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A novel phase variant of the cholera
pathogen shows stress-adaptive cryptic
transcriptomic signatures
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Abstract

Background: In a process known as phase variation, the marine bacterium and cholera pathogen Vibrio cholerae
alternately expresses smooth or rugose colonial phenotypes, the latter being associated with advanced biofilm
architecture and greater resistance to ecological stress. To define phase variation at the transcriptomic level in
pandemic V. cholerae O1 El Tor strain N16961, we compared the RNA-seg-derived transcriptomes among the
smooth parent N16961, its rugose derivative (N16961R) and a smooth form obtained directly from the rugose at
high frequencies consistent with phase variation (N16961SD).

Results: Differentially regulated genes which clustered into co-expression groups were identified for specific cellular
functions, including acetate metabolism, gluconeogenesis, and anaerobic respiration, suggesting an important link
between these processes and biofilm formation in this species. Principal component analysis separated the
transcriptome of N16961SD from the other phase variants. Although N16961SD was defective in biofilm formation,
transcription of its biofilm-related vps and rbm gene clusters was nevertheless elevated as judged by both RNA-seq
and RT-gPCR analyses. This transcriptome signature was shared with N16961R, as were others involving two-
component signal transduction, chemotaxis, and c-di-GMP synthesis functions.

Conclusions: Precise turnarounds in gene expression did not accompany reversible phase transitions (i.e,, smooth
to rugose to smooth) in the cholera pathogen. Transcriptomic signatures consisting of up-regulated genes involved

in biofilm formation, environmental sensing and persistence, chemotaxis, and signal transduction, which were
shared by N16961R and N16961SD variants, may implicate a stress adaptation in the pathogen that facilitates
transition of the N16961SD smooth form back to rugosity should environmental conditions dictate.
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Background

Vibrio cholerae is a Gram-negative rod-shaped bacter-
ium that is naturally ubiquitous in coastal, estuarine, and
riverine waters in planktonic form and within biofilms
associated with abiotic and biological materials [1].
Toxin-producing strains of V. cholerae cause the serious
diarrheal disease cholera. Epidemic strains undergo a re-
versible phase variation event between smooth and rugose
colonial morphotypes at a frequency apparently greater
than that of non-epidemic clinical and environmental
strains [2]. Rugose cells form highly corrugated colonies
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and more structurally complex biofilms due to excess pro-
duction of Vibrio polysaccharide (VPS). VPS is a viscous
biopolymer partly composed of structural matrix proteins
and a polysaccharide (VPS-PS) containing glucose, galact-
ose and an amide between 2-acetamido-2-deoxy-a-guluro-
nic acid and glycine [3-5]. The biofilm proficient rugose
phase facilitates nutrient acquisition from insubstantial
sources such as drinking water reservoirs, enhances resist-
ance to chlorine and a variety of environmental stresses
[6-8] and provides greater resistance to complement-
mediated serum lysis [9, 10]. Consequently, rugosity is con-
sidered a survival adaptation that enhances the overall fit-
ness of V. cholerae in aquatic habitats and may additionally
contribute to the pathogenesis of the organism [11, 12].
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The genes responsible for assembly and transport of
VPS-PS are distributed across two closely positioned loci,
vpsI and vpsiI, which are situated within an approximately
30.7 kb region on the larger of the two chromosomes of
V. cholerae [4]. Most of the vps gene products play various
biosynthetic and functional roles in the formation of VPS-
PS, while several others are hypothetical proteins of un-
known function [13, 14]. Characterization of non-polar
vps deletion mutants revealed that most of the vps genes
are required for the production of corrugated colonies,
pellicles, and biofilms [14]. The two vps gene clusters are
separated by an intergenic region that contains the rbm
genes, which encode biofilm matrix proteins unique to V.
cholerae [15]. Bapl, encoded by the unlinked VC1888
gene, is a homolog of one of the Rbm proteins and is also
required for V. cholerae biofilm stability [14, 15].

Regulation of VPS production in V. cholerae is quite
complex. It is positively controlled by the transcriptional
regulators VpsR and VpsT, which are both required for
corrugated colony and biofilm formation [16, 17]. VpsR
is a stronger regulator of the vps genes than is VpsT and
acts together with the alternative sigma factor RpoN.
VPS production and biofilm formation are favored by in-
creasing concentrations of the second messenger mol-
ecule, c-di-GMP [18, 19], which is synthesized by
GGDEF-domain diguanylate cyclases (DGCs) and de-
graded by EAL- or HD-GYP-domain phosphodiesterases
(PDEs). The expression of vps genes is negatively regu-
lated by quorum sensing through the master regulator
HapR [7, 20-22]. Some strains of V. cholerae, including
pandemic O1 El Tor strain N16961, contain natural
nonsense mutations in their ZapR genes [13, 23]. While
it was once thought that ZapR mutant strains were un-
able to regulate gene expression in response to changes
in bacterial populations, more recent studies have dem-
onstrated that even in the absence of a functional hapR
gene, other quorum sensing components are able to cir-
cumvent the normal HapR-dependent pathway to regu-
late gene expression [24].

A microarray analysis completed by Yildiz et al. [21]
identified 124 differentially regulated genes between
smooth and rugose phase variants of the V. cholerae O1
El Tor A1552 strain. Biofilm-related genes, including vps
and rbm, as well as genes coding for activated sugar nu-
cleotide intermediates, secreted proteins, and putative
chitinases, were found to be up-regulated in rugose
phase variants. Among the genes that were down-
regulated in rugose as compared to smooth were flagel-
lar motility and several chemotaxis-related genes.

RNA-seq technology has recently been used to detect
genome-wide transcriptional regulation in V. cholerae and
has also been used in combination with ChIP-seq to ef-
fectively resolve certain regulons [25-28]. Here we used
RNA-seq to obtain a comprehensive overview of the
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whole genome expression changes that occur between
smooth and rugose colonial phase variants of V. cholerae
N16961. Because phase variation can be a reversible
process, we included a set of smooth phase variants that
were directly derived from rugose isolates in addition to
the original smooth parental variants in our analysis. Our
results implicate specific metabolic changes, including
production and utilization of acetate and anaerobic respir-
ation, which were not previously linked to colonial phase
transitions in V. cholerae. Phenotypic and transcriptomic
characterization of the smooth variants derived from ru-
gose revealed them to be distinct from the original smooth
parent in that they were deficient in biofilm formation
despite having vps and rbm transcripts at elevated levels
reminiscent of the rugose isolates. Moreover, we found
similar shared transcriptomic signatures between the ru-
gose and their smooth derivatives for genes related to
acetate and peptide metabolism, as well as some that en-
code for regulatory functions and chemotaxis proteins.

