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Abstract
Background.  Improving the care of patients with glioblastoma (GB) requires accurate and reliable predictors of 
patient prognosis. Unfortunately, while protein markers are an effective readout of cellular function, proteomics 
has been underutilized in GB prognostic marker discovery.
Methods.  For this study, GB patients were prospectively recruited and proteomics discovery using liquid chro-
matography–mass spectrometry analysis (LC-MS/MS) was performed for 27 patients including 13 short-term sur-
vivors (STS) (≤10 months) and 14 long-term survivors (LTS) (≥18 months).
Results.  Proteomics discovery identified 11 941 peptides in 2495 unique proteins, with 469 proteins exhibiting sig-
nificant dysregulation when comparing STS to LTS. We verified the differential abundance of 67 out of these 469 
proteins in a small previously published independent dataset. Proteins involved in axon guidance were upregulated 
in STS compared to LTS, while those involved in p53 signaling were upregulated in LTS. We also assessed the cor-
relation between LS MS/MS data with RNAseq data from the same discovery patients and found a low correlation 
between protein abundance and mRNA expression. Finally, using LC-MS/MS on a set of 18 samples from 6 pa-
tients, we quantified the intratumoral heterogeneity of more than 2256 proteins in the multisample dataset.
Conclusions. These proteomic datasets and noted protein variations present a beneficial resource for better 
predicting patient outcome and investigating potential therapeutic targets.

Key Points

	•	 Short-term and long-term glioblastoma survivors exhibit distinct protein profiles.

	•	 Protein abundance has a low correlation with mRNA expression in glioblastomas.

	•	 Glioblastomas exhibit protein abundance intratumoral heterogeneity.

Proteins inform survival-based differences in patients 
with glioblastoma
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Glioblastoma (GB) is the most common and most lethal 
malignant primary brain tumors in adults, with a me-
dian survival of 12–14  months.1 GBs display multiform 
histopathologies and manifest complex molecular aber-
rations that are not fully functionally characterized using 
genetic mutations.2 Histological grading of tumors may 
misclassify patients given the complexity and diversity 
of molecular alterations in GB.3 Most importantly, the 
varied nature of the disease leads to significant varia-
bility in response to standard therapy (surgery plus con-
current radiation and temozolomide).4 Age at diagnosis, 
extent of surgical resection, and preoperative Karnofsky 
Performance Status (KPS) are well-described prognostic 
factors for GB.5 An unmet need in routine clinical care for 
GB patients, as well as in drug discovery for this disease, 
is the development of high-throughput molecular ap-
proaches that can both classify current patients to improve 
clinical trial designs and identify new therapeutic targets 
not discernible using current genomics approaches.

Overall, problems of intra- and intertumoral heteroge-
neity and functional relevance create challenges for the in-
dependent validation of prognostically significant markers 
in GBs. Although early studies revealed unique muta-
tional, epigenetic, and transcriptional signatures in GBs,6–8 
these signatures have not become routinely used in clin-
ical practice and are not applicable for all GB patients. Two 
prognostic biomarkers have been consistently verified in 
GB: isocitrate dehydrogenase 1/2 (IDH1/2) mutation and 
hypermethylation of O6-alkylguanine DNA alkyltransferase 
(MGMT). IDH1/2 mutation is associated with an overall sur-
vival advantage, but only occurs in approximately 5–10% 
of GB patients and is considered to be an indicator of 
progression from lower grade glioma.8,9 MGMT methyla-
tion produces a survival advantage by suppressing DNA 
repair and increasing the efficacy of chemoradiation, but 
it is present in only 20–40% of GB patients.10 More re-
cently, a comprehensive high-throughput genomic and 
transcriptomic profiling of GBs demonstrated that there is 
no distinctive genomic or transcriptomic signature among 
IDH1/2 wild-type GB patients (the majority of patients) who 
are long-term survivors.11 This finding highlights the need 
for improved prognostic markers among the IDH1/2 wild-
type patient population. Although the above-mentioned 
gene-based markers are of considerable interest, they 
have not translated into changes in clinical care for the vast 
majority of GB patients.

