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Disease interaction in multimorbid patients is relevant to treatment and
prognosis, yet poorly understood. In the present work, we combine
approaches from network science, machine learning and computational phe-
notyping to assess interactions between two or more diseases in a
transparent way across the full diagnostic spectrum. We demonstrate that
health states of hospitalized patients can be better characterized by including
higher-order features capturing interactions between more than two diseases.
We identify a meaningful set of higher-order diagnosis features that account
for synergistic disease interactions in a population-wide (N = 9 M) medical
claims dataset. We construct a generalized disease network where (higher-
order) diagnosis features are linked if they predict similar diagnoses across
the whole diagnostic spectrum. The fact that specific diagnoses are generally
represented multiple times in the network allows for the identification of
putatively different disease phenotypes that may reflect different disease
aetiologies. At the example of obesity, we demonstrate the purely data-
driven detection of two complex phenotypes of obesity. As indicated by a
matched comparison between patients having these phenotypes, we show
that these phenotypes show specific characteristics of what has been contro-
versially discussed in the medical literature as metabolically healthy and
unhealthy obesity, respectively. The findings also suggest that metabolically
healthy patients show some progression towards more unhealthy obesity
over time, a finding that is consistent with longitudinal studies indicating
a transient nature of metabolically healthy obesity. The disease network is
available for exploration at https://disease.network/.
1. Introduction
Traditionally, medical research and practice follow a reductionist [1] specific-
disease approach that often neglects that hospitalized patients usually suffer
from a variety of diseases [2], a phenomenon called multimorbidity [3]. Inter-
actions between multiple diseases may have severe consequences both for
diagnosis and treatment and often form decisive features of the clinical picture
of the patient [4]. For clinical practice, it is important to disentangle these
complex disease relationships, which are far from fully understood [5].

One approach to better understand the relationships between diseases are
comorbidity networks. Comorbidity networks formalize disease co-occurrences
by representing diagnoses as nodes and linking diagnoses that tend to co-occur
in patients [6–8]. In comorbidity networks, the health state of a multimorbid
patient is characterized by multiple diagnoses that appear in network clusters
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(i.e. groups of nodes with more links within the group than
to nodes outside of the group) of e.g. mental, metabolic or
cardiovascular diseases [9,10]. So far, this strand of literature
on comorbidity networks typically focused on pairwise
co-occurrence patterns. This approach may miss complex
interactions between diseases. The investigation of multimor-
bidity patterns has accordingly been defined as a priority in
this line of research [8].

Besides the comorbidity network approach, recent years
have brought increased activity in disease risk modelling
using a plethora of data mining and machine learning
approaches [11–15]. Machine learning is primarily dedicated
to the prediction of individual diseases or groups of closely
related diseases [13,15]. Different from network approaches
it applies a broad spectrum of diagnostic information.
These methods have yielded high predictive performance,
but their transparence and interpretability are often limited
[16,17]. Even with strategies such as post hoc interpretation
[17], these approaches to the best of our knowledge cannot
be used to address complex interactions across the whole
disease spectrum which we pursue in the present study.

Previous work has described approaches for gathering
phenotypic descriptions of patients and discovering corre-
lations between diseases, see e.g. Roque et al. [18]. These
studies typically use a variety of categories of medical records
to analyse relationships between diseases [19]. To date, how-
ever, studies in the area do not allow to explicitly study
interactions between more than two diseases, so-called
higher-order interactions, and often use data from only
one hospital [18]. In this study, we use the terms higher-
order and complex interactions interchangeably. We further
distinguish two types of interaction. In synergistic inter-
actions, the combined effect of two or more diseases is
higher than what would be expected from the individual dis-
eases; in redundant interactions, the overall combined effect
is reduced.

We aim to identify disease phenotypes from diagnosis data
in population-wide electronic health records. For a specific
index disease, there might be several disease phenotypes
which differ regarding their comorbidity context, i.e. their
location and neighbourhood in the disease network. A
specific location in the network is related to a specific risk
of acquiring further diseases (see below).

Obesity is controversially discussed in the medical litera-
ture to form different phenotypes. Using obesity as an
example index disease, we evaluate if and to what extent the
patients assigned to the two major obesity clusters on the gen-
eralized disease network differ in terms of co-morbidities and
prognosis. For this purpose, we use a case–control design with
cases and controls matched by age, sex and place of residence.
We find that the main obesity clusters are largely consistent
withwhat has been discussed in themedical literature asmeta-
bolically healthy and unhealthy obesity, respectively. Different
from clinical studies in the topic area, which typically follow
obese and non-obese patients over time, we show for the first
time, that obesity clusters inways that are somewhat consistent
with the discussed clinical phenotypes.

Here, we integrate approaches from network science,
machine learning and computational phenotyping to assess
complex higher-order interactions between diseases. The pro-
posed method is transparent and comprehends diseases
across the full diagnostic spectrum in a way that leads to
clinically meaningful results.
1.1. Definitions
The following terms are used throughout the paper with a
specific meaning. To improve readability, we provide these
definitions here:

— Disease: A condition that impairs normal functioning and
is typically manifested by distinguishing symptoms and
coded by a diagnosis.

— Diagnosis: A code in the International Classification of Dis-
eases, typically encoding a disease, injury or symptoms.

— Diagnosis feature: One or more diagnoses with similar
co-occurring diagnoses (i.e. comorbidities) and similar
progression. Diagnosis features are of ‘higher order’ if they
consist of more than a single diagnosis. In this work, they
are the basis for capturing the higher-order interactions
between diagnoses and the corresponding diseases. They
allow a more fine-grained picture of the human disease net-
work when compared with single diagnoses.

— (Optimal) feature set: A (meaningful) set of higher-order
diagnosis features. The optimal (meaningful) feature set
is characterized by maximizing the predictive perform-
ance of a cross-validated multinomial naive Bayes
model through the tuning of few hyperparameters. The
model inputs are the diagnosis features from the feature
period as predictors, and the single diagnoses from the
subsequent target period as predicted targets.

— Generalized disease network: A network where the
nodes are diagnosis features representing one or more
diagnoses and with weighted links representing the
similarity of the model coefficient vectors associated
with the linked nodes. Stronger links represents higher
similarity of the disease features with respect to their
predicted target diagnoses.

— (Putative) disease phenotype: A cluster of diagnosis
features of a given index disease on the generalized
disease network. A specific disease phenotype might
indicate shared aetiological factors between the diseases
reflected in the included diagnoses. Furthermore, a disease
phenotype better reflects the original diseases than single
diagnoses with respect to aetiological factors.

— Index disease: A specific diagnosis code of interest to
explore comorbidities and identify disease phenotypes.

1.2. Data and design summary
A hospital population of 9 M patients was considered. The
criteria for selection into the study were having no in- or out-
patient hospitalization for a duration of 6 years, followed by
at least one hospitalization during the next 3 years (the feature
period), followed by at least one further hospitalization during
the following 3 years (the target period). Half a million patients
were selected into the study population.

