
(BEDT-TTF)2Cu2(HCOO)5 : An Organic–Inorganic Hybrid
Conducting Magnet
Bin Zhang,*[a] Yan Zhang,[b] Zheming Wang,[c] Zengqiang Gao,[d] Deliang Yang,[e] Dongwei Wang,[f] Yanjun Guo,[f]

and Daoben Zhu*[a]

A dual-functional organic–inorganic hybrid (BEDT-
TTF)2Cu2(HCOO)5 (1) (BEDT-TTF = bis(ethylenedithio)tetrathiaful-

valene) was obtained through the electrochemical oxidation of
neutral BEDT-TTF in the presence of an ammonium salt

of the one-dimensional copper-formate framework
[(C2H5)3NH]2Cu2(HCOO)5 in a C6H5Cl–C2H5OH solution. Com-

pound 1 was composed of organic donor BEDT-TTF+ 0·5 in a q-

phase arrangement and Jahn–Teller distorted (4,4) grid anion
sheets [Cu2(HCOO)5

-]n with S = 1/2. We identified the material

as a semiconductor with values of s300K = 10@1 S cm@1. The
anion sheet is a coordination isomer of [Cu2(HCOO)5

-]n and,

compared with the starting material, shows antiferromagnetic
behavior as the well-known inorganic Cu@O, Co@O square

layers for creating inorganic conducting magnets. Long-range

antiferromagnetic ordering was observed at 8.0 K.

Dual-functional molecular crystals show a range of conductivity

behaviors from semiconducting to metallic and even supercon-
ducting properties. These crystals can also display a variety of

magnetic behaviors including antiferromagnetic, ferromagnetic
long-range magnetic ordering, and spin frustration. The materi-

als have drawn considerable interest in materials science for
their potential uses in molecular spintronics.[1] Charge-transfer

salts are a powerful route for obtaining dual-functional molec-
ular crystals by combining an organic conducting unit and an

inorganic magnetic unit in organic–inorganic hybrids. Three

notable ferromagnetic metals [(BEDT-TTF)3[CrMn(C2O4)3]CH2Cl2,
BETS3[CrMn(C2O4)3]CH2Cl2 (BETS = bis(ethylenedithio)tetrasele-

nafulvalene), and (TM-ET)3[CrMn(C2O4)3]CH2Cl2 (TM-ET = (S,S,S,S-
tetramethylbis(ethylenedithio)tetrathiafulvalene)] with ferro-

magnetic long-range ordering (LRO), the antiferromagnetic
semiconductor (BEDT-TTF)3[Cu2(C2O4)3](CH3OH)2, and the anti-

ferromagnetic metal BETS3[Cu2(C2O4)3](CH3OH)2, which features

spin frustration, have previously been reported.[2, 3] The formate
(HCOO@) ion, as the smallest carboxylate, is one of the best

short bridging ligands to mediate the magnetic coupling be-
tween transition-metal atoms with the local spin. Two-dimen-

sional metal-formate frameworks have been extensively stud-
ied as dual-functional materials, offering dielectric properties

and long-range magnetic ordering.[4] Three-dimensional metal-

formate frameworks are important building blocks of multi-
functional materials, and there is great interest in the relation-

ship between their structure and their magnetic, dielectric, and
ferroelectric properties.[5] However, the electrical conductivity

of dual-functional materials composed of a metal-formate
framework has not yet been reported. Here, we present the
synthesis and characterization of a charge-transfer salt (BEDT-

TTF)2Cu2(HCOO)5 composed of BEDT-TTF and a two-dimension-
al antiferromagnetic square copper-formate framework
[Cu2(HCOO)5

-]n.
Brown, thin, plate-like single crystals of 1 were obtained

from BEDT-TTF and [(C2H5)3NH]Cu2(HCOO)5 in a mixture of
C6H5Cl and C2H5OH through an electrocrystallization method.[6]

The crystal structure was determined from single-crystal X-ray
diffraction data. The independent unit cell contained half
a BEDT-TTF molecule, half a Cu2 + cation, and one and a quarter

formate anions. Four BEDT-TTF molecules, four Cu2 + cations,
and ten formate anions were present in a unit cell with the for-

mula (BEDT-TTF)2Cu2(HCOO)5 and Z = 2. The conformation of
the two ethylene groups on one BEDT-TTF molecule was

eclipsed. Expect for the two ethylene groups, all of the atoms

on one BEDT-TTF molecule were co-planar with a maximum
deviation of 0.026 a. The donors stacked face-to-face to form

a donor column along the a axis. Hydrogen bonds formed
between donor molecules: C5@H5B···S3 3.689(6) a/1548,