The use of gene expression profiling as a proxy for down-
stream functional activity is dependent on there being a close 
correspondence between mRNA expression and protein ex-
pression or activity.12 Proteomic expression and activity are 
governed by multiple regulatory mechanisms. Protein sta-
bility and degradation, posttranslational modifications, and 
protein complex formation are among the processes that 
often make gene expression profiles disappointing surro-
gates for explaining cellular function. Previous studies in 
colon, breast, and ovarian cancers have shown that protein 
abundance cannot be reliably predicted from gene expres-
sion measurements.13–15 Direct measurement of protein 
markers, however, has proven to be robust and reliable 
prognostic and theranostic tools in many cancer types (eg, 
HER2-neu, ER, and PR in breast cancer), which has generated 
significant interest in proteomics within the glioma field. 
Proteomic analyses have identified differences in protein 
profiles between high- and low-grade gliomas,16,17 between 
different molecular subtypes of gliomas,18 between glioma 
patients who are chemosensitive and those who are not,19 
between GB and normal brain tissue,20,21 between different-
grade tumor areas in the same patient,22 and between pro-
teins that are exclusively expressed by GB and those that are 
not.23,24 We have previously reported that protein network 
classifiers can predict GB patient survival independent of 
age or gene expression subtype25 and used reverse-phase 
protein array data to construct a prognostic GB protein sig-
nature.26 However, these studies have been limited in that 
they have either interrogated a small number of proteins, 
used very small GB patient sample sizes, or utilized cell lines. 
The Cancer Genome Atlas (TCGA), for example, on which we 
based our previous work, examined only 171 proteins.27

Technological advances in liquid chromatography (LC) 
and mass spectrometry (MS) suitable for high-throughput 
protein profiling coupled with standardization of GB tissue 
banking set the stage for our current study. In this study, 
we paired LC and tandem MS (LC-MS/MS) to identify and 
verify novel prognostic candidate protein markers in GB 
not anticipated from previous genomics studies. We veri-
fied our findings in an independent proteomics dataset. 
We also assessed the correlation between protein ex-
pression and mRNA expression from data generated 
from the same discovery GB tumors (ie, analyzing paired 
LC-MS/MS data and RNAseq data). Additionally, we have 
used label-free proteomics to examine how protein abun-
dance varies throughout the tumor using an independent 

Importance of the Study

This study uses shotgun proteomics data from 
multiple independent, clinically annotated gli-
oblastoma datasets to improve our knowl-
edge of glioblastoma biology. By illustrating 
the differing protein profiles of short- and 
long-term glioblastoma survivors, we show 
that proteomics is an approach that can gen-
erate meaningfully prognostic characteriza-
tions. Furthermore, by pairing proteomics with 

matched patient transcriptome profiling, we 
confirm that gene expression is a poor sur-
rogate for protein measurement in glioblast-
omas. Finally, by generating a multisample 
glioblastoma dataset, we provide an initial 
evaluation of intratumoral heterogeneity at the 
protein level which could lead to significant in-
sights for developments of biomarkers and tar-
geted treatments.
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multisample dataset. We anticipate that making publicly 
available our matched proteomic and RNAseq data as well 
as the multisample proteomics dataset will allow other re-
searchers to make novel observations regarding their pro-
teins of interest.

Methods

The Ohio Brain Tumor Study Population

Newly diagnosed untreated GB patients were prospectively 
recruited at University Hospitals Cleveland Medical Center 
under the Ohio Brain Tumor Study (OBTS) Institutional 
Review Board approved protocol28; all patients provided 
written consent for participation in OBTS. We obtained 
snap-frozen tumor samples, from each patient, in the op-
erating room within 15–30  min post-resection using our 
established OBTS standardized operating procedures 
(SOPs). Our SOPs align with TCGA procedures for frozen 
tumor tissue ensuring reliable analyte extraction and mo-
lecular characterization.27 From each patient, we also 
conducted a medical chart review, including complete treat-
ment information and active yearly follow-up for clinical 
outcomes. We defined short-term survivors (STS) as less 
than or equal to 10 months post-diagnosis and long-term 
survivors (LTS) as at least 18 months post-diagnosis, rep-
resenting the 25% and 75% percentiles, respectively, of 
the overall OBTS study population survival distribution 
(N > 300). All samples were reviewed and annotated by 

