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Abstract

Genome-wide association studies (GWAS) are routinely being used to examine the genetic contribution to complex human
traits, such as high-density lipoprotein cholesterol (HDL-C). Although HDL-C levels are highly heritable (h2,0.7), the genetic
determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this
discrepancy may include rare variants, structural variants, gene-environment (GxE) interactions, and gene-gene (GxG)
interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in
the context of comprehensive electronic medical records (EMRs). Here we apply an EMR-based phenotyping approach,
within the context of routine care, to replicate several known associations between HDL-C and previously characterized
genetic variants: CETP (rs3764261, p = 1.22e-25), LIPC (rs11855284, p = 3.92e-14), LPL (rs12678919, p = 1.99e-7), and the
APOA1/C3/A4/A5 locus (rs964184, p = 1.06e-5), all adjusted for age, gender, body mass index (BMI), and smoking status. By
using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a
more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted
identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating
biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show
evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between
LPL (which modulates the incorporation of triglyceride into HDL) and ABCA1 (which modulates the incorporation of free
cholesterol into HDL). These results demonstrate that gene-gene interactions modulate complex human traits, including
HDL cholesterol.
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Introduction

To date, nearly 600 genome-wide association studies (GWAS)

have been completed, investigating 150 distinct complex human

traits [1,2]. Circulating levels of high-density lipoprotein cholesterol

(HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyc-

erides (TG) are quantitative traits commonly measured in clinical

practice and strongly associated with vascular disease, making them

appealing traits to investigate from a statistical, clinical, and practical

standpoint [3]. The genetic factors underlying variability in blood

lipid levels have been extensively studied using GWAS, in cohorts of

various design [4–16]. Through the construction of biobanks linked

to electronic medical records (EMRs), the clinical community is now

in a position to assess these associations in practice.

There is particularly strong interest in the characterization of

genetic factors underlying population variability in HDL-C [17].

In human populations, every 1 mg/dl decrease in HDL-C is

associated with a 6% increase in cardiovascular risk [18]. HDL

particles also appear to have direct anti-atherogenic properties in

animal models [19]. Therefore, while these smaller particles may

serve as a source of cholesterol esters for the larger, more

atherogenic LDL particles, the HDL particles themselves actually

appear to attenuate the development of cardiovascular disease

[20]. HDL is under tight genetic control (h2 up to ,70%) [21], yet

despite HDL’s high heritability, even some of the most well

powered GWAS studies have only explained a very small

proportion of HDL variation using common SNPs [9,12,22].

This net unexplained variation due to genetics, often termed the

‘‘missing heritability’’ problem [23], has challenged GWAS studies

for many complex traits beyond circulating lipid levels [2,24].

A general explanation for this missing heritability is that it

reflects forms of genetic variation that are not captured in the
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GWAS paradigm; these include rare genetic variation, structural

variation [2,23], epigenetics, and gene-gene (GxG) and gene-

environment (GxE) interactions [2,23,25,26]. GxG interaction

(epistasis) is thought to be an important component of complex,

multifactorial diseases due to the complexity of biological systems

[27]. Data from animal models provide compelling support for the

role of GxG interaction in the control of complex traits [28,29].

Exploration of GxG in GWAS is often limited by lack of large

sample sizes and statistical methods. One possible solution to the

sample size problem is presented by the growing number of DNA

repositories linked to electronic health records. These resources

can provide cohorts of sufficient size for the characterization of

GxG interaction. In parallel, computational capacity and novel

methodologies have emerged to make the search for epistasis in

GWAS feasible [30,31].

Here we present data from a GWAS analyzing HDL-C using

the Marshfield Clinic Personalized Medicine Research Project

(PMRP) database [32], a node of the NHGRI-funded eMERGE

network (electronic Medical Records and Genomics) [www.gwas.

org]. We first conducted a genome-wide scan for SNPs associated

with median HDL-C level using the secure encrypted compre-

hensive EMRs of 3947 PMRP participants. We also constructed a

modeled HDL phenotype that accounts for environmental effects

such as population trends in age, body mass index (BMI), and

relevant co-morbidities [17]. We next investigated GxG interac-

tion in this same dataset, using an approach that leverages existing

biological knowledge [33–35].We required that any GxG

interactions in this cohort (n = 3740 PMRP participants) showed

evidence of replication in the de-identified EMRs of a second

cohort from the eMERGE network (n = 1858 records from the

BioVU project [36]). This resulted in replicated GxG interactions

associated with variation in HDL-C; all of which have potential

biological relevance.

Methods

Ethics Statement
For the discovery cohort in the Marshfield PMRP, the study was

approved by the Institutional Review Board of the Marshfield

Clinic, and conducted in accordance with the basic principles of

the Declaration of Helsinki. All study subjects in the discovery

cohort provided written informed consent allowing access to their

entire electronic medical record, through their participation in

the Marshfield Clinic Personalized Medicine Research Project

(PMRP). For our replication cohort we used samples chosen from

BioVU, Vanderbilt’s DNA databank. BioVU employs novel

informatics strategies to de-identify Vanderbilt’s comprehensive

EMR and link these data to DNA extracted from blood samples

obtained through routine clinical care and that would otherwise be

discarded. Participants have the option of opting out at the clinical

point of care, and the use of this de-identified research resource

has therefore been determined by Vanderbilt’s Institutional

Review Board to represent non-human subject research. The

federal Office of Human Research Protections concurred, and

informed consent was therefore not required for access to the de-

identified information within the BioVU biobank. We maintain a

substantial oversight structure to promote the ethical maintenance

of the resource, and to supervise all research conducted with its

contents. Oversight bodies include: Vanderbilt University Institu-

tional Review Board, the Vanderbilt University Medical Center

Ethics Committee, the External Ethics Advisory Board, the

Community Advisory Board, and the Vanderbilt University legal

department [37]. The PMRP database and BioVU are both

eMERGE nodes, and are two of the largest practice-based

biobanks in the U.S. with over 20,000 in the PMRP and over

100,000 in BioVU as of December, 2010 [36,38,39].

