pretreatment
with the IP3R inhibitor 2-APB and the SERCA activator CDN1163 [62,63]. This suggests
that Ca2+ mediates interaction between the ER and mitochondria and lysosomes, and
modulates lysosomal function.

It has also been suggested that Ca2+ efflux from the ER regulates lysosomal Ca2+

levels. The ER Ca2+ channel-like protein transmembrane BAX inhibitor motif containing 6
(TMBIM6) not only mediates ER stress response and apoptosis, but also regulates the local
release of Ca2+ through the lysosomal transient receptor potential mucolipin 1 (TRPML1)
channel, triggering autophagy induction in the kidney in starved mice [64]. In addition,
lysosomal TRPML1 also regulates mitochondria–lysosome contact and promotes Ca2+

transfer from lysosome to mitochondria to modulate mitochondrial homeostasis [65].
Moreover, TRPML1-mediated lysosomal Ca2+ release regulates transcription factor EB
(TFEB), which transcriptionally regulates the expression of TRPML1 as well as expression
of other autophagic and lysosomal genes [66,67]. In primary proximal tubular cells, Cd
induces lysosomal dysfunction via TFEB-dependent lysosomal degradation, which leads to
persistent activation of Nrf2 and causes kidney injury [68–70]. In addition, in the study of
a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of the α

subunit of acid ceramidase, lysosomal Ca2+ release through TRPML1 channel was inhibited
in the podocytes, which may show a contribution to the development of podocytopathy
and associated nephrotic syndrome [71]. These results suggest that lysosomal Ca2+ is
regulated in the intracellular Ca2+ store system, which may play important roles in the
progression of kidney disease.

3. Ca2+ Signaling Links Cell Death and Autophagy in Kidney Cells

The relation of cell death and autophagy is complex and occasionally contradictory,
but it is critical to cell fate. Intriguingly, Ca2+ signaling acts as a bridge linking these two
types of cellular activities [72–76]. Ca2+ promote cell proliferation and survival through
release of IP3R by the ER; Ca2+ is subsequently transferred to mitochondria to activate
mitochondrial metabolism. Mitochondrial Ca2+ homeostasis dysfunction results in mito-
chondrial degradation by autophagy via activation of AMPK. Mitochondrial Ca2+ overload
causes production of reactive oxygen species (ROS) and release of cytochrome c, which
eventually leads to cell apoptosis [39,77,78]. Therefore, Ca2+ signaling and Ca2+ subcellular
homeostasis may determine the balance between cell survival, apoptosis and autophagy.

3.1. Induced Autophagy Promotes Cell Death

In some cases, induced autophagy promotes cell death. In the renal fibrosis model of
unilateral ureteral obstruction (UUO) in mice, persistent autophagy in kidney proximal
tubules was observed. Pharmacological inhibition of autophagy and kidney proximal
tubule-specific knockout of autophagy-related 7 (PT-ATG7 KO) suppressed tubular atro-
phy, apoptosis, nephron loss, and interstitial macrophage infiltration in these mice [79].
This suggests that persistent induction of autophagy in kidney proximal tubules promotes
renal interstitial fibrosis during UUO. In addition, influx of extracellular Ca2+ triggered
by Trichokonin VI, an antimicrobial peptide, induces autophagy and apoptosis in hep-
atocellular carcinoma cells. Moreover, siRNA knockdown of autophagy related gene
(ATG5) reduces cell apoptosis [73]. This shows that Cd induces the mitochondrial-derived
autophagic cell death of hepatocytes in a dose-dependent manner. By suppressing Cd-
induced autophagic cell death, melatonin has a hepatoprotective effect in Cd-exposed
mice [80]. In mouse spleen and human B cells, Cd induces vacuole membrane protein
1 (VMP1)-mediated autophagy via elevation of intracellular Ca2+, which contributes to
apoptosis [81]. In RAW264.7 mouse monocytes, Cd induced autophagy and ER-mediated
apoptosis; however, pharmacological and genetic inhibition of autophagy suppressed
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Cd-induced apoptosis. Moreover, treatment with Ca2+ chelators completely restored cell
viability and inhibited Cd-induced apoptosis and autophagy [82]. In porcine kidney cell
LLC-PK1, the autophagy mediator calpain induced necrosis before apoptosis by increasing
intracellular Ca2+ levels in high-glucose conditions [83]. In addition, Ca2+ also plays im-
portant roles in ferroptosis [84], a type of autophagy-dependent cell death [85] which has
recently been shown to have implications in diverse kidney diseases [86]. These studies
suggest that intracellular Ca2+ signaling-mediated autophagy may promote cell death and
contribute to kidney disease.