The goal of this study was to identify disease phenotypes
through the use of diagnosis information in electronic health
records. The first step was to identify meaningful diagnosis fea-
tures, i.e. features maximizing the predictive power, capturing
higher-order interactions between diagnoses. A diagnosis fea-
ture is understood as a set of one or more (co-occurring)
diagnoses. A meaningful set of diagnosis features was identified
from the data using the following approach: (a) we mapped
the patients’ single diagnoses of the feature period to diagnosis
features; (b) we used them to predict the patients’ single
diagnoses—the (prediction) targets—of the target period, and,



0.6

0.5

0.4

0.3

0.2

0.1

0

1.0

1 2 3 4
model order

6000

5000

4000

3000

2000

1000

0

f1
_s

co
re

no
. f

ea
tu

re
s

(b)

(a)

royalsocietypublishing.org/journal/rsif
J.R.Soc.

3
finally, (c) we selected a set of features that maximized the pre-
dictive performance with respect to the target diagnoses.
Using this feature set, a final predictive model was fit to the
whole dataset, referred to as all-data model. The non-trivial infor-
mation contained in the correlation structure of the model
coefficients was used to produce a comorbidity network
where the nodes are sets of diagnoses (the diagnosis features)
instead of single diagnoses. We call this the generalized disease
network. There, disease phenotypes could be identified using
clusters of diagnosis features. This was demonstrated at the
example of the index disease obesity, where we propose to
interpret clusters of obesity features as different disease pheno-
types of obesity. Indeed, a matched comparison of patient
cohorts corresponding to these obesity clusters showed that
two of these clusters showed characteristics of metabolically
healthy and unhealthy obesity, respectively.
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Figure 1. Higher-order diagnosis features improve disease predictions. This figure
shows the in-sample metrics of the all-data model. Panel (a) shows the support-
weighted average F1 score over the 1000 diagnosis targets with highest support
(ochre line, error bars denote the standard error of the mean) and the size of the
optimal feature set as a function of model order (turquoise). (The model order
equals the maximally allowed number of diagnoses in one feature.) Both F1 and
the number of features increase with increasing model order. Panels (b) and (c)
show precision and recall of the 1540 naive Bayes classifiers for model orders one
to four. Note that these are the target diagnoses that occur in at least 200
patients in all folds for all model orders. Each dot represents a single target diag-
nosis (b) or the average over ICD-10 groups (based on first character of respective
ICD code) of target diagnoses (c). The dot colour encodes model order ranging
from one (cyan) to four (magenta) and models of different order for the same
diagnoses are connected by grey lines (c). The contour lines of constant F1 are
dashed. (b) We find large heterogeneity in the quality of the individual naive
Bayes classifiers. (c) Increases in model order lead to substantial increases in pre-
cision at similar levels of recall. We observe different classifier qualities for
different groups of diagnoses.
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2. Results
2.1. Identifying meaningful diagnosis features
Figure 1 demonstrates that the use of increasingly complex (i.e.
higher order) features indeed improves the average predictive
performance of a multinomial naive Bayes model; see §5.
Figure 1a shows the model quality in terms of the total average
F1 score as a function of the maximal number of diagnoses that
may make up a feature, i.e. the model order. We computed
models up to model order four. Figure 1a also shows that
the number of features in the optimal set increases with
model order. Figure 1b shows that precision and recall vary
substantially across different diagnoses, almost over the
entire range of possible values between zero and one. Individ-
ual F1 scores range between 0.04 and 0.78. This means that
some diagnoses can be predicted very well from the feature
information, others less. Among those diagnoses with the
highest prediction accuracies, we find diagnosis codes (ICD-
10) starting with M (diseases of the musculoskeletal system
and connective tissue) and N (diseases of the genitourinary
system), whereas the lowest scores are found for codes starting
with O (pregnancy, childbirth and the puerperium) and C
(malignant neoplasms).

In figure 1c, diagnoses are grouped by the first character of
their respective ICD-10 code. Higher model orders clearly
increase precision while keeping the recall approximately con-
stant. Overall, the resulting increase in F1 is therefore mostly
due to the increase in precision. For example, diagnoses starting
with M (diseases of the musculoskeletal system and connective
tissue), L (diseases of the skin and subcutaneous tissue) or N
(diseases of the genitourinary system) show high precision on
average, whereas diagnoses starting with P (conditions relating
to the perinatal period), O (pregnancy, childbirth and the puer-
perium) or F (mental and behavioural disorders) have the
lowest. We find a recall close to one for codes of group P
while most other groups have recalls around 0.5.

The high recall of group P very likely is an artefact
because newborns with P-diagnoses are preferentially
selected into the feature period rather than the target period;
see §5. A low number of new P-diagnoses in the target
period together with the monotonicity assumption leads to
high recall.

For an overview of all diagnoses and diagnosis groups
with their respective scores, electronic supplementary
material, Scores.xlsx.



Table 1. Highest-ranking (by median lift) feature–target combinations. This table shows the highest-lift features and their corresponding target diagnoses.
Included are diagnosis features comprising two or more diagnoses and where the feature–target combination occurs in at least 50 patients with a coefficient of
at least 8 db. The median value of the lift is shown if there is more than one target fullfiling the selection criteria for a given feature. Note that some features
with three or more diagnoses can be split into features with one or two diagnoses, respectively; these constituent features are separated by vertical bars. They
provide the basis for the lift computation for the feature f.

feature, f feature description lift, L( f, t) target(s), t target description

E11s E14s | E66s E11: type 2 diabetes mellitus, E14: unspecified

diabetes mellitus, E66: overweight and obesity

3.0 db I25s, I25p,

I20p, I21p

I20: angina pectoris, I21: acute

myocardial infarction, I25: chronic

ischaemic heart disease

E66s | E79s E66: overweight and obesity, E79: disorders of

purine and pyrimidine metabolism

2.9 db I25s, I25p I25: chronic ischaemic heart disease

E11p E11s | E66s E11: type 2 diabetes mellitus, E66: overweight and

obesity

2.3 db I25s I25: chronic ischaemic heart disease

E66s | E11s E11: type 2 diabetes mellitus, E66: overweight and

obesity

1.9 db I25p I25: chronic ischaemic heart disease

I50p I50s | N18s I50: heart failure, N18: chronic kidney

disease (CKD)

1.9 db E78s E78: disorders of lipoprotein metabolism

and other lipidaemias

E66s | I11s E66: overweight and obesity, I11: hypertensive

heart disease

1.9 db I25s I25: chronic ischaemic heart disease

E79s N18s | N39s E79: disorders of purine and pyrimidine

metabolism, N18: chronic kidney disease (CKD),

N39: other disorders of urinary system

1.9 db E11s, I25s E11: type 2 diabetes mellitus, I25:

chronic ischaemic heart disease

E79s | E14s E14: unspecified diabetes mellitus, E79: disorders

of purine and pyrimidine metabolism

1.5 db I25s I25: chronic ischaemic heart disease

G30s | F00s G30: Alzheimer’s disease, F00: dementia in

Alzheimer’s disease

1.3 db F05p, S72p F05: delirium due to known

physiological condition, S72: fracture

of femur

E79s | I11s E79: disorders of purine and pyrimidine

metabolism, I11: hypertensive heart disease

1.2 db I25s I25: chronic ischaemic heart disease

F17s | I21p F17: nicotine dependence, I21: acute myocardial

infarction

1.0 db I20p I20: angina pectoris
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2.2. Quantifying disease interactions
An immediate by-product of the computation of the model
coefficients is the quantifiability of synergistic effects between
diagnoses, presented in table 1. Synergistic and redundant
effects are measured through their lift. Lift is computed from
multiple models of orders one to four. It is the difference of
a measured model coefficient and its expectation based on
the coefficients of its respective lower-order models. For
example, the lift of feature ‘E11 s E14 s E66s’ is computed
from its coefficient of model order three and the coefficients
of features ‘E11s to E14s’ from model order two and ‘E66s’
from model order one, respectively. Like the model coeffi-
cients, the lift is computed for specific feature-target
combinations. The model coefficients, and thus lift, corre-
spond to log-odds and are herein measured in decibans (db,
see §5). A positive lift means an increase in log-odds compared
to its expectation. Table 1 presents feature-target combinations
that occur in at least 50 patients, thus reducing fluctuations of
the model coefficients, and shows combinations with coeffi-
cients of at least 8 db, reflecting a relatively large effect size.
Note that findings in table 1 should be considered as
exploratory only and do not include testing for statistical
significance. Positive (negative) lifts indicate synergistic (redun-
dant) interactions. We present the features with the largest
synergistic effects across all feature–target combinations. Our
model contains trivial predictions where a feature is used to
predict a target already contained in that feature’s diagnosis
set. Note that the model incorporates a monotonicity assump-
tion: once a patient has received a diagnosis, we assume the
condition remains positive throughout. Disregarding those tri-
vial associations, the top 10 features of at least two diagnoses
with highest lifts, grouped by feature and averaged over all
targets to which the respective feature contributes, are
shown in table 1. In general, many of the synergistic effects con-
tain specific components of the metabolic syndrome and
cardiovascular target variables—associations that are well
established in the literature. For instance, disorders of purine
and pyrimidine metabolism (E79), specifically hyperuricaemia,
have frequently been described as a marker of metabolic
syndrome [20] and are part of several synergistic effects. For
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example, the combination of E79 with N18 (chronic kidney dis-
ease), if also combined with N39 (other disorders of the urinary
system) is associated with an average lift of 1.9 db for the tar-
gets E11 (diabetes mellitus) and I25 (chronic ischaemic heart
disease). This corresponds to 1.5-fold increased odds of positive
target diagnoses E11 and I25, when N39 is additionally diag-
nosed together with E79 and N18 in the feature period. This
combination of diagnoses constitutes the most complex
example in table 1 and a full explanation is out of scope of
this work. Regarding some of the included features, for
example, hyperuricaemia (part of E79) has been shown to con-
tribute to the progression of kidney disease in diabetes [21],
with serum uric acid being either merely a marker of kidney
damage or having a causal pathogenic role [22]. Furthermore,
hyperuricaemia is associated with both chronic kidney disease
and chronic ischaemic heart disease [22]. Accumulating evi-
dence points to a possible aetiologic role of increased uric
acid in the pathogenesis of cardiovascular disease [8]. A
recent meta-analysis further found that every 1 mg dl−1

increase in serum uric acid was related to a 12% increase in car-
diovascular mortality in chronic kidney disease patients [23].

Several other noteworthy synergistic effects are present,
e.g. a combination of N18 (chronic kidney disease) and I50
(heart failure) with regard to E78 (disorders of lipoprotein
metabolism; 1.9 db, i.e. change in odds of 1.5). This is consist-
ent with literature that shows a link between chronic kidney
disease with heart failure, and with hyperlipidaemia, respect-
ively [24,25]. Pathophysiological features indicate that heart
failure can cause a reduction in cardiac output and decrease
in renal perfusion which are primary drivers of renal dys-
function in heart failure. Among the various confounding
factors for renal dysfunction in heart failure, dyslipidaemia
has received increasing attention, and its role has not been
fully understood [25].

Other displayed synergistic effects include a combination of
two diagnoses for Alzheimer’s disease (F00, G30) which
increases the odds of fracture of femur (S72) and delirium
(F05) (1.3 db, i.e. change in odds of 1.3). Accordingly, Alzhei-
mer’s disease has been shown to be an important risk factor
for serious falls, includingpelvic and femur fracture [26–28]. Fur-
thermore, a review found that superimposed delirium among
populations with dementia was highly prevalent [29]. Delirium
andAlzheimer’s disease are frequent causes of cognitive impair-
ment among older adults and share a complex relationship in
that delirium and Alzheimer’s disease can occur independently,
concurrently, and interactively, for example, delirium can alter
the cause of an underlying Alzheimer’s disease. Models for a
shared pathophysiology of delirium and Alzheimer’s disease
have recently been proposed, including common baseline risk
biomarkers and outcome biomarkers [30].

There is a synergy between hyperuricaemia (E79) and
hypertensive heart disease (I11); which are both risk factors
for chronic ischaemic heart disease (I25; 1.3 db). While hyper-
tension is a well-established risk factor for chronic ischaemic
heart disease, also hyperuricaemia has been established as an
independent risk factor [31,32]. To the best of our knowledge,
the combined risk of these risk factors has not yet been
evaluated.

A further synergistic effect is found between smoking
(F17) and acute myocardial infarction (AMI, I21) with regard
to angina pectoris (I20, 1.0 db, i.e. change in odds of 1.3).
Studies showaccordingly that smoking after AMI is associated
with a considerably increased risk of more angina [33].
2.3. The generalized disease network
The diagnosis features which capture higher-order inter-
action effects are used to inform the construction of the
generalized disease network. See figure 2 for an overview.
There, nodes correspond to diagnosis features and links
between features (omitted in the figure) indicate that these
features predict similar target diagnoses; see §5. There are
well discernible clusters of features roughly corresponding
to the chapters of the ICD-10 classification and summarized
in figure 2. Specific examples for the distribution of obesity
(E66), chronic ischaemic heart disease (I25), osteoporosis
(M81) and asthma (J45) are presented in figure 3.
2.4. Detecting obesity phenotypes
To detect disease phenotypes, we perform a network commu-
nity detection, i.e. clustering. Clusters are identified such that
nodes (diagnosis features) are more strongly connected
within their respective cluster than with nodes outside their
clusters. We expect that different disease phenotypes present
themselves in different comorbidity contexts and different
prognoses. We, therefore, expect them to be located in different
clusters of the network. This means that for a given index dis-
ease we expect to find distinct disease phenotypes in different
clusters (colours) of the generalized disease network.

We find the index disease obesity (E66) distributed across
four different clusters in the network. We use the two largest
clusters to construct a matched case–control design, see §5.
We compare them with non-obese controls. Individuals in
one of the clusters show characteristics of metabolically
unhealthy obesity, whereas the other cluster is metabolically
more healthy [34–37] (figure 3a). In particular, patients in the
cluster of metabolically unhealthy obesity (MUHO candi-
dates), show a considerably higher prevalence of diabetes,
hyperlipidaemia, when compared with both, patients in the
cluster of metabolically healthy obesity (MHO candidates)
and non-obese controls. Hypertension, ischaemic heart dis-
eases and other forms of heart disease already have higher
prevalences among MHO candidates, compared to controls.
With regard to these diseases, MHO candidates have an inter-
mediate position between control and MUHO candidates.
MHO candidates, however, are similar to controls in terms of
diabetes and hyperlipidaemia prevalence as well as mental
and behavioural disorders due to psychoactive substance use
(including nicotine dependence), which are all increased in
MUHO candidates. Table 2 displays metabolic and selected
further diagnoses with significant differences in prevalence
for obesity phenotypes and controls. Note that, based on
approx. 200 blocks in the dataset, significant differences as
indicated with ** or *** in table 2 remain significant after
adjustment for multiple testing. The phenotypes do not
differ in terms of number of diagnoses or days in hospital,
with both groups having more diagnoses and longer stays
when compared with controls.