Phenotyping
To facilitate the construction of accurate prediction models for

cardiometabolic risk, the eMERGE network has begun extracting

clinical lipid data from multiple participating sites. Marshfield

Clinic in Central Wisconsin has one of the oldest internally

developed EMRs in the US, with coded diagnoses dating back to

the early 1960’s and laboratory observations dating back to 1985.

The EMR data collected for clinical care is transferred daily into

the Marshfield Clinic Data Warehouse where it is made available

for research. We modeled lipid variables using this data source for

the participants in the Marshfield PMRP cohort [17].

The PMRP demographics reflect the composition of the Central

Wisconsin community, and the corresponding dataset has a

distribution of fasting lipid levels similar to that reported by

NHANES III [40]. At present, the PMRP Biobank contains data

from over 20,000 adult participants; more than 10,000 individuals

(54%) have impaired fasting glucose; .8,000 (41%) have

hypertriglyceridemia; and .9,000 (48%) have reduced levels of

HDL cholesterol according to criteria published by NCEP ATP-

III [41,42].

The eMERGE network design includes selection of ,3,000

subjects with a predesignated phenotype at each node for genome-

wide genotyping. In PRMP, the primary phenotype was cataract

(n = 3,947 subjects). This phenotype resulted in a set enriched for

older adults (age range 52 to 90 years, mean age 72). The set

included 3,740 primarily European-American individuals with at

least two fasting HDL measurements available for use in the

present analysis. Due to the longitudinal nature of these data (2 to

78 lipid data points per individual; mean = 14.4610.1 data

points), we defined two phenotypes to be used in the analyses

below: (1) median HDL and (2) modeled HDL as previously

described [17]. All HDL measurements for every individual were

extracted from the EMR.

For the single-locus analysis of HDL level in the Marshfield

PMRP, a simple median HDL level was computed for every

individual who had at least two or more HDL datapoints in the

record. Analyses using median HDL included adjustments for

smoking, age, age2, BMI, BMI2, and gender, as all of these factors

showed highly significant associations with median HDL. A

second HDL measurement, termed here as modeled HDL, was

also calculated for individuals in the Marshfield dataset. To

calculate a modeled HDL for an individual, we extracted all lipid

data and censored any HDL data acquired after lipid treatment or

the onset of a relevant co-morbidity, and then used population-

based trends in age and BMI to adjust individual estimates [17].

Records were censored at the first date of diagnosis for the

following clinical co-morbidities known to influence circulating

lipid levels: cancer, diabetes mellitus, and thyroid disease. Cancer

(any malignancy except two common skin cancers - basal cell

carcinoma and squamous cell carcinoma of the skin) was censored

based on ICD-9 codes in the EMR. Thyroid disease and diabetes

were assessed from the EMR using an electronic phenotyping

algorithm available at the eMERGE website (www.gwas.org).

Smoking status was acquired via information provided on a

questionnaire provided at study entry, later confirmed by

interview. Records were also censored at the first date of

prescription for medications known to alter circulating lipid levels

(either therapeutically or indirectly), including statins, fibric acid

derivatives, niacin, and exogenous gonadal steroids. Our selection

of these covariates has been published [17]. The data were

extracted from the EMR using natural language processing (NLP)

Knowledge-Driven Interaction Analysis for HDL-C

PLoS ONE | www.plosone.org 2 May 2011 | Volume 6 | Issue 5 | e19586



[43–46]. These algorithms have also been validated and published

[43], and the programming pseudocode is freely available through

the eMERGE network (www.gwas.org).

For the gene-gene interaction analysis, we replicated findings

using independent samples from BioVU, the EMR-derived DNA

databank at Vanderbilt University Medical Center [36,47]. The

primary eMERGE phenotype at this site is variability in the

duration of the QRS complex on the normal electrocardiogram.

Replication of the gene-gene interaction analysis in the Marshfield

PMRP was conducted in 1,858 European-American and African-

American individuals from the Vanderbilt BioVU dataset having

at least two HDL measurements extracted from a de-identified

synthetic derivative of the EMR. Because the additional clinical

data mentioned above were not available for samples in this

dataset, no modeled HDL could be computed on these data, and

no adjustments were made in the gene-gene interaction analysis. It

is, however, unlikely that any of these variables will confound any

association to a gene-gene interaction replicating across both the

Marshfield PMRP and Vanderbilt BioVU samples.

Genotyping and Quality Control
Genotyping for the Marshfield PMRP samples was performed

as part of the eMERGE network at the Center for Inherited

Disease Research (CIDR) at Johns Hopkins University. The

Illumina Human660W-Quadv1_A genotyping platform was used

for this study. This platform consists of 560,635 SNPs and 96,731

intensity-only probes. Genotyping calls were made at CIDR using

BeadStudio version 3.3.7. Our discovery cohort includes 3,947

samples from the Marshfield PMRP, 21 blind duplicates, and 85

HapMap controls. The HapMap controls include 44 CEPH, 32

Yoruba, 5 Japanese, and 4 Han Chinese; 40 independent

HapMap replicate pair experiments, 19 independent HapMap

trio experiments and 8 independent parent-child pairs were

defined. The HapMap concordance rate was 99.8%. The blind

duplicates reproducibility rate was 99.99%.