3.2. Inhibition of Autophagy Promotes against Cell Death

In some cases, induced autophagy has protective roles against cell death. It has been
shown that high glucose promotes autophagy flux in podocyte cultures and induces LC3B-
II expression in podocytes in diabetic mice. Specifically, deletion of ATG5 in podocytes
resulted in accelerated diabetes-induced podocytopathy with a leaky glomerular filtration
barrier and glomerulosclerosis. Furthermore, the endothelial-specific deletion of ATG5 also
resulted in capillary rarefaction and accelerated diabetic nephropathy. Thus, endothelial
cell and podocyte autophagy synergistically protect from diabetes-induced glomeruloscle-
rosis [87]. In mouse mesangial cells (MES-13), Cd induced autophagy and apoptosis by
inducing ER Ca2+ release through IP3R [88]. In addition, Cd induced the expression of
LC3B-II but reduced the expression of sequestosome-1 (p62) in rat mesangial cells. When
autophagy is disrupted either by gene knockout or RNA silencing, cell viability is decreased
and increased pro-caspase-3 cleavage indicates the initiation of apoptotic cell death [89].
These results suggest that induced autophagy may protect against nephrotoxicity.

However, initial autophagic protection will switch to disruption of autophagic flux,
resulting in cell death in renal cells [61]. In other words, inhibition of autophagy contributes
to cell death. The autophagy inhibitor 3-methyladenine exacerbates Cd-caused germ cell
apoptosis, which is relieved by the autophagy inducer rapamycin. More importantly,
loss of ATG5 in Sertoli cells aggravates Cd-triggered germ cell apoptosis. This suggests
that autophagy in Sertoli cells protects against Cd-induced germ cell apoptosis in mouse
testes [90]. In human placental trophoblasts and mouse placenta, it has also been shown
that activation of autophagy inhibits Cd-triggered apoptosis [91]. As an important excretory
organ, the kidney is the main accumulation target of toxins such as heavy metals [92,93].
Previous studies have shown that Cd induces kidney injury and apoptosis via long-term
inhibition of autophagy flux [94]. In vitro studies also show that inhibition of autophagy
flux can aggravate cell apoptosis; Ca2+ signaling may link these two cell activities. In
mouse renal tubular cells, Cd-inhibited autophagy flux aggravated apoptosis by inducing
elevation of Ca2+ level [95]. In primary rat proximal tubular cells, Cd and lead (Pb)-
inhibited autophagic degradation aggravated apoptotic death [96], which could be due to
the redistribution of subcellular Ca2+ between the ER, cytosol and mitochondria [97,98].
Activation of CaSR can promote cell proliferation, and protects against Cd-induced renal
tubular cell apoptosis through competing PLC-IP3-Ca2+ signaling [95]. Restoring the
Ca2+-mediated autophagy process can protect against heavy metal-induced renal cell
cytotoxicity and kidney injury [94,99,100]. These results suggest that elevation of cytosolic
Ca2+ level-mediated inhibition of autophagy may aggravate apoptosis and contribute to
kidney injury.

4. Targeted Ca2+ Signaling for Therapy of Kidney Diseases

As described above, the Ca2+ microdomains regulating apoptosis, necrosis and au-
tophagy contribute to the development of kidney disease. Under these conditions, Ca2+

signaling determines the fate of kidney cells and the progression of disease. In view of this,
therapeutic strategies have to consider whether to target a specific microdomain of Ca2+

signaling in kidney disease.
Firstly, ER Ca2+ signaling-mediated apoptotic pathways in kidney disease could be

considered as potential therapeutic targets (Figure 1). Regulating ER stress in kidney
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cells may provide a therapeutic target in acute kidney injury triggered by renal ischemia
reperfusion and cisplatin nephrotoxicity [101]. Pretreatment with trans-4,5-dihydroxy-
1,2-dithiane (DTTox) enhances expression of the ER stress markers glucose-regulated
protein 78 (GRP78) and GRP94 and protects against increased cellular Ca2+ levels and
cell death in LLC-PK1 renal epithelial cells [102], as well as protecting the kidneys from
nephrotoxic injury in vivo [103]. Treatment with tauroursodeoxycholic acid (TUDCA)
prevents advanced glycation end product (AGE)-induced apoptosis of mouse podocytes in
diabetic nephropathy by blocking an ER Ca2+ release-mediated apoptotic pathway [104].
By knocking down STIM1 levels, it can reduce Ca2+ release and restore intracellular Ca2+

homeostasis, which decreases PC2 protein levels in PC1-null proximal tubule cells and
inhibits cyst growth in ADPKD [49].

Figure 1. Targeting Ca2+ signaling regulating cell death for therapy of kidney diseases. 4-PBA:
4-phenylbutyric acid; AGEs: advanced glycation end products; ASB: andrographolide sodium
bisulfite; DTTox: trans-4,5-dihydroxy-1,2-dithiane; GRP: glucose-regulated protein; PA: Palmitic acid
PCV2: Porcine Circovirus Type 2; TUDCA: tauroursodeoxycholic acid; VDAC1: voltage-dependent
anion channel.