an expert neuropathologist (M.E.C.) with regard to loca-
tion and tumor cell and extent of necrosis concentration 
(M.E.C.). In addition, all patients included in this study re-
ceived standard therapy, surgical resection followed by 
concurrent radiation and temozolomide. In our discovery 
set we used snap-frozen tumor samples from 13 STS and 
14 LTS patients (total N = 27). The multisample dataset in-
cluded 18 snap-frozen samples from 6 patients (3 sam-
ples by 6 patients) not included in the discovery set. In this 
dataset 3 distinct samples were taken from each patient and 
annotated as to tumor location by the neurosurgeon in the 
operating room: solid tumor, infiltrated brain, enhancing 
margin, or necrotic core. All tumor samples were centrally 
reviewed by a board-certified neuropathologist (Figure 1).

Protein Recovery From Snap-Frozen GB Patient 
Samples From OBTS

All snap-frozen tumor samples were processed in the 
Center for Proteomics and Bioinformatics using previously 
published procedures, summarized here.25

Liquid chromatography–mass spectrometry analysis 
(LC-MS/MS) and data processing from GB patient samples 
from OBTS.

The digests prepared from snap-frozen tumor samples 
(600 ng protein load for discovery dataset) were random-
ized and analyzed by an LC-MS/MS system using a Waters 
NanoAcquity Ultra Performance Liquid Chromatography 
system (Waters) that was interfaced to a Linear Ion Trap 
Quantization Elite-Orbitrap mass spectrometer (Thermo 

  

N = 27 GBM Snap Frozen Tissue

Protein Digestion
N = 27

mRNA Extraction
N = 18

Protein Digestion
N = 6

Na Nb Nc

(3 samples per tumor)

RNA Seq
N = 18

LC MS/MS
N = 27

LC MS/MS
N = 8

LC MS/MS
N = 6

(Na-c = 18)

Short term survivor = 13
Long term survivor = 14

Ohio Brain Tumor Study

Ohio Brain Tumor Study

DISCOVERY SET

N = 8 GBM SDS-PAGE Fractionation
Short term survivor = 6
Long term survivor = 2

N = 6 GBM Multiple Snap Frozen Tissue
Short term survivor = 2
Long term survivor = 4

VERIFICATION SET

MULTI-SAMPLE SET

(Publically Available)