C6@H6B···S4 3.682(6) a/1538 (Figure 1). Columns are arranged
side-by-side along the c axis to form a donor layer as the q
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phase.[7] The dihedral angle between neighboring BEDT-TTF

molecules along the c axis was 47.42(3)8. S···S contacts existed
between donor columns. Depending on the bond lengths of

the TTF core, the formal charge on BEDT-TTF was assigned as

+ 0.5.[8]

In the Raman spectrum (Figure S5), two strong bands were

observed at 1458 and 1484 cm@1, which were also found for
2:1 BEDT-TTF salts, thereby confirming the oxidation state of

the donor molecule as + 0.5.[9]

Donor layers are separated by an anion sheet of
[Cu2(HCOO)5

-]n along the b axis. In the anionic sheet, the Cu2 +

cations are coordinated by O atoms from two and half formate
anions with square and octahedral configurations, as highlight-
ed by blue solid lines in Figure 2. Along the c axis, one formate
ligand bridges two metal atoms in an anti–anti mode with

a Cu@O (Cu1@O1) distance of 1.966(4) a. Along the a axis, one
and a half formate ligands bridge two metal atoms with the C

atoms disordered in two positions: C8, C9, and O atoms disor-

der in three positions: O2, O3, and O4. So, the O atoms are co-
ordinated to Cu2 + with a syn–syn relationship and with chelat-

ing–anti modes, as observed in a-Cu(HCOO)2, with Cu@O dis-
tances ranging from 1.95(2) to 2.41(2) a (Figure 2) along the

a axis.[10] Atoms on the main plane (Cu1, O2, O3, O4, C8, C9)
were co-planar with a deviation of 0.05 a. Thus, the metal

atom is coordinated by formate ligands with Q2 and Q3 Jahn–

Teller distortion.[11] The Cu···Cu distance is 4.12 a along the
a axis and 5.65 a along the c axis. A square lattice is formed

on the a–c plane. There are hydrogen bonds C5@H5A···O1
3.31(1) a/1098 between the donor and anion layer and C7@
H7···O4 3.03(1) a/1178 between the formate ligands inside the
anion sheet.

Polytypism and polymorphism are occasionally encountered

in molecular crystals, especially in coordination polymers. Iso-

mers, such as two-dimensional (6,3) grid and three-dimensional
(10.3) grid [Cu2(C2O4)3

2@]n, have been observed in ammonium

salts and charge-transfer salts with a Cu-oxalate framework.[3, 12]

Compared with the starting material [(C2H5)3NH]Cu2(HCOO)5,

the anionic sheet in (BEDT-TTF)2Cu2(HCOO)5 represents a
new coordination isomer of [Cu2(HCOO)5

-]n.[6] In

[(C2H5)3NH]Cu2(HCOO)5, two Cu atoms were connected by four

syn–syn formate ligands to form a binuclear [Cu2(HCOO)4] unit.
Two [Cu2(HCOO)4] units were bridged by two anti–anti formate

ligands to form a one-dimensional chain of anions
[Cu2(HCOO)5

-]n (Figure S7). Thus, a one-dimensional zigzag

chain is formed when the cation is a zero-dimensional unit
such as [(C2H5)3NH+] . When the cation is a two-dimensional
unit, a two-dimensional square lattice is formed as the cation

template.
The two-dimensional coordination anion should be one of

the most stable coordination isomers in a charge-transfer salt
when an organic donor layer is present. For example, honey-

comb metal-oxalate-framework anions exist in charge-transfer
salts with layers of an organic donor: [CrMn(C2O4)3

-]n anion in

b-(BEDT-TTF)3[CrMn(C2O4)3]CH2Cl2, a-BETS3[CrMn(C2O4)3]CH2Cl2

and (TM-ET)3[CrMn(C2O4)3]CH2Cl2. In these cases, mononuclear
coordination compounds were used as starting materials.[2]

When ammonium salts of various copper-oxalate frameworks,
including either a one-dimensional zigzag chain compound

[(CH4)4 n]2Cu(C2O4)2(H2O), a two-dimensional honeycomb com-
pound [(C3H7)3NH]2Cu2(C2O4)3(H2O)2.2, or a three-dimensional

hyper-honeycomb compound [(C2H5)3NH]2Cu2(C2O4)3 as the

starting materials, the charge-transfer salts q21-(BEDT-
TTF)3[Cu2(C2O4)3](CH3OH)2 and q21-BETS3[Cu2(C2O4)3](CH3OH)2

with honeycomb anions [Cu2(C2O4)3
2@]n were obtained.[3, 12]

Thus, the 2D, square metal-formate framework could be de-

duced as the most stable coordination isomer in charge-trans-
fer salts with an organic donor layer.