Secondly, modulators targeting mitochondrial Ca2+ mediate apoptotic pathways and
may also be treatments for kidney disease therapy (Figure 1). Inhibition of ER stress
by 4-phenylbutyric acid (4-PBA) and Diosgenin mitigates ER-associated mitochondrial
apoptosis by maintaining Ca2+ homeostasis and mitochondrial dynamics, which amelio-
rates 3-MCPD-induced kidney injury [105,106]. In addition, 4-PBA also decreases Porcine
Circovirus Type 2 (PCV2) infection-induced apoptosis by decreasing the cytosolic and mi-
tochondrial Ca2+ load in porcine kidney PK-15 cells [107]. Mitochondrial outer membrane-
located voltage-dependent anion channel (VDAC1) acts as gatekeeper for Ca2+ distribution
between the mitochondria, cytosol and ER. Proteomic identification showed VDAC1 to be
one the mitochondrial targets involved in andrographolide sodium bisulfite (ASB)-induced
nephrotoxicity in a rat model [108]. Palmitic acid (PA) induced apoptosis through disrup-
tion of calcium homeostasis in mice podocytes [109,110]. In addition, Palmitic acid induced
a continual increase in autophagy, ER stress, and apoptosis in primary cultured proximal
tubular cells, and markedly upregulated VDAC1, which is associated with mitochondrial
damage in HK-2 cells and may contribute to tubular injuries in obesity-related kidney
disease [111]. In Adriamycin- or angiotensin II-treated rats, expression of VDAC1 and
mitochondrial calcium uniporter (MCU) were upregulated; these mediate podocyte apop-
tosis by facilitating mitochondrial Ca2+ overload. However, MCU inhibitors can protect
podocytes from apoptosis and proteinuria induced by Adriamycin or angiotensin II [112].
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This suggests that regulating mitochondrial Ca2+ may also be a potential target for some
stress-induced nephropathies.

Thirdly, Ca2+ signaling-mediated autophagy provides new therapeutic ways to treat
kidney disease (Figure 2). PCV2 induces autophagy via the CaMKKβ-AMPK pathway in
pig kidney PK-15 cells by increasing cytosolic Ca2+ [113]. Activation of vitamin D receptors
can restore defective autophagy through the Ca2+-CAMKKβ-AMPK pathway in renal
tubular epithelial cells in streptozotocin-induced diabetic mice [114]. Ca2+ signaling is
involved in AMPK-mediated autophagy, and plays a role in coordinating cellular survival
and kidney function. A selective activator of AMPK (A769662) reduced intracellular Ca2+

by activation of SERCA in vascular smooth muscle, which produces vasodilation in human
intrarenal arteries [115]. This suggests that activation of AMPK and SERCA might be
therapeutic targets in kidney diseases. Podocyte apoptosis induced by diabetes or high
glucose and progression of diabetic nephropathy are prevented by astragaloside IV, which
attenuates SERCA2-dependent ER stress and induces AMPKα-promoted autophagy [116].
Saikosaponin-d (SSd), a SERCA inhibitor, suppresses excess ER Ca2+ reuptake and cell
proliferation in ADPKD cells by inducing autophagy through the CaMKKβ-AMPK-mTOR
signaling pathway, which indicates that SSd might be a potential treatment for ADPKD
and that SERCA might be a novel target for ADPKD therapy [117]. It has been reported
that AMPK activation restored the defective autophagy in high glucose-induced HK-2
cells [114]. Activators of CaSR such as cinacalcet have renoprotective effects in high
glucose-treated human glomerular endothelial cells, murine podocytes and diabetic mice.
Cinacalcet decreases oxidative stress and apoptosis and increases autophagy by increas-
ing intracellular Ca2+ level through activation of the CaMKKβ-LKB1-AMPK pathway
in glomerular endothelial cells and podocytes in the kidney [23]. Taken together, Ca2+

signaling-mediated autophagy might be a potential target in therapy for metabolic disease-
associated kidney diseases.

Figure 2. Targeting autophagy regulated by Ca2+ signaling for therapy in kidney disease. CaSR:
Calcium sensing receptor; PA: Palmitic acid; PCV2: Porcine Circovirus Type 2; SSd: Saikosaponin-d;
VD: vitamin D.

5. Conclusions

Taken together, the kidney plays a key role in regulating Ca2+ homeostasis in the body;
thus, disruption of Ca2+ homeostasis will cause a series of kidney diseases. Regulation
of Ca2+ signaling in kidney cells decides cell fate in a way that is closely associated with
kidney disease. Ca2+ microdomains including the ER, mitochondria and lysosomes regulate
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the various modes of cell death, such as necrosis, apoptosis and eryptosis, which when
disrupted contributes to the overall development of kidney disease. Moreover, interplay
between the Ca2+ microdomains also mediates the crosstalk between these forms of cell
death and autophagy. Based on the roles of the Ca2+ microdomains in regulating cell fate in
kidney cells, targeting these Ca2+ signaling may lead to novel therapeutic strategies against
kidney diseases.
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