Genotyping for the Vanderbilt BioVU samples was performed

as part of eMERGE primarily at the Broad Institute. A small

number of BioVU samples, where the primary phenotype of

interest was dementia were genotyped at CIDR. Similar to the

PMRP samples, most samples were genotyped for SNPs on the

Illumina Human660W-Quadv1_A platform, although a subset of

these samples were genotyped on the Illumina 1M-Duo BeadChip

(those who were known to be African American), which included

all the SNPs on the 660W platform in addition to extra SNPs that

were not considered in this analysis.

Genome-wide SNP data were cleaned using the eMERGE

quality control (QC) pipeline developed by the eMERGE

Genomics Working Group [48]. This process includes evaluation

of sample and marker call rate, gender anomalies, duplicate and

HapMap concordance, batch effects, Hardy-Weinberg equilibri-

um, Mendelian errors, sample relatedness, and population

stratification. We also removed any SNPs with a minor allele

frequency less than 1%, as power to detect associations with these

variants was low. After QC and minor allele frequency filtering,

522,204 SNPs were used for the single locus analysis in the

Marshfield PMRP dataset. Seven individuals were removed due to

low (,99%) call rate. In the Marshfield PMRP cohort, over 98%

of the participants self-reported European-American ancectry.

Reconciling ancestry using self-report, principle components [49],

and structured analysis resulted in exclsuion of a further 37 non-

European genetic ancestry outliers. After excluding these samples,

none of the top ten principal components were significant [49] or

explained more than one tenth of one percent of HDL variation,

and so no adjustment for principal components of ancestry was

used in this sample. For the gene-gene interaction replication set

using Vanderbilt BioVU samples in a combination of both

European-Americans and African-Americans, we identified and

excluded 5 ethnic outliers and adjusted analyses for two marginally

significant principle components using Eigensoft [49]. All

genotype data and detailed documentation of the quality control

procedures summarized here have been deposited and are

available at dbGaP [50].

Statistical analysis
More than half of the individuals in the Marshfield dataset had

a first, second, or third degree relative also in the dataset. To allow

for the inclusion of related individuals without inflating the type I

error rate in the single-locus analysis, we performed the GWAS

analysis using a linear mixed effects analysis [51] with GenABEL

[52] implemented in the R statistical computing environment [53].

Residuals from this model are essentially free from familial

correlations, and can be used in a simple linear regression model

for each SNP, which was performed using PLINK [54]. Genome-

wide statistical significance was determined using a Bonferroni

correction.

One frequently-cited causal mechanism underlying GxG

interaction has been variability within multiple genes in similar

pathways, protein families, or genes with similar or redundant

biological function [33,34]. For analyses of gene-gene interaction,

the Biofilter is a bioinformatics algorithm that leverages domain

knowledge from publicly available biological databases among

SNPs from biologically plausible gene sets sharing physiological or

biochemical similarity (or that have been previously associated

with the phenotype under investigation) [35]. The rationale for

using the Biofilter is to reduce both the computational and

multiple testing burdens inherent in testing for gene-gene

interactions. The Biofilter quantifies evidence in support of a

particular gene-gene interaction model by counting the number of

public database sources that independently link the two genes

within a similar biological mechanism. Choosing to be conserva-

tive, we required that any gene-gene model be independently

supported by four sources of biological knowledge among the

following six: the Gene Ontology[55]; the Database of Interacting

Proteins[56]; the Protein Families Database[57,58]; the Kyoto

Encyclopedia of Genes and Genomes (KEGG)[59]; Reac-

tome[60]; or NetPath[61]. This criterion identified 22,769 SNP-

SNP interactions that were tested for association to HDL-C levels

in the Marshfield PMRP, and significant results were followed up

using the Vanderbilt BioVU cohort. Figure 1 is a flow diagram

illustrating an overview of the analysis plan.

Results

Sample Summary Statistics
Genome-wide association analyses were conducted in the

Marshfield PMRP cohort using 522,204 SNPs which passed

rigorous quality control procedures established by the eMERGE

network. This analysis was performed for both median adjusted

HDL-C and the modeled HDL-C phenotype (censored according

to medication exposure and relevant co-morbidities). Table 1

summarizes the clinical characteristics of the Marshfield popula-

tion. There were 1,541 male and 2,199 female study subjects (total

3,740) with clinical laboratory records containing at least two

fasting HDL measurements that could be used in the median

HDL-C analysis. Of these 3,740 samples, 2,190 had used statins,

883 have had hypothyroidism or hyperthyroidism, 733 have had

cancer, 1,515 reported having ever smoked, and 301 are current

smokers.

Knowledge-Driven Interaction Analysis for HDL-C

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e19586



Nested within this group of 3,740 unique individuals, there were

1,142 male and 1,386 female study subjects (total 2,528) with a

clinical laboratory record complete enough to construct a more

rigorous modeled HDL-C phenotype (censored according to

medication exposure and relevant co-morbidities). Although the

sample size for modeled HDL-C was lower than the sample size

for median adjusted HDL-C (because censoring left no analyzable

data for some individuals), we performed the analyses using both

phenotypes. Our reasoning was that modeled HDL-C has the

potential of revealing novel associations otherwise masked by

the presence of anabolic/catabolic disorders and/or clinical

intervention.