Figure 1.  Experimental schematic for discovery, verification, and multisample datasets. In the discovery dataset protein and mRNA were iso-
lated from 27 snap-frozen GB samples from the Ohio Brain Tumor Study, RNAseq and LC-MS/MS were performed on the samples. In the publicly 
available verification dataset protein was extracted using SDS-PAGE fractionation and quantified using LC-MS/MS from 8 snap-frozen GB sam-
ples. Finally, using a multisampling approach 3 distinct samples were taken from 6 different GB patients and a total of 18 samples were quantified 
using LC-MS/MS.
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Finnigan). The platform was operated in the nano-LC 
mode using the standard nano-electrospray ionization, at-
mospheric pressure ionization stack fitted with a 360 uM 
× 20 uM picotip emitter (New Objective). The solvent flow 
rate through the column was maintained at 300 nL/min. 
The protein digests were injected onto a reversed-phase 
symmetry C18 trapping column (0.18 × 20 mm, 5 µm par-
ticle size, Waters, Inc.) equilibrated with 0.1% formic acid 
(FA)/2% acetonitrile and washed, bound peptides were 
chromatographed using a linear gradient of acetoni-
trile from 5% to 50% in aqueous 0.1% FA over a period of 
210  min. A  100% acetonitrile elution step was performed 
for 15 min prior to resetting the analytical column to the 
initial equilibration conditions and for 15 more minutes at 
the end of the chromatographic run, accounting for a total 
of 240 min of LC-MS/MS run time. The mass spectrometer 
was operated in a data-dependent MS to MS/MS switching 
mode, with the 20 most intense ions in each MS scan sub-
jected to MS/MS analysis. The full scan was performed at 
60 000 resolution in the Orbitrap detector and the MS/MS 
fragmentation scans were performed in the dual ion trap 
detector collision-induced dissociation mode such that the 
total scan cycle frequency was approximately 1.5 s. The dy-
namic exclusion function for previously selected precursor 
ions was enabled during the analysis such that the fol-
lowing parameters were applied: repeat count of 2, repeat 
duration of 45 s, exclusion duration of 60 s, and exclusion 
size list of 450. Xcalibur software (version 2.0.7, Thermo-
Finnigan Inc.) was used for instrument control, data acqui-
sition, and data processing. In order to monitor LC/MS/MS 
reproducibility across individual sample analyses, 400 fmol 
of external heavy labeled peptides from a calibration mix-
ture (part number 88321 Thermo Scientific) was used. 
Overall an average ±2.0 min drift in retention time was ob-
served for QC peptides with an average of coefficient of var-
iation in peptide intensities of 23% across the samples. Raw 
LC/MS and LC/MS/MS MS spectra from the GB tumor sam-
ples were processed using Rosetta Elucidator as previously 
described.29,30 An unfractionated differential label-free anal-
ysis, with STS and LTS as the classifier groups for quantifi-
cation using the chromatographic peak volume, was used. 
Feature definition and peak identification of the aligned 
data were done according to nominally accepted PeakTeller 
parameters.30 Data (*.DTA) files were created from this 
workflow, and the data were exported to a MASCOT 
search engine (http://www.matrixscience.com/) for data-
base searching on the International Protein Index using the 
UniProt website (http://www.uniprot.org/). Annotated fea-
tures were further processed via ProteinTeller, using previ-
ously documented parameters.30

Independent Verification Dataset From GB 
Patient Samples From the Mirza Laboratory

All snap-frozen GB samples in the HerouxMirza dataset 
were processed at the Medical College of Wisconsin, in 
the Mirza laboratory, using sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS-PAGE) fractionation 
followed by LC-MS/MS. The proteomics methods and bi-
oinformatics pipeline have been previously published.21 
Only samples from patients with OS less than or equal to 

10 months of at least 18 months were included in this study 
(N = 8 total).

Data Processing and Analysis

For all data generated on GB patients from OBTS, peptide 
peak intensities were normalized using an adaptation of 
surrogate variable analysis designed for MS data, whereby 
singular value decomposition is executed on model resid-
uals in order to identify bias trends.31,32 Normalization of 
peptide intensities was implemented using the ProteoMM 
R package.33 Missing values accounted for less than 1% of 
all peptide peak intensities in the discovery dataset and 
were not imputed.34 Relative protein abundance was cal-
culated by averaging the top 3 most abundant peptides per 
protein.35,36 Further downstream analysis was then con-
ducted using relative protein abundance. Z-scores were 
generated for all proteins and used for unsupervised and 
supervised hierarchical clustering analyses.

Differential expression analysis between STS and LTS 
was performed on both the OBTS dataset and HerouxMirza 
datasets using the empirical Bayes method executed with 
the limma R package.34,37 RNA sequencing data were 
processed, normalized, and analyzed as previously pub-
lished.38 Following log2 transformation, the correlation be-
tween protein abundance and gene expression counts was 
assessed using Pearson’s correlation.

In the multisample dataset, the variance of a protein was 
defined as:

s2 =

∑
(x −

−
x )

2

N − 1
=

where x is the abundance of the protein in a patient’s 
sample, is the mean abundance of the protein across all 
of the patient’s samples, and N is the number of total sam-
ples for the patient. Pearson’s correlation coefficient was 
also used to measure the strength of the linear association 
between LC-MS/MS samples from the same patient in the 
multisample dataset.

All analyses were completed in R version 3.3.3 (http://
www.R-project.org).