Results and discussion

Isolation and phenotypic characterization of colonial
phase variants

Starting with three well-isolated smooth colonies of the
parental strain N16961, independent broth cultures were
passaged daily with occasional plating for individual col-
onies. Rugose (N16961R) variants were eventually identi-
fied, and a single representative was randomly chosen
from each passaging experiment for further study (ie.,
RU1, RU2, RU3 in Fig. 1a). Similar daily passaging and
occasional plating beginning with strains RU1, RU2, and
RU3 eventually yielded smooth derivative (N16961SD)
isolates, and single randomly chosen representatives
were again selected (i.e., as shown in Fig. 1b, isolates
SD1, SD2, and SD3 were selected from assays beginning
with RU1, RU2, and RUS3, respectively). Multiple inde-
pendent quantitative switching assays (see Methods for
details) beginning with each of the N16961R variants
yielded smooth colonies at frequencies ranging from 1.7
+0.2% to as much as 58.9 +4.9% of the total colonies
counted and phenotypically scored for a given assay.
Such high frequency switching was similar to that ob-
served for the initial conversion of N16961 to N16961R
(data not shown) and thus was consistent with a revers-
ible phase variation event(s). Previously, Yildiz and
Schoolnik [4] reported reversible switching between
smooth and rugose forms of V. cholerae strain A1552 at
frequencies comparable to ours.

Growth curves of N16961, N16961R and N16961SD
isolates revealed that N16961 and N16961SD strains all
had doubling times of approximately 25 min during ex-
ponential phase growth, while N16961R strains grew
somewhat slower with a doubling time of approximately
30 min (Additional file 1: Figure S1). We also examined
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Fig. 1 Experimental procedure for isolation of N16961-derived phase variants. a Beginning with isolated colonies, parental strain N16961 was
subjected to daily passaging with plating following the indicated approximate number of bacterial generations. Single randomly selected rugose
isolates, designated RU1, RU2 and RU3, were then chosen. In the passaging experiment where RU1 was eventually selected, plating was also
performed after ~30 generations, but there were no clearly distinguishable rugose isolates present on those plates; b Beginning with isolated
colonies of RUT, RU2, and RU3, the passaging and plating procedure was repeated, and single randomly chosen smooth isolates, designated SD1,
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phase variants for biofilm formation and motility, two
attributes that have been used previously to distinguish
smooth and rugose forms of V. cholerae. In biofilm tube
assays, the quantity of biofilm material produced by
N16961R variants was trending towards a significant dif-
ference from that produced by the N16961 parent ac-
cording to statistical analysis with Tukey’s post-test (P =
0.06) (Fig. 2a). Inspection of pellicles produced by
N16961 and N16961R samples revealed differences in
biofilm architecture (Fig. 2b) in that pellicles formed by
N16961 appeared smooth at the surface and were easily
disrupted with agitation, while pellicles formed by all
three of the N16961R variants appeared wrinkled and
were not easily disrupted by vortexing. Meanwhile,
N16961SD variants did not produce obvious biofilms
(Fig. 2a and b) and, in fact, samples within the
N16961SD group were not statistically different from
the uninoculated controls (P =0.37). In motility assays,
both N16961R and N16961SD variants were significantly
less motile than N16961 (P = 1.01E-05) (Fig. 3).

Principal component analysis of RNA-seq data

Total RNA was isolated from nine mid-exponential cul-
tures of N16961, N16961R and N16961SD phase variants
(ie., from three independent cultures of N16961, and one
culture each of RU1, RU2, RU3, SD1, SD2 and SD3). The
RNA was depleted of DNA and rRNA and constructed into

strand-specific barcoded cDNA libraries, which were then
sequenced on a single flowcell of an Illumina HiSeq2000 to
give 196,433,469 total reads, each of 100 nucleotides in
length. Individual samples ranged from approximately 18
to 24 million reads. The short reads generated for this pro-
ject were deposited at the NCBI SRA database under acces-
sion number PRJNA295073. For each sample, greater than
99% of the high quality reads were mapped to the reference
V. cholerae N16961 genome reported by Heidelberg et al.
[13] (Additional file 2: Table S1). Reads that did not exclu-
sively map well within the confines of individual predicted
gene models were excluded from further analysis. The
remaining read counts normalized in fragments per kilo-
base per million reads (FPKM) for each sample with regard
to gene models identified in the reference genome are given
in Additional file 3: Table S2.

These reads were then clustered in a principal compo-
nent analysis (PCA), which confirmed the three N16961,
N16961R or N16961SD transcriptomes were more simi-
lar to one another than they were to those of the other
phase variant groups (Fig. 4, Additional file 4: Figure S2;
Additional file 5: Figures S3; Additional file 6: Figure S4).
The RU1 sample was separated by PCA from the other
two samples within the N16961R phase variant group. Al-
though RU1 was distinct from the other two N16961R iso-
lates, the expression profile of SD1, the smooth derivative
that was isolated from RU1, was very similar to the
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Fig. 2 Biofilm formation of N16961 phase variants. a Following 48 h of static incubation at 30 °C, liquid cultures were poured off and the
remaining attached biofilm material was stained with 0.1% crystal violet and quantified by measuring the absorbance at 570 nm. Represented in
the graph are the average absorbance values of 12 replicates of N16961, 18 replicates (6 per individual variant) of N16961R, 18 replicates (6 per
individual variant) of N16961SD, and 6 replicates of the uninoculated control. Error bars show standard deviations. Samples indicated with the
same letter were not significantly different according to Tukey's post-test (P < 0.05). b Following 48 h of static incubation at 30 °C, liquid cultures
were carefully poured out and the pellicles that had formed at the air-broth interface during incubation were retained and repositioned at the

side of each glass tube to be photographed

expression profiles of the other two N16961SD isolates.
Indeed, the N16961SD samples were the most clustered
grouping in the PCA analysis, sharing even more tran-
scriptomic similarities than the N16961 parental group.
Principal component 1 (PC1) separated the parental and
the N16961SD group, both of which share the smooth co-
lonial phenotype, from the rugose variants. The parental
group and N16961SD group, however, were different in
motility and capacity to form biofilms (Figs. 2 and 3), and
their transcriptomes were separated based on principal
component 2 (PC2). This result also implies that the

N16961SD phase variants did not arise from an exact re-
versal of the adjustments in gene expression that occurred
concomitantly with the initial smooth-to-rugose switch, a
conclusion that is supported by subsequent analysis of the
RNA-seq data as detailed below.