Gender was the most reliable clinical predictor of median HDL-

C level in the Marshfield PMRP cohort. The average HDL-C

concentration (6 standard deviation) was 45.9610.9 mg/dl in

males, and 58.5614.3 mg/dl in females, p = 2e-163. This

observation is consistent with the established literature [20,42].

We therefore also included gender as a covariate in the model for

each SNP association. The distribution of median HDL-C is

shown in Figure S1. While slightly right-skewed, the distribution

was approximately normal. We therefore fit a linear regression

model for each SNP assuming an additive allelic model on

untransformed HDL-C, as has been done previously [62]. To

allow for related samples without inflating the type I error rate,

regression on each SNP was performed using residuals from the

linear mixed effects model that allowed for a random polygenic

effect (see methods section).

Single Locus GWAS Analysis: Median Adjusted HDL-C
Figure 2 summarizes the results from our genome-wide

association study, showing the –log10(P-value) for each SNP from

the analysis of median HDL-C level, adjusted for smoking, age,

age2, BMI, BMI2, and gender. Figure S2 shows the quantile-

quantile plot of the –log10(P-values) from this analysis plotted

against the expected distribution of P-values under the null

hypothesis. Median adjusted HDL-C level in the Marshfield

PMRP cohort was very strongly associated with SNPs in

cholesterol ester transfer protein (CETP) on chromosome 16,

and strongly associated with hepatic lipase (LIPC) on chromosome

15. Both CETP and LIPC have previously been implicated in

Figure 1. Flow diagram overview of the analysis plan. For the single locus analysis in the Marshfield PMRP cohort, a genome-wide association
study was performed for both median and modeled HDL-C (see Phenotyping section in Methods). For the multilocus analysis, the Biofilter was used
to generate putative multilocus interaction models that were tested for association with median HDL-C in the Marshfield PMRP cohort. The
Vanderbilt BioVU cohort was used for replication. See the Methods and Results sections.
doi:10.1371/journal.pone.0019586.g001

Table 1. Descriptive statistics of quantitative clinical variables
in the Marshfield PMRP cohort.

N Median Mean SD Min Max

Age (years) 3,964 72 72.16 11.03 52 90

Weight
(kilograms)

3,925 80.7 82.92 18.63 34.5 186

Height
(centimeters)

3,927 165.1 166.88 9.63 121.9 195.6

BMI (kg/m2) 3,923 28.8 29.68 5.79 16.1 64.5

Modeled HDL-C
(mg/dl)

2,528 49.1 50.8 13.44 19.8 114.7

Median HDL-C
(mg/dl)

3,740 51 53.4 14.43 22 127.5

doi:10.1371/journal.pone.0019586.t001

Knowledge-Driven Interaction Analysis for HDL-C
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cholesterol homeostasis in other genome-wide association studies

[4,9,10,12,16]. The SNP with the strongest evidence for

association with median HDL-C was rs3764261 (p = 1.22e-25),

2.5kb upstream of the CETP transcription start site. This SNP

alone accounted for approximately 3% of the variance in median

adjusted HDL-C level. This SNP is in LD (r2.0.8 in HapMap

CEU) with rs247616 (not genotyped here), an eQTL which has

been demonstrated to contribute to cis-regulation of CETP mRNA

levels in HapMap lymphoblastoid cell lines [63]. There were

several other strongly associated variants upstream of the CETP

transcription start site, and we observed association between

HDL-C and a well-characterized nonsynonymous coding SNP,

rs5882 (p = 4.1e-7), known to encode a valine to isoleucine change

at amino acid position 422 in the CETP gene product. A previous

study in Ashkenazi Jews with exceptional longevity has revealed

that individuals with the V/V genotype at this site demonstrate

increased lipoprotein sizes and lower serum CETP concentration,

both of which are heritable and promote successful aging [64].

The other signal observed at a level of genome-wide significance

was in hepatic lipase (LIPC). Variants in this gene have also been

associated with HDL-C level in several previous studies

[4,9,10,12,16]. The SNP in the LIPC locus with the strongest

association in our study cohort was rs11855284 (p = 3.92e-14),

residing 13.5kb upstream of the LIPC transcription start site on

chromosome 15. The most significantly associated SNP within the

LIPC genic region was intronic SNP rs261336 (p = 5.25e-6). These

two SNPs explained 1.6% and 0.5% of the variance in HDL-C

cholesterol, respectively.

Our most significant signal that did not meet genome-wide

significance was rs12678919 (p = 1.99e-7), a SNP in an intergenic

region 19kb downstream of lipoprotein lipase (LPL) on chromo-

some 8. This SNP explained 0.7% of the variance in HDL

cholesterol. It is noteworthy that a different variant at the LPL

locus (rs253) was identified in subsequent gene-gene interaction

analyses here. Details are discussed further below.

Single Locus GWAS Analysis: Modeled HDL-C
Our data were derived from an electronic medical record.