Gene set enrichment of gene ontology functional groups 
was conducted using Gene Set Enrichment Analysis 
(GSEA).39

Dataset Availability

Unnormalized peptide level data for the discovery and 
multisample datasets are included as Supplementary 
Tables S1 and S2. The RNA sequencing data from the 
same patient group as the discovery proteomics dataset 
are available from the EMLBL-EBI European Nucleotide 
Archive database with accession number PRJEB10881 
and is accessible via http://www.ebi.ac.uk/ena/data/
view/PRJEB10881. The sample accession numbers from 
ERS848749 to ERS848765 are for RNA sequencing. The 
RNA sequencing methods, processing details, and dif-
ferentially expressed gene lists are available here.38 The 

http://www.matrixscience.com/
http://www.uniprot.org/
http://www.R-project.org
http://www.R-project.org
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
http://www.ebi.ac.uk/ena/data/view/PRJEB10881
http://www.ebi.ac.uk/ena/data/view/PRJEB10881
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HerouxMirza proteomics dataset and methods have been 
previously published.21 Seventeen of the OBTS patients for 
whom we have generated proteomics data were also in-
cluded in TCGA. The TCGA IDs for these patients are listed 
in Supplementary File 3 and TCGA omic data can be down-
loaded from the Genomic Data Commons Data Portal 
(http://www.portal.gdc.cancer.gov).

Results

Our discovery dataset was compromised of 27 patients, in-
cluding 13 short-term survivors (STS; OS ≤10 months) and 
14 long-term survivors (LTS; OS ≥18 months). For patients 
included in our discovery study, age at diagnosis, IDH1/2 
mutational status, and MGMT methylation status were 
similar among STS and LTS (for those who were tested for 
IDH1/2 mutation and MGMT methylation; some patients 
were diagnosed prior to the current standard of testing for 
these biomarkers) (Table 1). The LTS group had more indi-
viduals with KPS score at least 70. All patients, except for 
one, received standard therapy (concurrent radiation and 
temozolomide) (Table 1). Similar characteristics were seen 
in the multisample and HerouxMirza datasets (Table  1). 
All patient samples in the discovery and multisample 
datasets passed quality control. Extended clinical data for 
the discovery and multisample datasets can be found in 
Supplementary Table S3.

Pathway Protein Dysregulation in STS Versus 
LTS GBs

Using LC-MS/MS, we identified 11 877 peptides in 2495 
unique proteins in our discovery samples. Unsupervised 
hierarchical clustering showed that LTS and STS groups 
could be readily distinguished by protein abundance 
(Supplementary Figure S1). We identified 469 proteins that 
were differentially abundant between STS and LTS (Welch’s 
t-test, FDR q < 0.05; Figure 2A, Supplementary Table S4). 
Of the significantly differentially abundant proteins, 393 
were upregulated in LTS and 76 were upregulated in STS 
(Figure 2A). Gene ontology functional group analysis dem-
onstrated that STS were enriched in proteins involved in 
neuronal and axon development, cytoskeleton organiza-
tion, and cell adhesion and signaling (Fisher’s exact test, 
FDR q < 0.05; Supplementary Table S5). LTS were enriched 
in proteins involved in RNA binding and catabolism, and 
protein localization, targeting, and transport (Fisher’s exact 
test, FDR q < 0.05; Supplementary Table S5).

Proteins that were significantly (P < .05) upregulated in 
STS with a logFC less than −1 included calcium-dependent 
phospholipid-binding proteins from the annexin family 
(ANXA1/2/4/7/11; Figure  2B). ANXA1/2 has been shown 
to be regulators of p53 signaling.40–43 Additionally, pro-
teins (GNAO1, GNAZ, GNAQ, and DNM1) involved in 
PAR-1-mediated thrombin signaling were upregulated in 
STS (Figure  2B). PAR-1 and thrombin signaling are cur-
rently being investigated as therapeutic target in GBs.44 
In LTS we observed a diverse array of proteins with sig-
nificantly (P < .05) increased abundance (log-fold change 
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>1) that included HLA-C an important activator of immune 
response; CASP1 a member of the p53 signaling pathway 
apoptotic pathway; and surprisingly AKT1 a critical onco-
genic regulator of apoptosis (Figure 2B).