Regarding the incidence of new metabolic and cardiovas-
cular diseases during follow-up, again MHO patients have a
position in-between MUHO and control patients. Metabolic
diseases, most importantly diabetes, are more frequently
newly diagnosed among patients that already were in the
MUHO cluster.

In-hospital mortality over a follow-up period of 9 years
did not significantly differ between MHO and MUHO
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the following is a rough description of these clusters
(alphabetic order):

C,K,D neoplasms, disorders of the digestive system.
F,I,G cerebrovascular disorders.

F mental disorders.
H diseases of the eye.

I,E cardiovascular and metabolic disorders.
J sinusitis and nasal polyps.

M musculoskeletal disorders.
N1 urolithiasis.
N2 disorders of female pelvic organs/genital

tract.
N3 diseases of prostate.
O pregnancy and childbirth.

P,Q disorders of the perinatal period, malformations
disorders of childhood.

S,T injuries.

Figure 2. Generalized disease network. Nodes correspond to diagnosis features. The presence of links and their strength determine the computations of both the
network layout (Gephi/ForceAtlas2) as well the clustering (Louvain). Nodes tend to be in closer proximity and/or belong to the same cluster if they have higher
connectivity. Links are omitted for readability. A distinct property of this disease network is that single diagnoses generally occur in multiple features. Colour coded
are the different clusters in the network. A cluster generally includes diagnoses from different ICD chapters. Upper-case letters mark the main locations of diagnoses
in specific ICD-10 chapters. The network can be explored interactively at https://disease.network/.
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patients, and mortality of MHO patients was again in-
between that of non-obese controls and MUHO patients.

It is straight-forward but beyond the scope of this work to
extend the above computational approach to other index dis-
eases than obesity. In particular, we show in figure 3b–d that
also (b) chronic ischaemic heart disease, (c) osteoporosis and
(d) asthmamight showdistinct disease phenotypes inmultiple
clusters. The phenotypes of more than 100 different index
diseases can be explored online at https://disease.network/.
3. Discussion
The goal of this study was to develop a method to automati-
cally identify disease phenotypes through the use of diagnosis
information in electronic health records. In the first step, we
identified diagnosis features, i.e. meaningful sets of diagnoses,
to capture higher-order interactions of co-occurring diagnoses.
We showed that taking higher-order interactions into account
improved the performance of predicting disease progression.

The second step was to display these higher-order inter-
actions by constructing a network of diagnosis features
with the best predictive performance and tessellate it into
clusters. As diagnosis codes are generally part of multiple
diagnosis features, the way how specific diagnoses are dis-
tributed across the network in clusters might indicate
different disease phenotypes.

There is, to the best of our knowledge, no previous litera-
ture which has investigated the impact of higher-order
interactions between diagnosis codes across the full diagnostic
spectrum. Previous studies for network construction [7] have
only looked at pairwise co-occurrence patterns of diagnoses.

https://disease.network/
https://disease.network/
https://disease.network/
https://disease.network/
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Figure 3. Selected diagnoses on the generalized disease network. Here, we show how specific selected diagnoses are distributed across the network. (a) E66—
Obesity, takes part in four clusters. Of all E66-features, 82% are part of the cluster of mainly cardiovascular diseases and metabolic disorders (top-left, ‘I,E’ in dark
blue); 14% are part of the cluster of mainly musculoskeletal disorders (‘M’ in red). These two groups of features formed the basis of our matched-cohort analysis.
The blue obesity cluster was identified with the MUHO phenotype, the red cluster with MHO. Additionally, there are two more groups, each with two features: one
in the cluster of neoplasms and disorders of the digestive system (‘C,K,D’ in light blue) and the other in the cluster of disorders of female pelvic organs and genital
tract (bottom, ‘N2’ in brown). (b) I25—Chronic ischaemic heart disease, is primarily spread across four clusters, with most of its features being part of the cluster of
mainly cardiovascular diseases and metabolic disorders (‘I,E’ in dark blue). Also, the clusters of mainly nervous diseases (‘F,I,G’ in orange), musculoskeletal diseases
(‘M’ in red) and diseases of the eye (‘H’ in ochre) host I25-features. (c) M81—Osteoporosis without current pathological fracture, is arranged in the musculoskeletal
cluster (‘M’ in red) interspersing into the neighbouring clusters of mainly nervous diseases (specifically Parkinson’s disease, dementia and depression; ‘F,I,G’ in
orange) and cardiovascular/metabolic disorders (‘I,E’ in dark blue). (d ) J45—Asthma, is contained in two clusters. First, in the cluster of disorders of the perinatal
period, malformations and disorders of childhood (top right, ‘P,Q’ in green) and of cardiovascular/metabolic disorders (top left, ‘I,E’ in dark blue). In the ‘P,Q’ group,
direct comorbidities of Asthma are J44 (COPD) and J18 (Pneumonia), in the ‘I,E’ group the direct comorbidity of the single feature is J44 (COPD).
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In those networks, each diagnosis is only represented once.
This single representation cannot differentiate between mul-
tiple phenotypes of the respective index disease. Complex
diseases, however, have in common that they (a) cannot be
captured by one single specific diagnosis (e.g. metabolic syn-
drome) and (b) that a specific diagnosis can present itself as
part of multiple disease phenotypes (e.g. hypertension). The
approach developed here allows us for the first time to
investigate multiple roles of specific diagnoses in disease phe-
notypes, thereby filling a methodological chasm in the current
literature on multimorbidity [8].

At the examples of obesity (E66), chronic ischaemic heart
disease (I25), osteoporosis (M81) and asthma (J45), we show
that many complex diseases are indeed distributed across mul-
tiple clusters on the disease network (figure 3). For example,
osteoporosis (figure 3c) occurs in clusters of cardiovascular



Table 2. Comparison of putative metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUHO) cohorts with non-obese controls. The effect
size (ES) is measured in decibans (db) computed as ESi,j: = 10(log10 nj− log10 ni) db, where i, j are the group indices with 0 = control, 1 = MHO cand., 2 =
MUHO cand., and nk is the relative frequency of patients in group k with at least one diagnosis of the corresponding diagnosis block (shown as percentages). A
value of ESi,j > 5 db can be considered substantial evidence, ESi,j > 10 db as strong, ESi,j > 15 db as very strong and ESi,j > 20 db as decisive evidence.† Asterisks
indicate the p-value of the effect size (G-test): *p < 10−2; **p < 10−4 and ***p < 10−6.

sex 0: controls ES0,1 (db) 1: MHO cand. ES1,2 (db) 2: MUHO cand.