Therefore, we also tested each SNP for genome-wide association

with modeled HDL-C as the outcome, a trait which censors by

onset of relevant co-morbidities or usage of lipid-modifying drugs

and adjusts for population trends in age and BMI [17]. Because

this more rigorous phenotype required data for several covariates,

complete data was only available on 2,528 samples in the

Marshfield PMRP cohort. Using 1,156 fewer samples we still

reproduced the genome-wide significant association to CETP

Figure 2. Summary of genome-wide association results. This plot shows the –log10(P-values) from linear mixed effects regression model using
the natural log tranformed median HDL-C level in the Marshfield PMRP sample, adjusted for smoking, age, age2, BMI, BMI2, and gender. The red line
indicates a Bonferroni-corrected significance threshold. Genes described in the results and the discussion sections are highlighted in green: ADIPOQ
(chromosome 3), LPL (chromosome 8), TRIB1 (chromosome 8), APOA1/C3/A4/A5 (chromosome 11), LIPC (chromosome 15), and CETP (chromosome 16).
doi:10.1371/journal.pone.0019586.g002

Knowledge-Driven Interaction Analysis for HDL-C
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(rs3764261, p = 2.63e-13), and a highly significant association to

both LPL (rs1441762, p = 1.53e-6) and LIPC (rs11856159,

p = 1.59e-6). Full results are available via Table S1 for SNPs

associated at p,1610-5 with either median or modeled HDL-C.

Interestingly, even though using modeled HDL-C as the

phenotype resulted in a decreased sample size, the association

signal was stronger for certain regions of the genome than when

using median adjusted HDL-C. Despite using lower numbers, we

observed improvement in the strength of association by more than

two orders of magnitude, for many variants included in this

genome-wide SNP scan, when the HDL-C trait was modeled (e.g.,

CENTG2, COL23A1, CACNA2D1, CYB5B, FHOD3, GBX2, TRIB1,

TLE4, TMEM135, UBE3A). As shown in Figure 3, this effect was

most pronounced for SNPs in or near TRIB1, the Tribbles

homolog 1 gene (rs2385114, an intronic SNP, p = 8.96e-5;

rs4871603, 30kb downstream, p = 2.61e-6). Our ability to resolve

this association strengthened when these variables were consid-

ered. TRIB1 was also associated at the genome-wide level with

triglyceride concentration in our data (most significant SNP,

rs6982502, p = 3.7e-9, data not shown). Because we observed a

very strong logarithmic correlation between median triglyceride

level and median HDL-C cholesterol level (Figure S3), we further

assessed the TRIB1-HDL-C relationship using multiple linear

regression, adjusting for triglyceride concentration in addition to

the other clinical variables (e.g., age, gender, BMI and smoking

status). In the analysis adjusting for triglyceride level the effect of

TRIB1 was highly attenuated (p = 0.0056). These results empha-

size the need for evaulating data with and without strategies that

censor the longitudinal strings of lipid data based on medication

(e.g., niacin) and relevant co-morbidity (e.g., diabetes).

Gene-Gene Interaction Analysis and Replication
We have demonstrated that biobanks linked to EMR data can

provide a unique resource for robust replication of previous

GWAS findings, and they have the capability of uncovering novel

genetic associations. However, as in other studies, even our most

significant findings individually explain only a small proportion of

the variance in HDL-C level. We next leverage both the PMRP

cohort and a similarly phenotyped cohort from the Vanderbilt

BioVU EMR-linked biobank to investigate gene-gene interactions

and HDL-C. Table 2 summarizes the clinical characteristics of the

Vanderbilt BioVU population.

The number of possible SNP-SNP interactions among 522,204

SNPs is over 1.3661011. In addition to being extremely

computationally intensive, exhaustive evaluation of all possible

pairwise (SNP-SNP) interactions among GWAS data comes with

an extraordinary loss of power due to the extremely large number

of statistical tests being performed. This mandates prioritization of

which interactions to test based on some intrinsic aspect of the

data or other extrinsic domain knowledge. One data-driven

approach is to select SNPs based on the strength and statistical

significance of their independent main effects, evaluating interac-

tions only between SNPs that meet a certain effect size or

significance threshold [65]. This strategy makes the simplifying but

unnecessary assumption that gene-gene interactions affecting the

phenotype can only occur between SNPs that independently have

a detectable effect on the trait. Instead, we used the Biofilter

(described in the methods section) to prioritize a small subset of

SNP-SNP interactions to test for association with HDL-C level

using existing extrinsic biological knowledge. It is of note that this

method does not require that any SNP have an independent

statistically significant main effect.

We performed a gene-gene interaction analysis using multiple

linear regression allowing for a multiplicative interaction term

between the two additive-encoded SNPs. Requiring that SNP-

SNP models be supported by at least four sources of extrinsic

domain knowledge (see Statistical Analysis in Methods section), we

tested 22,769 SNP-SNP interactions in the Marshfield PMRP

cohort. Two test statistics were generated for each model tested: a

t-test on the multiplicative interaction term (Pixn), and an F-test on

the overall model (Pmod). A significant Pixn indicates a significant

non-zero multiplicative gene-gene interaction between the two

SNPs while a significant Pmod indicates a significant overall model

(i.e. R2.0). We required both statistics to be significant in both

datasets, further constraining our results to well-fitting models with

strong evidence of non-additive gene-gene interaction.