Patterns and functional categories of differential gene
expression identified by RNA-seq analysis

Differential expression analysis of the normalized RNA-
seq data was performed using DESeq [29], which identi-
fies differentially expressed genes using a negative
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Fig. 3 Motility of N16961 phase variants. a Representative plate showing motility zones of variants following overnight incubation. b Following
overnight incubation of motility plates, motility zones were measured in mm. Represented in the figure are the averages of 10 plates, with error
bars depicting the standard deviations. Samples indicated with same letter were not statistically different according to Tukey's post-test (P < 0.05)
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Fig. 4 Principal Component Analysis. The principal components (PC 1 and PC 2) identified together account for 58.94% of the overall variability
of the dataset. Phase variants were grouped by PCA based on transcriptomic similarities

binomial distribution model and corrects for false dis-
covery rate at 5% by generating P,q values using the
Benjamini and Hochberg method [30]. Results of the
three pairwise comparisons, i.e., the parents (N16961)
versus the rugose variants (N16961R), N16961R versus
the smooth derivatives (N16961SD), and N16961 ver-
sus N16961SD, are given in Additional file 7: Table S3;
Additional file 8: Table S4; Additional file 9: Table S5.
There were 62 genes significantly differentially
expressed (P,qj < 0.05) between N16961 and N16961R,
with 50 of them being up-regulated and 12 being
down-regulated. The majority of these genes were not
previously described by Yildiz et al. [21], which may
be the result of multiple factors, including the in-
creased resolution of RNA-seq compared to micro-
array analysis and the different strains examined. In
comparison to our observed expression changes be-
tween N16961 and N16961R, more significant differ-
ences were observed here between N16961R and
N16961SD phases, with 180 genes differentially
expressed, of which 80 were up-regulated and 100
were down-regulated. The majority of significantly
differentially expressed genes were clustered into co-
expression groups, and functions represented in each
group were identified based on the sequenced V. cho-
lerae N16961 genome annotation [13]. The five gene
expression patterns observed were: i) up-regulated in
the transition from N16961 to N16961R and
remaining up-regulated in the transition from
N16961R to N16961SD (Additional file 10: Table S6);
ii) up-regulated from N16961 to N16961R and down-
regulated in N16961R to N16961SD (Additional file
11: Table S7); iii) down-regulated from N16961 to
N16961R and up-regulated in N16961R to N16961SD
(Additional file 12: Table S8); iv) not significantly reg-
ulated from N16961 to N16961R and then down-
regulated in N16961SD (Additional file 13: Table S9);

v) not significantly regulated from N16961 to
N16961R and then up-regulated in N16961SD (Add-
itional file 14: Table S10). For the differentially regu-
lated genes identified here, we will focus our results
and discussion on functional categories of genes that
were also previously described by Yildiz et al. [21], as
well as those newly described functions that we postu-
late may contribute either positively or negatively to
biofilm development and associated phenotypic
changes (e.g., rugosity).

Sugar transport and utilization

Genes encoding components of the phosphoenolpyr-
uvate phosphotransferase system (PTS), including
VCAO0653 (srcA), which encodes a sucrose-specific PTS
component and VC1826, which encodes a putative
fructose-specific PTS component, were both down-
regulated at least 30 fold on the N16961 to N16961R
switch and then up-regulated in the N16961R to
N16961SD switch (Additional file 12: Table S8). Yildiz
et al. [21] also observed a reduced expression of
fructose-specific PTS components in their rugose iso-
late. The PTS is a phosphotransfer cascade that trans-
ports and phosphorylates specific carbohydrates, such
as glucose, sucrose, fructose, mannose, and N-
acetylglucosamine, into the cell [31]. The phosphoryl-
ation state of certain PTS components acts as a signal
of environmental carbohydrate availability and these re-
versible phosphorylation signals influence the activation
or inactivation of other cellular processes including bio-
film formation [32, 33]. Our findings here appear to be
consistent with previous results where fructose and su-
crose were found to inhibit the formation of rugose col-
onies of V. cholerae [34]. Similar regulation of certain
PTS sugar utilization genes was also observed here, in-
cluding VCAO0655, which encodes a sucrose-6-
phosphate hydrolase that is required for utilization of
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sucrose as a sole carbon source, and VC1827 (manA),
which is involved in mannose catabolism (Additional
file 12: Table S8).

VPS production and biofilm formation

Fifteen of the 24 vps and rbm genes were significantly up-
regulated following the transition from N16961 to
N16961R with fold changes ranging from approximately
12 to nearly 200 (Additional file 10: Table S6). These genes
were not significantly down-regulated from N16961R to
N16961SD, and 11 of the 15 genes remained significantly
up-regulated in N16961SD when compared with the
N16961 transcriptome (Additional file 10: Table S6). In
contrast to Yildiz et al. [21], we did not detect differential
regulation of the vpsU, vpsC, vpsG, vpsK, rbmE, vpsN, vpsD,
and vpsQ genes, while, neither study showed evidence of
differential expression of the rbmF gene. Normalized RNA
expression profiles of the vpsl, vpsll and rbm clusters for
each of the phase variants were visualized (Fig. 5a) in par-
allel tracks using Integrative Genomics Viewer [35]. RNA
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peaks showed very similar qualitative expression patterns
for all three clusters in the N16961R and N16961SD sam-
ples further supporting the consistent expression patterns
observed within biological replicates.