Using a previously published independent GB dataset 
we sought to verify the proteins we identified as differ-
entially abundant between STS and LTS. The verifica-
tion dataset contains 6 STS and 2 LTS GB samples that 
were interrogated using SDS-PAGE fractionation fol-
lowed by LC-MS/MS. We compared the significantly dif-
ferentially abundant proteins in the discovery dataset 
to the verification proteomics dataset. We found that of 
the 469 proteins significantly differentially abundant 
in the discovery dataset, 67 were also significantly dif-
ferentially abundant in the verification GBs (Figure  2C; 
Supplementary Table S6). The 67 proteins, which were 
differentially abundant both datasets, were significantly 
enriched in proteins involved in axon guidance, such as 
ribosomal proteins (RPS3A/11/23 and RPL4/7/8/15), 26S 
proteasomes (PSMD11/13), RHOB, ACTR2, CNTN1, and 
DPYSL2. Additionally, there was enrichment in WNT 
signaling proteins (AKT1, HIST1H2AE, HDAC1, RUVBL1, 
and PSMD11/13), interferon-gamma response (NUP93, 
ADAR, STAT3, PTPN6, TRIM25, and CD74), and cytokine 
response (DHX9, ADAR, HNRNPF, TRIM25, AKT1, STAT3, 
CD74, MYO1C, ACTR2, PSMD11/13, PTPN6/12, PYCARD, 
and CD47).

Gene Expression Does Not Reliably Predict 
Protein Abundance in GBs

Matched proteomic and RNAseq data from the discovery 
GB samples allowed the first whole-exome analysis of 
transcript–protein relationships in GB. We compared the 
abundance of identified proteins with the corresponding 
mRNA abundance for each patient sample. All samples 
showed significant positive mRNA–protein correlation 
(FDR-adjusted P-value < .0001, Pearson’s correlation co-
efficient) with an average correlation between protein 
and mRNA abundance of 0.22 (Table 2). This result is con-
sistent with previous studies in ovarian, colorectal, and 
breast cancers (correlation coefficients ranging from 0.23 
to 0.45).13–15 In addition to the overall patient-level correla-
tion between protein abundance and mRNA, we examined 
the correlation between mRNA and protein abundance at 
the gene/protein level. There were 2369 genes/proteins for 
which there were both mRNA and protein measurements 
available. We found that only 55% of these genes showed 
a positive mRNA–protein correlation (Supplementary Table 
S7; Figure  3). We compared proteins that were signifi-
cantly differentially abundant (LC-MS/MS data) between 
STS and LTS to the genes that were significantly differen-
tially expressed (RNAseq data) in the same patients. Of the 
469 significantly differentially abundant proteins and the 
615 significantly differentially expressed genes between 

  
469 differentially abundant proteins discovery datasetA B

C

Short-term survivors Long-term survivors

–4 –2 0
Z-Score

2 4

–4 –2 0
Z-Score State

STS LTS STS LTS 0

–10

Not significant

LogFC > 1

LogFC > 1 and P-value <0.05

P-value < 0.05

0

Log2 fold change

10

5

10

–L
og

10
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Verification datasetDiscovery dataset

Overlapping differentially abundant proteins discovery and verification dataset

2 4

Figure 2.  (A) Heatmap shows the z-score for the 469 proteins that were significantly differentially abundant (FDR P-value < .05) between STS and 
LTS in the discovery dataset. Individual patient samples are in columns. A patient’s survival (STS, OS ≤10 months or LTS, OS ≥18 months) is indicated 
by color-coded labeling in horizontal bars above the heatmap. (B) Volcano plot shows differential protein abundance between STS and LTS in the 
discovery dataset, where −logFC indicates increased protein abundance in STS and +logFC indicates increased protein abundance in LTS. Each dot 
represents a protein and they are color coded as follows: gray (not significant), green (logFC >1), blue (P < .05), and red (logFC > 1 and P < .05). (C) 
Heatmap shows the z-score for the 67 proteins that were significantly differentially abundant (FDR P-value < .05) between STS and LTS in the dis-
covery dataset and verification dataset. Individual patient samples are in columns. A patient’s survival (STS, OS ≤10 months or LTS, OS ≥18 months) 
is indicated by color-coded labeling in horizontal bars above the heatmap.
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
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STS and LTS, we found only 7 corresponding gene/pro-
tein pairs overlapping between the 2 lists (SUB1, PSMB8, 
CADM3, GNG7, RPL23, PDIA4, and PSMB9).