Figure 1. The donor and anion arrangement in (BEDT-TTF)2Cu2(HCOO)5

viewed along the a axis (top). Color code: S, yellow; C, dark grey; O, red; Cu,
blue; H, grey. Donor arrangement on the a–c plane (bottom). Color code:
solid blue lines are S···S contacts ; dashed orange lines are hydrogen bonds.

Figure 2. Structure of the anion sheet in (BEDT-TTF)2Cu2(HCOO)5. Along the
c axis, Cu is bridged by formate in an anti–anti mode. Along the a axis, for-
mate bridges two metal atoms in syn–syn and chelating–anti modes, as
highlighted by solid blue lines.
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The conductivity of 1 at room temperature was srt

&0.1 S cm@1. Compound 1 showed semiconducting behavior

with Ea = 0.16 eV to 150 K (Figure 3). The observed conductivity
corresponds with reported charge-transfer salts of q-(BEDT-

TTF), such as q-(BEDT-TTF)2RbCo(SCN)4.[13]

To investigate the magnetism of the two-dimensional

copper-formate frameworks with S = 1/2, its magnetic proper-
ties were studied. The temperature-dependent susceptibility

under 1000 Oe increased smoothly upon cooling with a broad
peak around 50 K as the low-dimensional magnetism. The cT

value was 0.494 cm3 K mol@1 at room temperature, which was

larger than the value expected for isolated spin-only Cu2 + with
S = 1/2 and g = 2.00, but is similar to a previously reported

value in a copper-oxalate framework with Jahn–Teller distor-
tion and g>2.00.[3, 12] The cT value decreased smoothly upon

cooling, and reached a minimum at around 10 K. It then in-
creased and reached a maximum at approximately 6.8 K,
before decreasing again to 0.105 cm3 K mol@1 at 2 K. The sus-

ceptibility data above 120 K fit the Curie–Weiss law well, giving

Curie and Weiss constants of C = 0.633(3) cm3 K mol@1, q=

@90(1) K, and R = 5.03 V 10@5 (Figure 4). The negative Weiss

value suggests strong antiferromagnetic interactions between
the Cu2 + ions through the formate bridge. A sudden increase

in the magnetization was observed below 9.0 K, which then in-
creased slowly below 7.4 K. The zero-field-cooled and field-

cooled magnetization showed a bifurcation at 8.0 K; this
means long-range ordering magnetization occurred, as con-
firmed by remnant magnetization measurements as an antifer-

romagnet (Figure 4, inset). If interactions between two Cu2 + in
the anionic sheet along the a and c axes are considered to be
the same, and the interaction between the anionic sheets is
neglected; the data above 60 K fit the square lattice antiferro-

magnetic model with J =@55.9(3) K, g = 2.592(2), and R =

7.83 V 10@5.[14]

At 2 K, the magnetization increased sharply and reached

0.006 Nb at 400 Oe, before increasing more smoothly and
reaching 0.063 Nb at 65 kOe as a weak ferromagnet. This value

is a little lower than a molecular antiferromagnetic conductor
with Jahn–Teller distorted oxalate-bridged honeycomb anions:

0.077 Nb in q21-(BEDT-TTF)3Cu2(C2O4)3(CH3OH)2, and 0.075 Nb in
q21-BETS3Cu2(C2O4)3(CH3OH)2.[3]

To compare the difference between two coordination iso-

mers of [Cu2(HCOO)5
-]n, the magnetization of

(C2H5)3NHCu2(HCOO)5 was studied. The magnetization of

(C2H5)3NHCu2(HCOO)5 increased sharply from 8.2 to 7.7 K, ac-
cording to ZFCM/FCM/RM plots. This result indicated that both

isomers show antiferromagnetic LRO around 8 K. To confirm
these results, AC susceptibility measurements were performed

on the ammonium salt. The real part of the spectrum in-

creased from 9.0 K and reached a maximum at 7.7 K, and
a weak peak was observed at 7.7 K in the imaginary spectrum

(Figure S9). This corresponded with the specific heat measure-
ment: a l-peak was observed around 8 K (Figure S10). The iso-

thermal magnetization at 2 K increased quickly and reached
0.0038 Nb at 500 Oe (Figure S11). At 65 kOe, the magnetization

reached 0.0059 Nb and was one order of magnitude lower

than that of a two-dimensional isomer in a charge-transfer salt.
The two-dimensional square lattice is important for inorgan-

ic dual-functional materials with magnetism and conductivity,
because of its close relationship with high-temperature super-

conductivity.[15] Changing the counter ions that intercalate be-
tween the square antiferromagnetic anions in the insulating

compound La2CuO4 results in hole doping as charge-transfer
salts, which can lead to an antiferromagnetic semiconductor,
an antiferromagnetic metal, or a diamagnetic superconduc-

tor.[16] The modulation of Na+ and H2O intercalated between
square antiferromagnetic anions of [CoO2