Figure 3. Association results for the TRIB1 region. This shows the association results for the Tribbles 1 Homolog (TRIB1) region, for median
adjusted HDL-C (left) and modeled HDL-C (right) in the Marshfield PMRP cohort. Color scale displays the degree of linkage disequilibrium (r2) between
markers. Blue line shows recombination rate from HapMap CEU. Gene location is shown along the horizontal axis of each panel. This plot shows that
while the statistical significance of the effect of TRIB1 on HDL-C levels is less compelling when adjusting for triglyceride concentration, the association
is much stronger when using the modeled HDL-C phenotype (even though this phenotype has far fewer samples than the median adjusted HDL-C
phenotype). SNP rs4871603 in TRIB1 was associated with median HDL-C at p = 7.06e-4 and with modeled HDL-C at p = 2.61e-6 without adjusting for
triglyceride concentration. After adjusting for triglycerides, the p-values for median and modeled HDL-C become less significant (p = 0.296 and
p = 0.0056, respectively, data not displayed).
doi:10.1371/journal.pone.0019586.g003
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Using this approach, we found 11 models with a signifi-

cant interaction term and ANOVA p-values (Pixn,0.01 and

Pmod,0.05), indicative of non-additive gene-gene interaction in a

well-fitting model contributing to median HDL-C level. Because of

the linkage disequilibrium existing between SNPs in the same

gene, and because tests of SNP-SNP interaction often include the

same SNP being tested for interaction with other SNPs, the test

statistics from this procedure can be highly correlated. Further-

more, an appropriate permutation test would require permutation

of not only the phenotype but permutation of the SNP-SNP

linkages in our sources of biological knowledge, and methodology

to appropriately carry out such a permutation procedure has yet to

be developed or tested. Because it is unclear how to properly

correct for multiple testing in these datasets, we opted to require

replication in a second cohort. These 11 SNP-SNP interaction

models were therefore tested in the BioVU cohort, adjusting for

two significant principal components to avoid any potential

confounding by population stratification. Of the 11 models that

were significant in the initial screen, six replicated in the BioVU

replication cohort. Statistical significance thresholds for the

replication cohort were slightly more liberal (Pixn,0.05,

Pmod,0.1) to avoid excessive type II errors due to the smaller

sample size.

The results highlighting these 11 significant gene-gene interac-

tion models are summarized in Table 3 (models indicated by one

or more stars). The six models that show evidence for replication

in the BioVU cohort are indicated by two or more stars. These six

models are representative of four distinct gene-gene interactions:

GALNT1-GALNT2, GALNT2-GALNT3 (members of the GalNAc-

transferases family), LPL-ABCA1 (lipoprotein lipase and ATP

Binding Casette A1), and RPA2-RPA3 (Replication Protein A 2/3).

We then refined our results highlighting models that were

significant in the Marshfield cohort, replicate in the BioVU cohort,

and where all coefficients were in the same direction – that is, if the

coeffieicnt for either SNP or the interaction term is positive in the

Marshfield cohort, the corresponding coefficient must also be

positive in the BioVU dataset. This stringent criterion further

reduced our replicating models to two similar interaction models

involving LPL and ABCA1 (models indicated by three stars in

Table 3): rs2536rs2515614 and rs2536rs2472509. These two

models were statistically redundant - the ABCA1 SNPs (rs2515614

and rs2472509) were in extremely high linkage disequilibrium

(r2 = 1 in Marshfield, r2 = 0.99 in BioVU), resulting in nearly

identical coefficients and test statistics. One characteristic of this

LPL-ABCA1 interaction warrants special emphasis. In this model

the direction of the main effects (b1 and b2) were all in the same

direction, while the interaction effects were in the opposite

direction. That is, in both datasets, inheriting a minor allele at

either locus (but not both) results in a dosage-dependent decrease

in HDL-C level, while inheriting a minor allele at both variants

results in a change that is significantly higher than the expected

change caused by the additive effects of both variants alone. It may

be that, while either SNP alone can impact the production and/or

vascular remodeling of HDL particles, the two variants together

alter the TG/HDL ratio and particle stability.

Discussion

We performed a genome-wide association analysis of HDL

cholesterol level in two large clinical practice-based biobanks. We

observed a number of previously reported associations between

HDL-C level and genes impacting lipoprotein homeostasis (e.g.,

CETP, LIPC, LPL). Furthermore, our approach using an electronic

phenotyping algorithm to censor based on clinical factors known

to influence HDL-C cholesterol levels allowed us to identify genes

that are more strongly associated in the context of clinical

covariates (e.g.,TRIB1). Finally, we investigated gene-gene inter-

action using a novel bioinformatics approach that restricts the

number of pairwise tests based on existing biological knowledge.

The primary phenotype utilized in this study was median HDL

cholesterol level, derived from longitudinal clinical data. This trait

was determined from laboratory data obtained during routine

clinical care, and available within each subject’s individual

electronic medical record. In the single-locus analysis, the SNP

most strongly associated with median HDL-C level was rs3764261

(p = 1.22e-25), 2.5 kb upstream of the CETP transcription start site

on chromosome 16. This SNP alone accounted for approximately

3% of the variance in median adjusted HDL-C level. This same

variant had also been reported in another genome-wide

association study in the Northern Finland Birth Cohort

(p = 6.97e-29) [12], and a meta analysis of three genome-wide

association studies initially comprising 8,656 individuals and

,2,261,000 imputed and/or genotyped SNPs (p = 2.8e-19) [16],

followed by validation in six European cohorts totaling 11,569

individuals (p = 6.4e-43) [16]. Other studies have found different

SNPs in the region upstream of CETP to be even more highly

associated with HDL cholesterol levels: rs1800775 (p = 1e-73) in

[9], rs173539 (p = 4e-75) in [10] where samples were combined

from the two previously cited studies, and rs1532624 (p = 9.4e-94)

in [4]. The SNP with the strongest association in our dataset

(rs3764261) is in LD with an eQTL SNP which affects mRNA

levels of CETP in HapMap lymphoblastoid cell lines [63]. The

CETP gene product has known biological relevance, redistributing

cholesterol esters and triglycerides between HDL-C particles and

the larger, more atherogenic lipoproteins.