before matching

number of patients f 252 708 710 7789

m 208 990 221 7003

birth year, mean (SEM) f 1959.77(5) 1942.4(6) 1946.22(20)

m 1961.89(5) 1945.2(10) 1949.35(19)

after matching

number of patients f 6840 684 2052

m 2060 206 618

birth year, mean (SEM) f 1941.90(17) 1941.9(5) 1941.91(30)

m 1945.24(29) 1945.3(9) 1945.3(5)

no. of hospitalization days per patient (during feature and

target periods)

f 35.7(5) 54.0(23) 52.1(12)

m 33.8(9) 45.9(33) 50.0(21)

primary diagnoses per patient during feature period — 1.73 2.37 2.45

secondary diagnoses per patient (T1) — 2.77 6.60 6.93

in-hospital mortality (9 year follow-up) — 12%(1093) 14%(127) 15%(412)

prevalences of selected diagnosis blocks (during the feature period)

diabetes mellitus (E10–E14) f 8.3%(567) −1.0 6.6%(45) 6.8*** 32%(650)

m 10%(206) −0.1 9.7%(20) 5.3*** 33%(202)

metabolic disorders (E70–E90) f 14%(934) −0.1 13%(92) 5.1*** 44%(897)

m 16%(326) 0.2 17%(34) 5.2*** 55%(340)

mental and behavioural disorders due to psychoactive

substance use (F10–F19)

f 2.2%(153) −1.4 1.6%(11) 5.6*** 5.9%(121)

m 6.9%(143) −2.5 3.9%(8) 5.4** 14%(84)

hypertensive diseases (I10–I15) f 27%(1818) 3.5*** 60%(411) 0.7* 71%(1454)

m 27%(547) 3.9*** 65%(133) 0.6 74%(455)

ischaemic heart diseases (I20–I25) f 7.4%(509) 2.5** 13%(90) 1.8* 20%(413)

m 12%(244) 2.7* 22%(45) 1.8 33%(202)

other forms of heart disease (I30–I52) f 10%(697) 2.8*** 19%(132) 0.8 23%(473)

m 11%(224) 4.1*** 28%(57) 0.2 29%(179)

incidences of selected diagnosis blocks (during the target period)

diabetes mellitus (E10–E14) f 7.5%(513) 0.5 8.3%(57) 3.4*** 18%(374)

m 9.4%(193) 1.3 13%(26) 1.9 20%(122)

metabolic disorders (E70–E90) f 13%(900) 0.2 14%(95) 0.5 16%(322)

m 13%(267) 1.2 17%(35) −0.4 16%(96)

mental and behavioural disorders due to psychoactive

substance use (F10-F19)

f 1.9%(133) 0.5 2.2%(15) −0.5 1.9%(40)

hypertensive diseases (I10-I15) f 20%(1387) −0.9 17%(113) 0.4 18%(373)

m 20%(403) −0.9 16%(33) 0.8 19%(118)

ischaemic heart diseases (I20–I25) f 8.6%(591) −0.3 8%(55) 1.4 11%(230)

m 13%(259) −0.9 10%(21) 1.9 16%(97)

other forms of heart disease (I30–I52) f 12%(838) 1.7** 18%(125) 0.1 19%(381)

m 13%(275) 2.2* 22%(46) −0.2 21%(132)

†See [38], p. 423).
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and metabolic diseases and also in the neurodegenerative dis-
ease cluster, suggesting different (disease) phenotypes of
osteoporosis. In accordance, cardiovascular [39,40], but also
depression [41] and Parkinson’s disease [42] have been ident-
ified as risk factors for osteoporosis. Shared pathways of
both neurodegeneration with osteoporosis [43] and cardiovas-
cular disease with osteoporosis [39] have been discussed,
supporting the identified disease phenotypes. The latter has
been hypothesized with common features between bone
mineralization and atherosclerotic calcification [39].

Similarly, asthma is part of two clusters (figure 3d ),
suggesting the existence of two distinct asthma phenotypes.
The first cluster is the one of mainly cardiovascular diseases
(I,E in dark blue). Asthma has been identified as a risk
factor for cardiovascular diseases [44]. In this cluster in the
generalized disease network, asthma is primarily connected
to chronic obstructive pulmonary disease which further con-
nects to a phletora of cardiovascular diseases. Asthma is a
chronic inflammatory disease, with inflammatory processes
being key in the pathophysiology of atherosclerotic diseases
[44]. The second cluster is closely related to childhood dis-
eases (P,Q in green), whereas a specific asthma phenotype,
particularly as an early-onset allergic type of asthma, has
been discussed for children [45]. Accordingly, there is a link
in the generalized disease network between the features
J45p (asthma) and J30s (vasomotor and allergic rhinitis).

3.1. Metabolically healthy versus unhealthy obesity
phenotypes

Specifically for obesity (E66), we used the network to investi-
gate obesity-related phenotypes. Obesity is a major public
health problem associated with increased morbidity and mor-
tality [46]. It represents a remarkably heterogeneous condition
with different obesity-related comorbidities, impairment of
functional status and varying cardiometabolic outcomes [47].
The concept of metabolically healthy obesity (MHO), in com-
parison to the metabolically unhealthy obesity (MUHO)
phenotype is under debate and its relevance to clinical practice
still unclear [46,47]. We could show that obesity features were
indeed distributed across multiple clusters on the disease
network. Depending on their cluster membership, patients
showed some characteristic specific features—in terms of
present and future comorbidity—of metabolically healthy and
unhealthy obesity, respectively. MUHO represented the largest
cluster with more than two thirds of the obese patients,
corresponding very well to the general picture of this pheno-
type including metabolic comorbidities like dysglycaemia,
dyslipidaemia, hypertension and/or hyperuricaemia and
high cardiovascular risk. The second representative cluster
(≈ 15%) comprised obese patients with musculoskeletal pro-
blems and degenerative changes who feature hypertension
but were otherwise metabolically healthy (MHO), again in
accordance with epidemiological evidence [47,48]. Interest-
ingly, before matching of the cohorts, we found female
preponderance in the MHO cluster in accordance with other
studies [49]. This may be ascribed to differences in sex hor-
mones, body fat distribution, adipokines, immunological
parameters, the microbiome and better insulin sensitivity of
women compared to men [49]. Additionally, small clusters
represented obese patients with gastrointestinal disorders
and cancers or liver disease (including fatty liver, another
candidate of the metabolic syndrome) or patients with
reproductive or urogenital problems in our analysis, all well-
known comorbidities based on obesity-related hormonal
imbalance, inflammation and insulin resistance [50].

The identifieddiagnosis features contribute to the currently
ongoing discussions regarding phenotype definitions ofMHO
[34–37,51]. In particular, we showed for the first time that diag-
nosis features of obesity are part of different clusters on a
comorbidity network, and that these assignments are associ-
ated with strong differences in metabolic health, amplifying
epidemiological evidence. A phenotype with low prevalence
of diabetes and hyperlipidaemia seems to be distinct from a
phenotype with high prevalence of hypertension, hyperlipi-
daemia and diabetes, which is linked to an increased risk of
developing new metabolic and cardiovascular risk factors.

Furthermore, not only the prevalence of metabolic dis-
orders was significantly higher in MUHO versus MHO but
also that of mental disorders. It can be speculated that
shared psychosocial factors are underlying pathophysiologi-
cal mechanisms starting a vicious circle between unhealthy
lifestyle, metabolic and psychological disturbances, which
again are linked and mediated by obesity [49]. During
follow-up, MUHO also had the highest incidence of diabetes
which doubled in comparison to that of the MHO group. On
the other hand, MHO was characterized by hypertension,
highlighting that increased BMI is one of the most prominent
causes of heart failure and ischaemic heart disease [52,53].
This might explain why both clusters showed a comparable
incidence of ischaemic heart disease at follow-up. Also, mor-
tality was increased in both clusters at follow-up without
significant differences between the MHO and MUHO
groups. This finding corroborates previous findings from
cohort studies and surveys questioning the value of MHO for
the determination of the overall prognosis of patients [54,55].