To confirm these RNA-seq results, particularly the un-
expected up-regulation of a number of vps and rbm
genes in the biofilm-defective N16961SD variants, we
also performed RT-qPCR on representative differentially
regulated genes of the vpsl, vpsiI and rbm clusters. Con-
sistent with the RNA-seq analysis, significantly higher
levels of the vpsA, vpsL and rbmC transcripts were ob-
served in the N16961R and N16961SD samples relative
to N16961 (Fig. 5b). Furthermore, there was consistency
between the RNA-seq and RT-qPCR analyses regarding
the order of magnitude of induction (with vpsL being
the most up-regulated, followed by wpsA, and then
rbmC) and with the fact that for each method a given
gene’s induction levels in N16961R and N16961SD rela-
tive to N16961 were similar. RT-qPCR was performed
initially by using aliquots of RNA from the original
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Fig. 5 Transcription analysis of vps and rbm genes among N16961 phase variants. a Normalized RNA expression profiles based on RNA-seq results
for biofilm-related genes. Peaks corresponding to the number of transcripts that mapped to regions containing the vps/, vpsll, and rbm gene clus-
ters are shown in parallel tracks for each phase variant. N16961 samples are depicted in green, N16961R samples are shown in red, and
N16961SD samples are shown in blue. Although our analysis reported similar up-regulated expression values of the genes of all three clusters in
the N16961R and N16961SD samples as compared to N16961, some genes of the vps/ cluster fell out of the range of statistical significance in the
N16961SD samples (Additional file 10: Table S6). These include the vps/ gene, which encodes a glycosyltransferase, the vpst and vpsH genes,
whose products are predicted to be involved VPS export, and the vpsF and vpsJ genes, which encode proteins of unknown function. The in-
creased Py values obtained for these genes may be a result of the apparent differences in expression of the vps/ cluster in the SD3 sample versus
SD1 and SD2, which can be seen in the figure. b RT-gPCR verification of up-regulation of genes representative of the vps/, vpsll, and rom gene
clusters in N16961R and N16961SD samples. The graph depicts the log, fold changes of gene transcripts calculated for each selected gene rela-
tive to their transcript abundances in the N16961 sample group at a confidence interval of 95%. All data were normalized respective to the refer-
ence gene, gyrA, and the error bars depict the normalized quantity standard error
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samples used for RNA-seq. When the RT-qPCR was re-
peated using freshly prepared independent RNA from
the nine isolates, nearly identical results were obtained
(data not shown).

The vps and rbm genes are known to be positively reg-
ulated at the transcriptional level by the action of VpsR
and the alternative sigma factor RpoN [16]. Indeed,
VC0665, which encodes the RpoN-dependent VpsR pro-
tein, was up-regulated greater than 10-fold from N16961
to N16961R and remained up-regulated in N16961SD
isolates (Additional file 10: Table S6). Another transcrip-
tional regulator, CdgA, which is positively regulated by
VpsR and functions as a diguanylate cyclase to increase
c-di-GMP levels and increase transcription of the vps
and rbm genes [36], was also up-regulated greater than
5-fold from N16961 to N16961R and its expression then
did not significantly change upon transition to
N16961SD (Additional file 10: Table S6).

The VC1888 gene encoding a homologue of RbmC,
Bapl, which is required for biofilm integrity [15], was
also found to be up-regulated in the N16961 to
N16961R switch and remained up-regulated in the
N16961SD samples (Additional file 10: Table S6). The
elevated vps and rbm transcript levels in the N16961SD
isolates raise the possibility that post-transcriptional, or
perhaps post-translational, regulation of one or more of
these genes or their gene products has occurred, and
that such regulation may be the basis for the biofilm-
defective phenotype of this phase variant. Interestingly,
negative regulation of rbmC transcript translation was
recently shown to result from binding of a sSRNA [37].

Acetate production and utilization and central
metabolism

The VC0298 (acs) gene, which encodes acetyl-coenzyme
A synthetase (ACS), was found to be up-regulated ap-
proximately 4-fold upon the switch from N16961 to
N16961R (Additional file 10: Table S6). The ACS protein
is part of a high affinity bacterial pathway used to scav-
enge (assimilate) acetate from the environment. In E.
coli, such assimilation has been shown to occur just as
cells transition to a slower growth phase (e.g., stationary
phase). Prior to this event, acetate is excreted (dissimi-
lated) during exponential growth; thus, this represents a
change in acetate production and usage with induction
of acs transcription being part of the mechanism that
flips the switch [38]. The implication from the RNA-seq
data for VC0298 is that a switch to acetate assimilation
is associated with rugosity in V. cholerae, at least under
the growth conditions used in our study.

While ACS catalyzes the formation of acetyl-CoA from
acetate during assimilation, the reverse pathway (i.e.,
acetyl-CoA conversion to acetate through the intermedi-
ate acetyl-P) is achieved during dissimilation by the
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sequential action of phosphate acetyltransferase (PTA)
and acetate kinase (ACKA) enzymes, which in V. cho-
lerae are encoded by the VC1097 and VC1098 genes, re-
spectively. Interestingly, while transcription of the acs
gene was not significantly different between N16961R
and N16961SD isolates (Additional file 10: Table S6),
transcript abundance of both the VC1097 and VC1098
genes was increased by nearly 3-fold in the smooth de-
rivative compared to rugose (Additional file 14: Table
S10). Moreover, two genes, VC2413 (aceF) and VC2414
(aceE), encoding components of the pyruvate dehydro-
genase complex that converts pyruvate to acetyl-CoA,
were also up-regulated approximately 3-fold in the
N16961SD variants (Additional file 14: Table S10). These
data raise the possibility that a switch back to acetate
production and excretion is associated with the smooth
derivative.