We next examined whether the correlation between pro-
tein and mRNA variation was related to the biological func-
tion of the gene/protein by performing a GSEA using the 
set of 2369 gene/protein pairs that had suitable mRNA and 
protein measurements available. Consistent with previous 
analysis in other cancer types, genes involved in metabolic 
processes (amino acid, lipid, and sugar metabolism) had 
high concordance between mRNA and protein abundance 
(correlation coefficient >0.25).13–15 Additionally, specific to 
GB we also found high concordance among gene/protein 
pairs involved in cytokine and immune system signaling. 
Also consistent with previous work, we found a negative 
correlation between gene/protein pairs involved in path-
ways such as mRNA splicing, spliceosome machinery, and 
protein translation and posttranslational modifications. 
Additionally, in the GB dataset we found a low correlation 
among cell cycle, axon guidance, and cellular response to 
stress gene/protein pairs.

Protein Heterogeneity Exists in GBs by Survival 
Group, Location, and Intratumorally

In addition to the disconnect between mRNA expres-
sion and protein abundance, intratumoral heterogeneity 
has hampered the development of reliable biomarkers 
and targeted treatments in GB. To that end, we sought 

to additionally create a dataset that initially assessed 
how protein abundance varied throughout the tumor. 
Using LC-MS/MS, we identified 2256 proteins from an 
independent set of 18 GB samples (6 patients total, 3 
samples from each patient) (Supplementary Table S2). 
Unsupervised hierarchical clustering demonstrated that 
samples from STS and LTS, respectively, clustered to-
gether (Figure 4A). Samples from the same patient demon-
strated a high degree of similarity with one another overall 
(Figure  4B; Pearson’s r; Patient 1: 0.85–0.88, Patient 2: 
0.87–0.89, Patient 3: 0.85–0.87, Patient 4: 0.85–0.87, Patient 
5: 0.83–0.89, Patient 6: 0.85–0.87). However, the variance 
in protein abundance by protein among intratumoral sam-
ples was high (Supplementary Table S8; Patient 1: median 
0.14, range 0–6.17; Patient 2: median 0.12, range 0–8.67; 
Patient 3: median 0.15, range 0–8.98; Patient 4: median 
0.17, range 0–6.27; Patient 5: median 0.17, range 0–5.88; 
Patient 6: median 0.18%, range 0–7.88). Tumor sample lo-
cation (solid tumor, infiltrated brain, enhancing margin, 
or necrotic core) had minimal impact on cluster member-
ship (Figure 4B). More than 40% of the proteins identified 
in our 6 patients had intratumoral variances in abundance 
greater than 0.25. Housekeeping proteins such as beta-
actin, GAPDH, and VCP were among the most homoge-
nously expressed within and across our patient samples 
(Supplementary Table S8). While important cancer drivers 
such as TGFB1 and KRAS exhibited wide intratumoral ex-
pression (Supplementary Table S8).

  
Table 2.  Patient-Level mRNA–Protein Pearson’s Correlation for the 
Discovery Dataset