Free fatty acids and triglycerides are liberated from HDL-C

particles through the activity of three well-characterized lipolytic

enzymes (LIPC, LIPG, and LPL). In our dataset, a SNP in the first

gene reaching genome-wide significance for association with

HDL-C level was rs11855284 (p = 3.90e-14), 13.5kb upstream of

the hepatic lipase (LIPC) transcription start site on chromosome

15. Further, our most significant signal that did not meet genome-

wide significance was rs12678919 (p = 1.99e-7), a SNP in an

intergenic region 19kb downstream of lipoprotein lipase (LPL) on

chromosome 8. Thus, we observed association with LPL and LIPC

but not LIPG. These observations are consistent with existing

biological knowledge. The enzymatic activity of LPL favors

lipolysis of triglyceride (i.e., phospholipase activity is relatively

minor). Triglyceride rich HDL-C particles are less stable, and are

quickly shuttled back to the liver for elimination, as SRB1

mediated removal is a function of triglyceride enrichment in HDL-

Table 2. Descriptive statistics of quantitative clinical variables
in the Vanderbilt BioVU cohort.

N Median Mean SD Min Max

Age (years) 2,576 57 56.56 15.85 19 90

Weight
(kilograms)

2,522 85.16 88.05 24.62 36.29 251.74

Height
(centimeters)

2,294 167.64 168.5 10.01 129.54 203.2

BMI (kg/m2) 2,292 29.44 30.98 7.94 14.63 72.5

Median HDL-C
(mg/dl)

2,576 50.0 53.20 17.320 9.0 146.0

doi:10.1371/journal.pone.0019586.t002
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C particles. Conversely, LIPG has relatively little TG-lipase

activity, (i.e., primarily a phospholipase), and any common

variants that affect expression or function of LIPG would have

small effect on HDL-C stability, requiring a very large sample size

to detect an association (,9,800 samples to achieve 80% power to

detect an effect of similar magnitude as has been previously

observed for LIPG [16] at p = 1e-7).

When we used our previously developed approach to modeling

HDL-C within an electronic record, which censors data based on

relevant co-morbidities (e.g., diabetes mellitus) and lipid modifying

medications (e.g., niacin), we identified several loci that were more

strongly associated, with HDL-C, even though we had a reduced

sample size. SNPs in and near TRIB1 were more strongly

associated with modeled HDL-C level using a lower sample size

(n = 2528, p = 2.61e-6), versus using a simple median HDL-C

(n = 3903, p = 7.06e-4). TRIB1 resisted identification in all

previous GWAS studies of HDL-C, and was only recently

reported for the first time in a meta-analysis of over 100,000

samples[62]. In our data, HDL-C and triglyceride levels were

logarithmically correlated (Figure S3), and the association between

rs4871603 in TRIB1 and modeled HDL-C (p = 2.61e-6) was

markedly reduced after adjusting for triglyceride level (p = 0.0056).

Further study is warranted to fully characterize the biology

underlying this interaction. TRIB1 may serve as a clinical

surrogate for the triglyceride effect on HDL-C concentration.

TRIB1 encodes a G-protein-coupled-receptor induced protein

involved in the function of mitogen-activated protein kinases [66],

and the role of HDL-C in reverse cholesterol transport may be

modulated through such an interaction [67269]. Because TRIB1

has previously been associated with coronary artery disease

[4,9,10,16], the TRIB1-HDL-C relationship observed within our

data may have a profound impact on public health.

Our most significant findings, however, still explain less than

5% of the variance in HDL-C level, a trait that is up to 70%

heritable. We therefore examined a small subset of all the possible

gene-gene interactions in our GWAS data. We found 11

interactions that were nominally significant in our discovery

cohort (the Marshfield PMRP biobank). After evaluating these

models in a validation sample (Vanderbilt BioVU cohort), we

found that six of the 11 models replicated. We required both the p-

value on the interaction term and the p-value on the ANOVA F-

test for the regression model to be significant in both datasets,

further constraining our results to models with evidence of

nonlinear gene-gene interaction in a well-fitting model. These

models individually explained 0.220.8% of the variation in HDL-

C in the Marshfield and BioVU cohorts (see Table 3). Only one set

of observed gene-gene interactions showed evidence of replication

in both datasets with consistent directionality in all three

coefficients: LPL and ABCA1. Because we required evidence of

replication with consistent direction of effect in a second dataset,

we did not require a stringent multiple testing correction. While it

would be possible to randomize the outcome data and permute

this entire procedure, this method of permutation testing would be

computationally intensive, and such a method has not yet been

standardized for the permutation of the SNP-SNP linkages

available in our sources of biological knowledge. Furthermore,

this permutation test on an interaction term would have a more

restrictive null hypothesis (no association) than the null hypothesis

we wish to test (no interaction). Biologically, LPL mediates the

release of free fatty acids and triglyceride from HDL-C particles,

while ABCA1 moves free cholesterol into HDL-C particles as they

undergo intravascular remodeling. Thus, it is not surprising that

we observed a statistically meaningful interaction between variants

in these two genes. It is however surprising that the direction of the

main effect coefficients (b1 and b2) were in the same direction

while the interaction effect was in the opposite direction. While still

considered a nonlinear epistatic interaction, the structure of the

model in Table 3 is referred to as a heterogeneity model [70,71] rather

than a synergistic multiplicative model. In a separate study of type

I diabetes, investigators found that four out of five statistically

significant gene-gene interactions were also of this type [72].