As shown in E. coli, utilization of acetate for growth ne-
cessarily involves the glyoxylate bypass (GB) and gluconeo-
genesis [38]. The expression of the malate synthase gene
VC0734 (aceB), whose product is a critical enzyme con-
trolling metabolic flux specifically through the GB, was in-
duced approximately 6-fold from N16961 to N16961R and
then down-regulated nearly the same amount in
N16961SD (Additional file 11: Table S7). Also, the gene for
2-methylcitrate synthase, VC1337 (prpC), which functions
in both the TCA cycle and GB, was similarly regulated
(Additional file 11: Table S7). Other TCA/GB genes, in-
cluding VC2092 (gltA), VC1338 (acnA), VC0604 (acnB)
and VC1141 (icd), or TCA only genes VC2086 (sucB) and
VC2085 (sucC), were not significantly changed from
N16961 to N16961R but then were all reduced by 3-fold
or greater in N16961SD (Additional file 13: Table S9).
Meanwhile, genes involved in gluconeogenesis, including
VCAO0987 (ppsA), VC2738 (pck), and VC2544 (fbp), were
not significantly regulated between N16961 and N16961R
but were then all down-regulated 2-fold or greater in
N16961SD (Additional file 13: Table S9). Overall, our data
provide evidence of induction of GB in N16961R with re-
duction of this pathway (and TCA), along with gluconeo-
genesis, in N16961SD. It is tempting to speculate that for
the rugose isolates here the combination of acetate assimi-
lation, GB, and gluconeogenesis resulted in conversion of
acetate to glucose, which is a component of VPS-PS [5];
thus, these metabolic pathways may play significant roles
in biofilm formation in this species. Interestingly, besides
its potential role in biofilm formation, acetate assimilation
in V. cholerae also appears to affect the cholera disease
process itself by altering host insulin signaling and metab-
olism of lipids [39].

Anaerobic respiration and growth
Genes involved in anaerobic respiration including VC1514
and VC1511, which code for proteins with putative formate
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dehydrogenase activity, and VC1516, which encodes an
iron-sulfur protein, were up-regulated approximately 4-5-
fold in the switch from N16961 to N16961R, and this up-
regulation was reversed upon the switch from N16961R to
N16961SD (Additional file 11: Table S7). Other predicted
anaerobic respiration or fermentation genes were not
significantly regulated from N16961 to N16961R but then
were down-regulated in N16961SD derivatives. These in-
cluded VCA0678 (napA), which encodes a periplasmic ni-
trate reductase, VC2656 (frdA), encoding fumarate
reductase, and VCA0984 (/ldD), encoding lactate dehydro-
genase (Additional file 13: Table S9). In the case of the lat-
ter function, it is possible that down-regulation of lactate
production in N16961SD allows for more pyruvate to be
available for putative acetate fermentation. Other genes
whose products are predicted to function under anaerobic
conditions were also down-regulated in N16961SD
variants, including VCA0511 (nrdD), encoding a ribonucle-
oside triphosphate, VCA0665 (dcuC), encoding a C4-
dicarboxylate transporter, VC0667 (tas), encoding an aldo/
keto reductase, and VC1950 (torZ), encoding a
trimethylamine-N-oxide reductase (Additional file 13:
Table S9). The results for genes in this category implicate a
role for oxygen limitation/anaerobiosis in rugosity and po-
tentially biofilm formation in V. cholerae. A role for oxygen
deprivation in biofilm development in this organism was
also postulated based on proteomic studies performed for
cells grown under differing oxygen conditions [40].

Motility and chemotaxis

In contrast to our current findings, Yildiz et al. [21] re-
ported that expression of some class III and IV flagellar
genes was reduced in the strain A1552 rugose variant,
whose motility was shown to be reduced by about 50%;
however, the significance of this finding was unclear
since swimming behavior and flagella production seemed
unaffected compared to the A1552 smooth parent. We
found that while motility of N16961R was significantly
reduced relative to N16961 by over 3-fold (Fig. 3), there
was no concomitant down-regulation of flagellar genes.
We did observe down-regulation of some class I and
class II flagellar genes ranging from fold changes of ap-
proximately 2-4 in the switch from N16961R to
N16961SD (Additional file 13: Table S9). The signifi-
cance of this regulation is similarly unclear since motility
appeared to be unchanged between these two types of
variants.

The previous microarray analysis also identified several
differentially regulated chemotaxis genes [21]. One of
those identified previously as being up-regulated in ru-
gose, VCA0864, was also up-regulated over 19-fold in
N16961R and remained up-regulated in N16961SD
(Additional file 10: Table S6) in our study. The gene for
another methyl-accepting chemotaxis protein (VC1859)
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was also up-regulated by nearly 6-fold in N16961R but
was then down-regulated by the same amount in
N16961SD (Additional file 11: Table S7). Additionally,
some genes encoding chemotaxis-related functions were
unchanged in the initial transition but then were down-
regulated in the N16961SD samples, including the me-
thyl accepting chemotaxis proteins encoded by the
VC1298, VC1413, VC2161, VCA0658, and VCAOQ773
genes (Additional file 13: Table S9).

Additional regulatory functions

The putative c-di-GMP synthetase gene, VC2224, was
up-regulated over 6-fold in N16961R and then down-
regulated 3.4-fold in N16961SD (Additional file 11:
Table S7). Expression of a putative c-di-GMP synthetase
with an extracellular solute binding domain encoded by
the VCAO0557 gene was unchanged in N16961R com-
pared to N16961 but was then decreased by nearly 3-
fold in N16961SD (Additional file 13: Table S9). The
VCAO0785 gene, which also encodes a protein with pre-
dicted c-di-GMP synthetase and phosphodiesterase ac-
tivity was found to be up-regulated over 10-fold in both
the N16961R and N16961SD variants as compared to
N16961 (Additional file 10: Table S6). As corrugated col-
ony formation, VPS synthesis, and biofilm formation
have all been previously reported to be controlled by
intracellular c-di-GMP levels in V. cholerae, the differen-
tially regulated genes related to c-di-GMP synthesis
identified in our analysis are likely to be involved in me-
diating phenotypic changes that occur with colonial
phase variation in this organism.

The gene VC1349, which encodes a PAS domain-
containing sensor histidine kinase protein of a bacterial
two component system, was up-regulated in N16961R
(in agreement with Yildiz et al. [21]), and it remained
up-regulated in N16961SD (Additional file 10: Table S6).
Similarly, the VC1348 gene, a putative response regula-
tor cognate to the VC1349 product was induced in
N16961R and remained highly expressed in N16961SD
(Additional file 10: Table S6). The presence of a HD-
GYP domain in this response regulator suggests that it
probably possesses PDE activity, which would act to de-
grade c-di-GMP in response to particular environmental
stimuli.