In total, the patterns identified give a mixed picture with
regard to the discussions of a benign form of MHO, that is not
at increased risk of negative cardiovascular prognosis and mor-
tality [36,37,56]. Consistent with earlier research, an evaluation
of the incidence of new metabolic and cardiovascular diseases
during follow-up corroborates the picture that MHO patients
have a position in-between MUHO and non-obese control
patients, indicating a transient state [36]. TheMHO disease phe-
notype identified is thus consistent with a more benign obesity
phenotype, showing a slower progression to a more unhealthy
obesity over time than theMUHOdisease phenotype.Neverthe-
less, the MHO disease phenotype cannot be considered
completely benign in terms of prognosis. This is corroborated
by a meta-analysis of 22 prospective studies over a follow-up of
3.6–30 years, which did not identify any combinations of obesity
and components of metabolic syndrome that were not at
increased risk of cardiovascular events andmortalitywhen com-
pared with non-obese patients. The risk for MHO particularly
increased for studies with longer-follow-up [36] suggesting that
themajorityofMHOpatients converge towards theMUHOphe-
notype over time. Thus it is necessary to raise public awareness
and to initiate lifestyle intervention in all MHO patients.

This elaborated example on obesity (E66) demonstrates
how to use the developed method to obtain meaningful
novel information about complex diseases. Different from
clinical studies in the topic area, which typically follow
obese and non-obese patients over time, we show for the
first time, that the disease phenotypes of obesity identified
in this purely data-driven approach are somewhat consistent
with the discussed clinical phenotypes of obesity.
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3.2. Strengths and limitations
The two unique characteristics of our approach are (i) the
computational identification of higher-order diagnosis fea-
tures that (ii) simultaneously predict more than a thousand
diagnoses, rather than focusing on one or a couple of diseases
[15,57–59]. The present approach allows to describe the over-
all health state of inpatients across the boundaries of diseases
and disease groups, providing a more holistic picture of their
health-state. This facilitates the identification of phenotypes
across diagnostic boundaries.

The following strategies were applied to improve validity:
First, we performed fivefold cross-validation in the search
for diagnosis features. This leads to meaningful diagnosis
features. Second, the naive Bayes classifier is not prune to
overfitting. We find comparable levels of model perfor-
mance in the training and the test data, which suggests that
overfitting is not an issue in our approach.

A study limitation is that only hospital diagnoseswere avail-
able. Other clinical information such as prescriptions or
performed medical procedures were not available. This work
pertains exclusively topatterndetection in largedatasets ofdiag-
nosis datawhich has been defined as a research priority [8]. The
present study design was exploratory and appropriate to ident-
ify associations between diagnoses but not to infer causal
relationships. Furthermore, cross-validated results are reported
but cross-validation does not provide proper metrics for evalu-
ation of prediction models. In the light of the study aim to
identify disease phenotypes based on the contextualization of
co-occurring diseases rather than predicting new diseases, this
should, however, not pose a problem to the present analysis.

Because of the monotonicity assumption used and due to
the discrepancies of disease onset and the timing of diagnosis
which vary widely between diseases, it is not possible to
make accurate timely predictions of new diagnoses in the
target period based on the diagnosis features in the feature
period. Based on the findings from other network analyses
and the current patterns which suggest that diagnosis features
are often related to diagnoses that represent later stages of the
same or similar diseases it is however likely that many of the
identified correlations reflect disease progression. We also
show this explicitly for the index diagnosis of obesity, where
metabolically health obesity approaches unhealthy obesity
over the observation period. We found that without applying
monotonicity, the target data were too sparse for the naive
Bayes classifier to successfully capture higher-order associ-
ations. Also, we have been interested primarily in chronic
diseases where this assumption is more valid.

Regarding computational cost, there are noteworthy
methodological aspects which suggest that the computational
cost is relatively moderate. In particular, the main point
of our analysis method is that we identify statistical higher-
order correlations in the data by applying (a) very efficient
frequent itemset mining [60], (b) the generative classifier we
use (naive Bayes) can be computed efficiently [61] and (c)
the hyperparameter search applies the Bayesian optimization
(BO) technique which is especially suitable for optimizing
few variables efficiently with relatively few objective function
evaluations; see [62] and references therein. The bottlenecks
of the analysis are (a) the algorithm of mapping patient-
diagnoses to patient-features, figure 6, and (b) the compu-
tation of the generalized disease network from the final
(optimal) model coefficient matrix. Furthermore, a disadvan-
tage of frequent itemset mining is that it can only detect a
subset of possible higher-order associations, particularly the
subset of positive associations. For higher-order associations,
the positive-only associations mean a considerable saving in
terms of computational cost, and a restriction to associations
that are putatively most relevant in a sparse dataset.
4. Conclusion
In conclusion, based on a multinomial naive Bayes model, we
demonstrate that health states of inpatients can be better
characterized by the inclusion of higher-order features of mul-
tiple diseases. Diseases show a multitude of complex
interaction effects among each other that generally impact a
patient’s disease progression in a non-additive way. The
method developed allows to identify distinct disease pheno-
types made up of clusters of diagnosis features which might
correspond to different disease aetiologies that cannot be cap-
tured by single diagnoses and their interactions. This enables
us to discover and analyse novel disease phenotypes based
on different comorbidity contexts of diagnoses. The resulting
differentiation has strong implications for a better understand-
ing not only of disease aetiology but also for the meaning of a
specific given diagnosis in terms of treatment and prognosis.
5. Material and methods
First, we describe the main modelling process from the input
dataset to the final generalized disease network, see figure 4
for an overview. Second, the matched cohort comparison of
metabolically and unhealthy obese patients is described.

5.1. Dataset
A pseudonymized administrative dataset containing all in- and
outpatient stays in privately and publicly funded hospitals in
Austria over a time period of 18 years was used, covering
patients with exit dates in 1 January 1997–31 December 2014.
The dataset consisted of 45M recorded stays of 9M patients.
Each stay record included a patient pseudonym, entry and exit
dates, one primary diagnosis, zero or more secondary diagnoses,
home region (34 categories), sex (two categories) and age group
at the time of stay (5-year bins, 19 categories). The diagnoses
were encoded as three character categories from the Austrian
adoption [63] of the World Health Organization’s international
statistical classification of diseases and related health problems,
10th revision [64] (ICD-10). A transfer from one department to
another resulted in a new stay record. In-hospital deaths were
recorded together with a code for the declared reason of death.

5.2. Study population/preprocessing
The whole time period of 18 years was split into four parts for
the purposes of predictive modelling and matched cohort analy-
sis: the 6-year no-admission period from t0: = 1 January 1997 00:00
to t1 : = 1 January 2003 00:00, the 3-year feature period from t1
to t2 : = 1 January 2006 00:00, the 3-year target period from t2 to
t3 : = 1 January 2009 00:00 and the 6-year mortality follow-up
period from t3 to t4 : = 1 January 2015 00:00 (figure 5).