2@]n gave a Na/H2O@
CoO2 superconductor.[17] An iron-based superconductor has
also been reported that is composed of a La–F cation layer

and a square antiferromagnetic Fe–As anion layer.[18]

Depending on the supramolecular chemistry, the variation in
coordination and number of formate ligands in the two-dimen-

sional copper-formate framework may have similar effects to O
ligands in the reported Cu@O and Co@O layers of inorganic

dual-functional materials. In the 1990s, during a period of in-
tense research into high-temperature superconductors, people

Figure 3. Temperature-dependent resistance on a single crystal of (BEDT-
TTF)2Cu2(HCOO)5.

Figure 4. Temperature-dependent magnetization of (BEDT-TTF)2Cu2(HCOO)5

under 1000 Oe from room temperature to 2 K (c : empty black square; cT:
empty black circle). Red line: Curie–Weiss fitting; blue solid line: Heisenberg
(4,4) grid fitting. Inset: ZFCM/FCM/RM under 100 Oe from 2 to 20 K (ZFCM:
empty black square; FCM: empty black circle; RM: empty black triangle).
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proposed replacing the intercalated H2O between antiferro-
magnetic square copper-formate frameworks in Cu(H-

COO)2(H2O)4 to obtain dual-functional molecular crystals. The
charge-transfer salt (BEDT-TTF)2Cu2(HCOO)5 shows that this is

possible by replacing the intercalated H2O with the organic
donor BEDT-TTF molecules between square antiferromagnetic

Cu-formate-framework anionic sheets. It is also possible to con-
struct new molecular metals with a square lattice copper-for-
mate framework when BEDT-TTF is replaced with BETS.[3]

In summary, the first organic–inorganic hybrid composed of
a semiconducting organic donor BEDT-TTF layer and a square
antiferromagnetic layer has been obtained. The square lattice
is formed with Jahn–Teller distorted Cu2 + bridged by formate

anions. We show the potential for obtaining new molecular
conductors and superconductors from a square lattice antifer-

romagnetic unit with Cu-formate-framework compounds as

starting materials.

Experimental Section

Sample Preparation

All reagents were commercially purchased and used as received
without further purification.

[(C2H5)3NH]Cu2(HCOO)5 was synthesized by using a reported
method. Elemental analysis : calcd C 29.08, H 4.66, N 3.08; exp C
29.02, 29.01; H 4.65, 4.69; N 3.12, 3.15.

[BEDT-TTF]2Cu2(HCOO)5 was synthesized by dissolving BEDT-TTF
(5.0 mg) and [(C2H5)3NH]Cu2(HCOO)5 (20.0 mg) in a mixture of dis-
tilled C6H5Cl (25.0 mL) and C2H5OH (5.0 mL), which was then placed
in an electrocrystallization cell. The cell was subjected to a constant
source of 0.20 mA for 3 weeks at room temperature. A small, thin,
brown, plate-like single crystal was obtained on the cathode.

Physical Characterization

The single X-ray diffraction data of [BEDT-TTF]Cu2(HCOO)5 was col-
lected at Beijing Synchrotron Radiation Facility with radiation of
0.75 a. The crystal structure was determined from X-ray diffraction
data with cell parameters: a = 4.116(1) a, b = 41.463(3) a, c =
11.305(1) a, a =b=g= 908, V = 1929.3(5) a3, space group C2221 at
110 K. The data remained the same up to room temperature.[19]

Magnetization measurements were performed on a tightly packed
polycrystalline sample in a capsule on a Quantum Design MPMS
7XL SQUID system. Susceptibility data were corrected for diamag-
netism of sample by using Pascal constants [@243 V 10@6 cm3 mol@1

per Cu2 + for [BEDT-TTF]Cu2(HCOO)5, @97 V 10@6 cm3 mol@1 per Cu2+

for [(C2H5)3NH]Cu2(HCOO)5] and background-corrected through ex-
perimental measurements on the sample holder. The conductivity
measurement of (BEDT-TTF)2Cu2(HCOO)5 was performed on the
best developed surface of the single crystal with a four-probe
method on a Quantum Design PPMS 9XL system from 2 to 300 K.
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