Other genes encoding signal sensing proteins that
were found to be down-regulated in N16961SD were
VC1085, VC1315, and VC1710, encoding sensor kinase
proteins, and the VC1081 gene, which might be the cog-
nate response regulator for VC1085 (Additional file 13:
Table S9). The VC1710 gene contains both an EAL
phosphodiesterase domain and a CBS domain, with the
latter being associated with adenosyl (AMP, ATP, or
SAM) binding.
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Peptide transport and utilization

The VC0194 (ggt) gene encoding gamma-glutamyl trans-
peptidase (GGT), which was up-regulated in V. cholerae
strain A1552 rugose previously [21], was found here to
be 15-fold higher in N16961R than N16961 and was
then reduced approximately 4-fold from N16961R to
N16961SD (Additional file 11: Table S7). GGT is re-
quired for the utilization of exogenous gamma-glutamyl
peptides and facilitates de novo synthesis of cysteine and
glycine, which is a component of VPS-PS [5]; thus, it is
possible that GGT contributes significantly to VPS-PS
production in rugose V. cholerae. Interestingly, GGT
was reported to contribute to the environmental persist-
ence of E. coli under growth-limiting conditions [41, 42],
and it has also been implicated as a colonization factor
of the bacterial pathogens Helicobacter pylori and Cam-
pylobacter jejuni [43, 44].

Two oligopeptide permease components encoded by
VC1091 (oppA) and VC1092 (oppB) were up-regulated
about 5-fold in N16961R and were then down-regulated
over 8-fold in the N16961SD variants (Additional file 11:
Table S7). In addition to the role of peptide transport
systems in cell nutrition, they have also been implicated
in other processes such as chemotaxis, conjugation, viru-
lence, and competence [45]. Additionally, an oppA mu-
tant of Vibrio fluvialis was found to have increased
biofilm formation when grown in media containing pep-
tone or tryptone as a nitrogen source [46].

Stress response

Some genes involved in stress response were up-regulated
in the N16961SD derivatives (Additional file 14: Table S10).
These genes include VC0855 (dnaK) and VC0856 (dnaj),
which were both up-regulated approximately 3-fold, and,
interestingly, were found to be differentially regulated in
hapR mutants in the microarray study by Yildiz et al. [21].
The protein products of these two genes act as chaperones
to protect other proteins from damage during stressful con-
ditions such as heat shock. Additionally, the VCA0183
(hmp) gene was up-regulated more than 2.4-fold. Hmp is a
nitric oxide dioxygenase, which uses O, and NADPH to
convert nitric oxide into nitrate, conferring greater resist-
ance to nitrosative stress. Finally, the VC2506 (rapA) gene
was up-regulated 2.5-fold. The rapA gene encodes an RNA
polymerase associated protein, which stimulates the recyc-
ling of RNA polymerase during transcription in stressful
conditions.

Conclusion

Although phase variation in V. cholerae between smooth
and rugose forms was known to be phenotypically re-
versible, smooth variants derived from rugose had not
previously been analyzed in any detail. The N16961SD
isolates are biofilm-deficient apparently due to an
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uncharacterized genetic or epigenetic change which still
allows for elevated transcription of vps and rbm genes.
Given the differential regulation of multiple genes in-
volved in acetate metabolism in the smooth derivatives,
an intriguing epigenetic possibility which would link
underlying metabolic changes with biofilm forming cap-
ability would involve post-translational inactivation via
acetylation (by either acetyl-CoA or acetyl phosphate) of
one or more components required for rugosity. Regard-
less of the exact mechanism, however, it is apparent that
although these smooth variants phenotypically resemble
the N16961 parent in colony morphology, they neverthe-
less share certain cryptic transcriptomic signatures with
the rugose isolates, at least under the culture conditions
used in our study.

A summary of the differentially regulated genes dis-
cussed here is presented in Fig. 6. Besides the vps/rbm
signature, other expression pathways that were up-
regulated in N16961R and N16961SD relative to N16961
included a putative two-component regulatory system
(VC1348, VC1349), c-di-GMP synthesis (VCA0785) and
chemotaxis (VCAO0864), as well as the ggt gene, which
has been implicated in the environmental persistence of
several different bacterial species [41-44]. Taken to-
gether, our results suggest these transcriptomic signa-
tures may represent a stress adaptive consequence which
allows for a more rapid phenotypic response (e.g., a
switch from smooth back to rugose) when potentially
changing environmental conditions dictate. Additional
characterization of N16961SD should further our under-
standing of the role of this variant in the ecology and
pathogenesis of strain N16961. It would also be interest-
ing to determine whether this phenotype arises in popu-
lations of other pandemic and non-pandemic V. cholerae
strains. Lastly, the differentially regulated genes identi-
fied here have provided additional insights into the
multitude of underlying changes that occur with phase
variation in this bacterial pathogen.

Methods

Bacterial strains and growth conditions

The V. cholerae phase variants used were smooth and ru-
gose derivatives of O1 El Tor strain N16961 obtained
from ATCC (Manassas, VA). All phase variants were iso-
lated by daily passaging and occasional plating (Fig. 1) in
Luria-Bertani (LB) broth (Difco, BD Diagnostics, Sparks,
MD) supplemented to 2% NaCl (Fisher, Hampton, NH)
at 30 °C with shaking at 200 rpm. Phase variants were
stored as frozen stocks in LB broth with 2% NaCl and
supplemented with 15% glycerol (Mallinckrodt, St. Louis,
MO). All subsequent work, including RNA isolation,
quantitative switching assays and further phenotypic
characterization, including pellicle production and biofilm
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Fig. 6 Overview of the differentially regulated genes discussed in this paper. The first symbol next to each gene name represents the qualitative
expression change from N16961 to N16961R, the second symbol denotes the change from N16961R to N16961SD and the third represents the
difference from N16961 to N16961SD. Symbol types are as follows: a dash indicates no significant change in gene expression, an upward arrow
indicates up-regulation of the gene, and a downward arrow indicates down-regulation of the gene. Summary of central metabolic pathways
shown within the cell includes the locations of gene functions as labeled with numbers. Pathways or portions of a pathway are colored as fol-
lows: red = gluconeogenesis; purple = pyruvate dehydrogenase complex; gold = acetate metabolism; green = glyoxylate bypass; blue = TCA cycle.
As identified in this study, genes with the expression pattern 1-1 (or 111 in the case of ggt) compose the transcriptomic signatures shared be-

tween N16961R and N16961SD strains

formation, was performed in LB broth containing 1%
NaCl. It is noteworthy that for a given isolate there was no
discernible change in colonial phenotype on LB medium
containing 2% versus 1% NaCl.