The criteria for selecting patients into the study were: (i) no
recorded stay within the no-admission period, (ii) at least one
recorded stay during the feature period, and (iii) at least one
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further recorded stay during the target period. This resulted in
NP = 478 575 patients who have been selected into the study.
By the virtue of these criteria, we aim to capture patients that
have no serious conditions (i.e. requiring hospitalization)
during the last 6 years before entering the study, and are all
alive at least until t2.

5.3. Identification of (meaningful) diagnosis features
In identifying the phenotypes of complex diseases in diagnosis
records, we follow a two-step approach. The first step is to
qualitatively (i.e. structurally) and quantitatively capture the
higher-order statistical interactions between diseases. This step
is described in this section. The second step is to construct a
generalized disease network, described in §5.4.

We introduce higher-order diagnosis features as sets of diagno-
sis codes that serve as features in a predictive multitarget
classification model. The features are computed from the
patients’ accumulated diagnosis codes that occurred up to t2
and are used to predict the accumulated diagnoses (monotonicity
assumption) up to t3, i.e. the targets. The diagnosis codes are
formed from the three-character ICD-10 codes, suffixed with
the letter p or s if the code was used as a primary or secondary
diagnosis, respectively.

Our aim is to identify a meaningful set of higher-order
diagnosis features (henceforth called the feature set) in a compu-
tationally feasible way, by (I) applying a heuristic to construct the
higher-order diagnosis features and (II) by selecting a feature set
that maximizes the predictive performance (wrapper approach
[65]). These steps are detailed as follows.
(I) Heuristically constructing higher-order diagnosis fea-
tures. The patient diagnoses of the feature period are
represented by the NP × ND indicator matrix X0, with
entries X0( p, d ) for patient index p∈ {1,… ,NP} and diag-
nosis code index d∈ {1,… ,ND}, ND being the total
number of primary and secondary diagnosis codes. If
patient p is diagnosed with d at least once in the feature
period, we set X0( p, d ) = 1, otherwise X0( p, d ) = 0.
The data matrix X0 is transformed into the feature matrix
X by mapping the ND diagnosis codes from the feature
period to NF higher-order diagnosis features by (i) con-
structing a candidate feature set, (ii) greedily assigning
features to patients, (iii) pruning features from the candi-
date feature set that occur in less than supportmin = 30
patients, and repeating with (ii) until all features are
supported at least by supportmin patients.

(i) Constructing a candidate feature set. A feature candi-
date is a set of diagnoses that co-occur in patients. The
candidate feature set is the ordered (see next paragraph)
set of all candidate features. It is constructed heuristi-
cally as follows: We consider all combinations up to a
specific number of combined diagnoses (the model
order) and that occur at least in supportmin patients.
Furthermore, candidates are only included if their diag-
noses occur more likely together than what would be
expected from random chance. This is quantified using
a generalized measure of mutual information, the ‘mini-
mum information difference to prior’ (minIDP) measure
which has to be above a threshold of minIDPmin (see
electronic supplementary material, text 1). All of these
steps are efficiently computed using a free open source
frequent itemset mining software by Borgelt [66,67].
To obtain the ordered candidate feature set F, the feature
candidates are sorted (i) from high to low cardinality, i.e.
the number of diagnoses in a given feature, (ii) within



Inputs :  : the ordered candidate feature set,
X0: the indicator matrix of accumulated patient-diagnoses at t2.

Output: X: the indicator matrix of patient features.

Figure 6. Algorithm to map patient-diagnoses to patient-features. Algorithm to map patient-diagnoses to patient-features. This algorithm corresponds to activity
map_feature in electronic supplementary material, figures S5 (showing the usage context) and S6c (showing the algorithm in the form of an activity diagram).
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same cardinality, from high to low minIDP and, (iii)
within same (i) and (ii) from high to low support.

(ii) Greedily assigning features to patients. Patient-
diagnoses are mapped to patient-features by applying a
greedy heuristic whose algorithm is shown in figure 6.

(iii) Pruning the candidate feature set and repeating. After
running the respective algorithm (figure 6), some
(candidate) features may be weakly supported, i.e.
their support drops below supportmin. Following the
ordering of F, the first of those features is then removed
and the algorithm is repeated using the newly pruned
F, until the support of all assigned features is greater
or equal supportmin. Nota bene, we remove only the
first (versus all) of the weakly supported features
because some of the features further down in F may
become supported again simply by remapping the
patients of the first weakly supported feature to other
features. We will refer to the final ordered set of the
well-supported higher-order features as final feature
set. The patient-features corresponding to the final fea-
ture set are numerically represented as NP × NF

matrix X with entries X( p, f ) = 1 if feature f has been
assigned to patient p, and X( p, f ) = 0 otherwise. See
electronic supplementary material, text 2 for more
information.

(II) Selecting the optimal feature set using the wrapper
approach. The selection of the optimal feature set
using the wrapper approach consists of these com-
ponents: (i) a predictive multi-target classification
model that allows to score a given feature set, (ii) and
a routine to select the tunable hyperparameters such
that the score is maximized.

(i) The multi-target classification model. Based on a
patient’s features (computed from the accumulated diag-
noses up to t2), we seek to predict his or her diagnoses
obtained up to t3 (the prediction targets). The targets
are represented by the NP × ND data matrix Y. If patient
p was diagnosed at least once with target diagnosis t up
to t3, we set Y( p, t) = 1, otherwise Y( p, t) = 0. As the
target variables are binary, we require the choice of a
classifier to be used in a multi-target predictor. We
chose to use the multinomial naive Bayes classifier
(MNB). Although MNB is often used for count data
(e.g. word counts in natural language processing), it
can also be used successfully for binary target variables.
For each feature f and target t and model order m, we
obtain a model coefficient

C(m)( f ,t) :¼ 10 log10
Pr(X( p,f ) ¼ 1jY( p,t) ¼ 1)
Pr(X( p,f ) ¼ 1jY( p,t) ¼ 0)

� �
db,

measured in decibans (db). The probabilities come from
the model of order m. The superscript model order m is
omitted where clear from context. C( f, t) is the estimated
weight of evidence in favour of the presence of target
diagnosis t in a patient provided by the presence of fea-
ture f. With other words, C( f, t) equals the change in the
modelled log-odds [68]—of target diagnosis t present
versus absent—due to the presence of feature f in a
patient. A coefficient C( f, t) > 5 db (corresponding to a
change in odds of ≈ 3 : 1) can be considered substantial
evidence concerning t provided by f, C( f, t) > 10 db
(10 : 1) as strong, C( f, t) > 15 db (≈ 30 : 1) as very strong
and C( f, t) > 20 db (100 : 1) as decisive evidence. This
scheme follows Jeffreys [38, p. 423].
The linear decision function of the classifier is

D( p,t) ¼
X

f jX( p,f)¼1

C( f ,t)þ p(t),

where π(t) are the prior log-odds,

p(t) :¼ 10 log10
Pr(Y( p,t) ¼ 1)
Pr(Y( p,t) ¼ 0)

� �
db:

The target diagnosis t is classified present for patient p
whenever Δ( p, t) > 0, otherwise is classified absent. For
target t, we evaluate prediction quality using precision
(i.e. the probability that a predicted diagnosis actually
occurred; the type 1 error rate), recall (i.e. the probability
that an occurring diagnosis was correctly predicted; the
type 2 error rate), and the F1 score (i.e. the harmonic
mean of precision and recall). The overall model score
(total F1 score) is computed from the target-specific F1
scores as their support-weighted average. The support
of a target equals its number of true positives. This
gives more emphasis in the scoring function to higher
prevalent target diagnoses.
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(ii) Selecting score-optimal hyperparameters. While we fix
the minimum support required for each feature,
supportmin, we perform a hyperparameter search by
applying BO to find optimal values for the remaining
hyperparameters, the smoothing parameter α (a regular-
izer in the MNB estimator) and the threshold minIDPmin

for our mutual information measure. Fivefold cross-vali-
dation was applied (a) to mitigate overfitting and (b) to
reduce the noise in the total F1 score. During cross-vali-
dation, a target is selected for scoring if it occurs with at
least 200 patients in every fold. A change of folds by
chance in repeated model computations, leads to slightly
fluctuating numbers of selected targets. To avoid a scor-
ing bias due to changing numbers of scored target
diagnoses, we fix the targets to be included in the
model scoring to the top-supported 1000 targets. We
refer to features in the final model, after the hyperpara-
meters have been fixed, as the optimal feature set, F�.
See electronic supplementary material, text 3 and associ-
ated supporting figures for a more detailed algorithmic
breakdown.

5.4. The generalized disease network
From the optimal feature set F� and the optimal hyperparameters
from §5.3, a final predictive model was fit to the whole dataset,
the all-data model. See electronic supplementary material, text 4.
The non-trivial information contained in the correlation structure
of the model coefficients of the all-data model was then used to
produce a network of diagnosis features as follows.

There, nodes correspond to diagnosis features and links indi-
cate that the mutual information of their coefficient vectors is
statistically significant. The corresponding null model takes transi-
tive relations between features into account, i.e. links are included
if they (a) tend to predict similar target diagnoses and (b) are not
explained through other associations between features.

Trivial associations here mean, that they can be explained
transitively through other associations in the network. For
example, if the three features A, B and C have identical pairwise
association strengths, then each of their pairwise associations can
be trivially (transitively) explained through the remaining other
two associations.

The unfiltered disease network Φ quantifies the similarity of
two features f1 and f2 in terms of the diagnoses they predict.
Entries in the NF × NF weighted adjacency matrix Φ( f1, f2) are
given by the Gaussian approximation to mutual information
Fðf1,f2Þ :¼ �1=2 log[1� r2ðf1,f2Þ], computed from the Pearson
correlation coefficient ρ( f1, f2) of features f1 and f2, computed
from the row vectors C( f1, ·) and C( f2, ·), respectively.

To adjust for multiple testing and class imbalance, we filter Φ
using a network backboning approach based on Gemmetto et al.
[69] where we proceed as follows: (i) Initialize the weights matrix
W with elements wi,j from Φ, omitting self-loops, i.e.

wi,j :¼ F(i,j) if i = j
0 if i ¼ j

�
8 i,j:

(ii) Discretize the weights matrix W by binning each entry into
one of 30 bins in the range [mini,j wi,j , maxi,j wi,j ]. Note that by
construction, Φ is non-negative and symmetric. The number of
bins is chosen such to balance the performance of subsequent
filtering procedure (decreases with increasing bin count) and
the resolution of the discretization. (iii) Compute the irreducible
maximum entropy backbone from the corresponding weighted
configuration model (WCM) of the network as follows. The
WCM is the maximum entropy ensemble of weighted networks
that results from fixing the node strengths. The strength of node i
is si :¼

P
j
wi,j.
(a) Vector y ¼ (y1, . . . , yNf ) (Nf is the number of features) is
initialized with random numbers in [0, 1). (b) We compute

yw:¼ argminy

X
j

( j = i)

yiyj
1� yiyj

� si

0
BBBB@

1
CCCCA

i¼1,...,Nf

,

using an extended Levenberg–Marquardt minimizer [70]. At the
minimum, the term in parentheses (i.e. the residual) is very close
to zero. (c) Compute the probability (under the null model) of
generating a link between nodes i and j with a weight equal to
or greater than the observed weight as gi,j :¼ (ywi y

w
j )

wi,j . This cor-
responds to the ‘local filter’ from Gemmetto et al. [69, eqn 15] (but
with pi,j ¼ ywi y

w
j for the WCM instead of the enhanced configur-

ation model where also the degree sequence is fixed). (d) Filter
the network Φ by keeping only edges (i, j ) with γi,j < 0.05.

(iv) Apply Louvain modularity detection [71] on the back-
bone and present its giant component with coloured clusters as
the resultant generalized disease network (figure 2).
5.5. Quantifying synergistic interactions
The interaction strength of sub-features that make up a feature is
quantified by the lift, L( f,t). For a feature f and a target t, the lift is
given by the difference of the corresponding model coefficient
and its expected value

L( f , t) :¼ C( f , t)� �C( f , t):

Let F be the ordered optimal feature set and F(f ) be the set of
diagnoses of feature index f. The expected coefficient is given
by F�C( f , t) :¼ P

g[G CjFj(g, t) , where CjFðgÞj(g,t) is the coefficient
from the model of (lower) order jFðgÞj. G is a partition of the
set of diagnoses of feature f, constructed as follows. Given f, G
is constructed by starting at feature index f and walking down
F and collecting all feature indices g into G until
Ug [ GFðgÞ ¼ FðfÞ. The ordering of F guarantees ⋂g ∈ GF(g) = ∅.

The coefficient �C( f ,t) can be thought of as the expected coef-
ficient based on the linearity of the model under the assumption
that f itself would not have been included in the optimal feature
set. For non-interacting diagnoses �C( f ,t) ¼ C( f ,t). Positive lifts
indicate synergy; negative lifts redundancy.
5.6. Matched cohort comparison
The two largest clusters of obesity (E66), in terms of number of
features, are selected for comparison with non-obese controls.
We select patients from the study population who are positive
in any of the cluster’s features during the feature period into
the corresponding cluster cohort. The controls are all patients
who are non-obese during the feature period. All patients were
uniquely assignable to one of the three cohorts. To compare
these cohorts while adjusting for the factors age, sex and place
of residence, we take the smaller of these groups, in terms of
patient number, and randomly match each patient therein to
three individuals from the larger group and to 10 controls,
with same sex, region and a maximum age difference of 2
years. A patient could only be used once for matching. If there
are not sufficient matchable patients in the larger group, then
the patient is excluded. This affected 41 patients (4.4%).

We compared the cohorts in terms of their prevalence of
metabolic disorders and selected further disorders during the
feature period. We also analysed the incidence of new metabolic
and cardiovascular diseases in the 3-year target period. With
regard to mortality, we compared the cohorts over a 9-year
follow-up period (2006–2014).
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5.7. Software and source code
To perform frequent itemset mining, we used Borgelt’s Apriori
for Linux, revision 6.27 1 August 2017 [66].

Major parts of the analysis are bespoke using the programming
languages Python 3.7.5, Ruby 2.6.5 and Rust 2018. The software is
modular and uses the package management systems Poetry, Ruby-
gems and Cargo. The used package versions are documented in
the respective package manager files in the source code repository
of this work. The source code of this study is available at https://
github.com/mstrauss/rsif20201040.

To compute the network layout and the Louvain modularity,
we used Gephi 0.9.3-SNAPSHOT 201810261216/Force Atlas 2.
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