Genetic heterogeneity is a serious concern with large-scale genetic

studies, and is often cited as a reason for the widespread lack of

replication in GWAS studies [73,74]. Others have recently argued

that epistatic genetic heterogeneity should be considered when

analyzing genetic data for association to complex human traits

[75]. Despite the fact that statistical tools, such as random forests,

have been available for some time now to accomplish this [76,77],

Table 3. Gene-gene interaction models.

REP SNP 1 Gene 1 SNP 2 Gene 2 M b1 M b2 M b3 M Pixn M Pmod M R2 V b1 V b2 V b3 V Pixn V Pmod V R2

* rs3927911 BCL2 rs4645900 BAX 0.213 3.901 23.890 0.004 0.018 0.003 0.805 5.397 25.808 0.042 0.154 0.003

* rs2271709 C7 rs6699859 C8A 1.203 1.068 21.776 0.005 0.028 0.002 21.173 21.176 2.433 0.020 0.138 0.003

* rs910497 GALNT2 rs4621175 GALNT3 20.727 21.250 2.347 0.003 0.013 0.003 20.890 21.976 2.148 0.024 0.129 0.003

* rs4621175 GALNT3 rs4846930 GALNT2 21.213 20.726 2.291 0.004 0.014 0.003 21.750 20.955 2.261 0.017 0.100 0.003

* rs4621175 GALNT3 rs10864732 GALNT2 21.179 20.726 2.243 0.004 0.017 0.003 21.641 20.985 2.245 0.019 0.106 0.003

** rs886724 RPA3 rs7536088 RPA2 1.493 1.713 21.818 0.000 0.002 0.004 22.064 21.266 1.995 0.019 0.099 0.003

** rs886724 RPA3 rs17257252 RPA2 0.890 1.182 21.703 0.003 0.029 0.002 22.035 21.938 2.795 0.007 0.046 0.004

** rs901675 GALNT2 rs4621175 GALNT3 1.216 2.109 22.521 0.004 0.004 0.004 22.114 21.512 2.535 0.037 0.077 0.004

** rs1471915 GALNT2 rs12963790 GALNT1 20.410 20.447 2.778 0.004 0.020 0.003 22.114 0.098 23.487 0.037 0.002 0.008

*** rs253 LPL rs2515614 ABCA1 20.340 21.098 1.441 0.006 0.011 0.003 20.618 22.797 2.790 0.001 0.006 0.007

*** rs253 LPL rs2472509 ABCA1 20.338 -1.113 1.438 0.006 0.011 0.003 20.399 22.797 2.790 0.001 0.006 0.007

This table shows 11 significant gene-gene interaction models discovered in the Marshfield PMRP cohort (M Pixn,0.01 and M Pmod,0.05, indicated by one to three stars).
Six of these models show evidence for replication in the Vanderbilt BioVU cohort (M Pixn,0.05, M Pmod,0.1, indicated by two to three stars). In two of these replicating
models, all three pairs of coefficients were in the same direction in both datasets (indicated by three stars). The table shows the two SNPs and their corresponding genes
involved in the gene-gene interaction. All SNPs here were intronic SNPs. The coefficients for the main effects (b1 and b2) and the interaction term (b3) are shown for both
the Marshfield cohort (prefixed by ‘‘M’’), and the Vanderbilt cohort (prefixed by ‘‘V’’). Also shown are the interaction term p-values (Pixn), ANOVA model fit p-values
(Pmod), and overall R2 statistics for both the Marshfield and Vanderbilt cohorts (prefixed by ‘‘M’’ and ‘‘V’’ respectively).
doi:10.1371/journal.pone.0019586.t003
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analyses of GWAS data accounting for the possibility of epistatic

heterogeneity is a task rarely undertaken. Accounting for genetic

heterogeneity in genetic studies of complex disease may improve

the replicability of findings in genome-wide studies of lipid and

other phenotypes.

In summary, we have used EMR data from genotyped

biobanked samples to perform the first knowledge-driven gene-

gene interaction analysis for HDL-C. Using a second EMR-linked

biobank cohort we demonstrated evidence for replication of a

gene-gene interaction between LPL and ABCA1. As demonstrated

here and elsewhere [36,78], biobank-linked EMRs provide an

excellent resource for genetic studies of complex traits. By utilizing

the EMR to construct a rigorous phenotype and by accounting for

gene-gene interaction as presented here, perhaps more variation

can be explained and new biology discovered in complex traits like

HDL-C level.

Supporting Information

Figure S1 Distribution of HDL-C concentration (mg/dL) in

males (blue) and females (red) in the Marshfield PMRP dataset.

(TIF)

Figure S2 Quantile-quantile plot of the –log10(P-values) from

the median adjusted HDL-C analysis in the Marshfield PMRP

cohort plotted against the expected null distribution.

(TIF)

Figure S3 Median HDL-C and median triglyceride concentra-

tions are highly logarithmically correlated (r2 = .258). Trend line 6

95% confidence interval is shown.

(TIF)

Table S1 All single locus SNPs associated at p,1610-5 with

either median HDL-C or modeled HDL-C in the Marshfield

cohort.

(PDF)
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