Quantitative switching assays

Quantitative switching assays to determine frequencies
of phase variation were performed as previously de-
scribed [47] with the following modifications. For each
phase variant, three isolated colonies were selected and
each was inoculated into 3 ml of fresh broth media. Each
culture was incubated with shaking overnight, and then
diluted 1:100 into three tubes of 3 ml fresh media. The
tubes were passaged daily by diluting 1:100 into 3 ml of
fresh media. After every fifth passage, serial dilutions of
each culture were plated onto LB plates. Colony pheno-
types were then scored and switching frequencies were
calculated as described [48].

Biofilm assays
Biofilm assays were performed as previously described
[2, 48] with several modifications. Overnight cultures

were diluted 1:100 into 1 ml of media in borosilicate
glass tubes and incubated statically at 30 °C for 48 h.
Cultures were then poured off and pellicles were photo-
graphed using a Sony Cybershot digital camera (Japan).
The tubes were then rinsed with a 1.5% NaCl solution
to remove pellicles and all non-attached cells. The
remaining biofilms were stained with 0.1% crystal violet
(CV) (Sigma-Aldrich, Saint Louis, MO), incubated for
30 min at room temperature, and rinsed again three
times with 1.5% NaCl solution to remove excess CV.
The remaining biofilm-attached CV was solubilized with
1.1 ml of DMSO (Sigma-Aldrich) and quantified by
measuring the absorbance at 570 nm. Six independent
replicates of each phase variant plus three uninoculated
control replicates were used per assay for a total of two
trials. Significance was determined using one-way
ANOVA and Tukey’s post-test with a cutoff value of P<
0.05.

Motility assays
A total of ten plates containing 0.3% agar were inocu-
lated with isolated colonies of each phase variant using
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an inoculating needle as previously described [47]. The
plates were incubated at 30 °C overnight above a con-
tainer of water to prevent dehydration of the motility
agar. Following overnight incubation, each motility zone
was measured in mm, and the plates were photographed
with a Gel Doc XR (Bio-Rad Laboratories, Hercules,
CA) using the EPI white setting and phase variant names
were labeled on photographs using Microsoft Paint. Sig-
nificance was determined using one-way ANOVA and
Tukey’s post-test with a cutoff value of P <0.05.

Growth curves

Growth curves of phase variant cultures were performed
as previously described [48] except that time points were
taken every 30 min until 5 h of incubation.

RNA isolation

Freezer stocks were used to inoculate a 3 ml broth cul-
ture for each phase variant. Cultures were incubated
overnight and streaked for isolation. Isolated colonies of
each phase variant were inoculated into 3 ml broth cul-
tures. Following overnight incubation, each culture was
diluted 1: 200 into fresh media for RNA isolation and in-
cubated with shaking until an ODgyy of approximately
0.4, corresponding to mid-exponential growth phase,
was reached. In order to achieve more synchronized
growth, the cultures at that point were diluted at 1:100
into fresh media and incubated with shaking until an
ODggp of approximately 0.4 was again reached. Multiple
1 ml aliquots were harvested and total RNA was isolated
as previously described [49]. Each culture used for RNA
isolation was streaked onto LB agar and observed for
evidence of switching following overnight incubation. If
observable switching occurred, the corresponding RNA
samples were discarded and RNA isolation was repeated
for that sample. The concentration and quality of each
RNA sample was determined using the Ajeo/Ango values
reported with a Nanodrop spectrophotometer (Thermo
Scientific, Wilmington, DE), and the integrity of the total
RNA was further determined using agarose gel
electrophoresis.

Library preparation and sequencing

Total RNA was sent to the University of Illinois at Urbana-
Champaign Roy J. Carver Biotechnology Center for library
preparation and sequencing. Total RNA was depleted of
ribosomal RNA using the RiboZero Metabacteria kit (Epi-
centre, Madison, WI) following the manufacturer’s instruc-
tions. The rRNA-depleted samples were then chemically
fragmented to sizes ranging from 400 to 500 nucleotides.
To create 5" to 3’ strand-specific cDNA libraries, a TruSeq
Stranded Sample Preparation kit (Illumina, San Diego, CA)
was used followed by gel extraction to select fragments with
a minimum size of 80 nucleotides. Fragments were
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barcoded and multiplexed on a single lane of an Illumina
HiSeq2000 following the manufacturer’s instructions for
101 cycles. From an RNA population ranging in sizes from
80 to 500 nucleotides, 100 nucleotides were sequenced
from randomly selected ends using the TruSeq SBS Se-
quencing Kit Version 3 and demultiplexed with Casava
1.8.2 following the manufacturer’s instructions.

Data analysis

Sequences were checked for low quality reads and enrich-
ment of artifacts such as adapters using FASTQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). All
samples were of very high quality (Phred quality scores >
30), so further processing was not required for down-
stream analyses. End-to-end read alignment to the refer-
ence genome (NCBI GenBank accession numbers
AE004093-AE004343, AE004344-AE004436) was per-
formed using BowTie2 version 2.0.0-beta5 [50] with the
“very sensitive” alignment preset to obtain an overall
alignment rate for all samples of > 99%. Reads that did not
entirely map well within the boundaries of individual
predicted ORFs were filtered out from further analysis.
The remaining uniquely mapped reads from the three
biological replicates of each phase were pooled together
to make groups N16961, N16961R, and N16961SD.
These groups were analyzed in three pairwise compari-
sons (i.e.,, N16961 vs. N16961R, N16961R vs. N16961SD,
and N16961 vs. N16961SD) using the statistics program
R version 3.0.1 (R Core Team) with the package
“DESeq”, Bioconductor version 2.14 [29] to determine
differential expression based on the negative binomial
distribution model, which is useful when applied to data-
sets with an unbounded positive range in which the
sample variance may exceed the sample mean. Included in
the DESeq results tables (Additional file 7: Table S3;
Additional file 8: Table S4; Additional file 9: Table S5)
are base means, which were calculated as the mean of
all read counts for each gene, normalized to the total li-
brary size for that pairwise comparison and averaged
over all 6 samples for that comparison. The base mean
values for individual groups are the mean read counts
from all 3 samples of that group still normalized by total
library size per comparison. Fold changes and the loga-
rithm of fold changes (to basis 2) from the first group to
the second group are reported in the tables, along with
the values for statistical significance (P). False discovery
rate was controlled at 5% using the Benjamini and
Hochberg method [30].

RT-qPCR (Reverse Transcription Quantitative Real-Time
PCR)

Primers were designed using Clone Manager (Sci-Ed Soft-
ware; Morrisville, NC), and were verified in silico with
Primer-BLAST (NCBI) prior to being synthesized by
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Sigma-Genosys (The Woodlands, TX). Primer sequences
were as follows: vpsA-F 5-TACCACGTTTGCTGCCT
CTT-3; wpsA-R 5-AACCCGCTTCAACATGACCT-3,
vpsL-F 5-CGCTTGGTTTGTCGGTTCTT-3; wpsL-R 5-
AGTGAATGGTCGCAAATGCC-3; rbmC-F 5-GTAT-
CAAGCGAACGATGCGG-3; rbmC-R 5-AAAGTGG-
CAGGTACAGAGGC-3. Primers used for the reference
gene, gyrA, were those previously published [51]. Primers
were verified in vitro by standard PCR and subsequent
agarose gel electrophoresis using V. cholerae N16961 gen-
omic DNA (gDNA), which was purified as described previ-
ously [49]. For ¢cDNA, first strand synthesis was performed
as described [49]. Primer efficiencies to determine appro-
priate primer and cDNA concentrations were conducted in
duplicate using five serial 1:10 dilutions of V. cholerae
N16961 cDNA for each gene target and reference gene and
with the following controls: water + reverse transcriptase
(RT), gDNA -RT, and non-template controls (NTC), run
on a ViiA7 Real Time PCR System (Applied Biosystems,
Carlsbad, CA) using SYBR Select Master Mix chemistry
(Applied Biosystems). Numerical efficiency was determined
by the formula E =10C P -1, and all calculations were
made within the Expressionsuite software v1.0.3 (Applied
Biosystems). RT-qPCR was conducted on each sample ver-
sus each gene target in triplicate with 0.5 pl of appropriate
20 mM forward and reverse primers, 5 pl of cDNA diluted
1:100 in nuclease free (NF) water, 12.5 pl SYBR Select Mas-
ter Mix, and water to 25 pl. Samples were run alongside
NTC, gDNA -RT, and water + RT controls on 96-well
plates in the ViiA7 Real Time PCR System, and gene ex-
pression was determined using the relative standard curve
method for relative quantification within the accompanying
Expressionsuite software v1.0.3. Each assay was repeated
three times.

Figure preparation

Additional file 4: Figure S2; Additional file 5: Figure S3;
Additional file 6: Figure S4 were created using R soft-
ware with the “gplots” package version 2.12.1 [52]. Fig. 4
was plotted using R software with the package “FactoMi-
neR” version 1.25 [53]. In Fig. 5a, peaks corresponding
to mapped RNA transcripts were visualized in parallel
tracks against the V. cholerae N16961 genome using In-
tegrative Genomics Viewer [35]. These tracks were
scaled to normalize for differences in the total number
of read counts of each sample. Whole colony images for
Fig. 1 were taken using a Zeiss SteREO Lumar.V12
microscope with the brightfield setting.

Additional files

Additional file 1: Figure S1. Growth curves of N16961 phase variants.
Plotted are the means of 9 replicates of N16961 and 3 of each of the
individual N16961R and N16961SD phase variants used in this study (e,
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n=29 [total] for N16961R and 9 [total] for N16961SD) on a semi-
logarithmic (base 10) graph. Error bars indicate standard deviation. (TIF
1479 kb)

Additional file 2: Table S1. Percentage of reads mapped to the
reference genome for each RNA sample. (XLSX 10 kb)

Additional file 3: Table S2. Total fragments mapped exclusively within
each predicted gene per sample and normalized FPKM values. (XLSX 471 kb)

Additional file 4: Figure S2. Heatmap showing global gene
expression in N16961 versus N16961R comparison. Relative gene
expression values for each phase variant are represented by variations in
color as depicted in the color key. (TIF 481 kb)

Additional file 5: Figure S3. Heatmap showing global gene
expression in N16961R versus N16961SD comparison. Relative gene
expression values for each phase variant are represented by variations in
color as depicted in the color key. (TIF 472 kb)

Additional file 6: Figure S4. Heatmap showing global gene
expression in N16961 versus N16961SD comparison. Relative gene
expression values for each phase variant are represented by variations in
color as depicted in the color key. (TIF 467 kb)

Additional file 7: Table S3. Results of DESeq analysis for the N16961
to N16961R pairwise comparison. (XLSX 190 kb)

Additional file 8: Table S4. Results of DESeq analysis for the N16961R
to N16961SD pairwise comparison. (XLSX 192 kb)

Additional file 9: Table S5. Results of DESeq analysis for the N16961
to N16961SD pairwise comparison. (XLSX 183 kb)

Additional file 10: Table S6. Genes that were significantly up-
regulated from N16961 to N16961R and remained up-regulated in
N16961SD. (XLSX 14 kb)

Additional file 11: Table S7. Genes that were significantly up-
regulated from N16961 to N16961R and were significantly down-
regulated from N16961R to N16961SD. (XLSX 13 kb)

Additional file 12: Table S8. Genes that were significantly down-
regulated from N16961 to N16961R and were significantly up-regulated
from N16961R to N16961SD. (XLSX 10 kb)

Additional file 13: Table S9. Genes that were not significantly
differentially regulated from N16961 to N16961R but were significantly
down-regulated in N16961SD. (XLSX 25 kb)

Additional file 14: Table $S10. Genes that were not significantly
differentially regulated from N16961 to N16961R but were significantly
up-regulated in N16961SD. (XLSX 22 kb)
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