Patient ID P-value Pearson Correlation  
Coefficient

LTS_1 1.43E-23 0.20

LTS_2 3.74E-19 0.18

LTS_4 1.47E-21 0.19

LTS_5 1.92E-23 0.20

LTS_6 6.79E-27 0.22

LTS_7 2.17E-24 0.21

LTS_8 2.60E-22 0.20

LTS_9 1.61E-31 0.24

LTS_10 3.66E-18 0.18

LTS_11 1.37E-27 0.22

LTS_12 1.90E-32 0.24

LTS_13 2.87E-35 0.25

LTS_14 1.11E-18 0.18

STS_1 2.43E-26 0.22

STS_2 4.33E-30 0.23

STS_3 3.02E-30 0.23

STS_5 1.08E-45 0.29

STS_6 4.95E-28 0.22

STS_7 1.81E-20 0.19

STS_11 7.84E-35 0.25
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Figure 3.  Scatter plot of logFC values differential expression in the 
discovery dataset for both RNAseq and protein abundance. For 2369 
gene/protein pairs the logFC in the RNAseq data is plotted versus 
the logFC in the protein LC/MS-MS data. Each dot represents a 
gene/protein and they are color coded relative to the correlation be-
tween protein abundance changes and gene expression changes, 
where blue is no change (−1 < logFC < 1 for both datasets), green 
is concordant (logFC < −1 or logFC > 1 for both datasets), and red is 
discordant (logFC < −1 for protein and logFC > 1 for gene expression 
or vice versa).
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdaa039#supplementary-data
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Discussion

In this study using snap-frozen tumor samples from GB 
patients receiving standard therapy, we identified po-
tential GB proteins that were significantly differentially 
abundant between STS and LTS. Notably, we have gen-
erated 2 distinct unlabeled GB proteomics datasets. First, 
we generated a matched proteomic and RNAseq dataset 
that allowed for the first whole-genome analysis of tran-
script–protein relationships in GBs. Then, we verified the 
proteins most differentially abundant between STS and 
LTS in an independent dataset. Finally, we generated an 
unprecedented dataset of proteomic data from multiple 
regions in each (of 6) patient’s tumor allowing for prelim-
inary investigation of intratumoral heterogeneity. One of 
the daunting challenges facing modern medicine lies in the 
understanding and treatment of heterogeneous tumors. 
The complexity of protein profiles from tumors must be 
characterized, compared, and annotated with clinical out-
comes in order to develop more effective therapeutic strat-
egies; however, high-throughput proteomics has until now 
been underused in GB research. Here we make publicly 

available a multisample dataset that will allow researchers 
to begin to assess the heterogeneous distribution of their 
proteins of interest.

In this study, we have applied high-throughput shotgun 
proteomics to study independent sets of GBs in order to 
identify proteins that are differentially abundant among 
STS and LTS. Comparison of our proteomics data with gene 
expression data from the same patient set demonstrated a 
general departure from the expected relationship between 
RNA expression and protein abundance. Few of the major 
proteins that correlated with survival in our proteomics 
analysis showed corresponding correlation using RNAseq 
data. Only 6 protein/gene pairs were significantly differen-
tially expressed in both the proteomics and RNAseq data 
from the same patients. This result suggests that protein 
regulatory mechanisms are disrupting the correlation be-
tween gene expression and protein abundance in GBs. This 
finding further illustrates the important role of proteomics 
in identifying the dysregulation of cell processes that may 
be missed by expression-based approaches.

Using proteomics, we identified and independently veri-
fied a set of potential biomarkers and drug targets as dif-
ferentially abundant between STS and LTS. For example, 
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Figure 4.  (A) Hierarchical clustering of GB samples in the multisample dataset using z-score of 2256. Samples are in columns and are color coded 
based on the patient, patient’s overall survival (STS, OS <10 months or LTS, OS >16 months), and tumor sample location (solid tumor, infiltrated brain, 
necrotic core, or enhancing margin). (B) Multidimensional scaling plot shows the distribution of samples from the multisample dataset based on the 
patient’s overall survival (top), patient sample (middle), and tumor sample location (bottom).
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proteins involved in axon guidance (ribosomal pro-
teins [RPS3A/11/23 and RPL4/7/8/15], 26S proteasomes 
[PSMD11/13], RHOB, ACTR2, CNTN1, and DPYSL2) were sig-
nificantly enriched in STS in both our discovery and verifi-
cation datasets. Cell movement along white matter tracts, 
guided by axonal guidance proteins, is a well-known route 
of glioma cell invasion.45 This finding also validates our 
previous work using RNAseq and a smaller independent 
GB proteomics dataset n  =  16, which found that PSMD3 
was part of a network protein signature that predicted GB 
patient survival with more than 80% accuracy.46 In con-
trast, BAX, CASP1, GNB2L1, and VWA5A provided core p53 
signaling enrichment in LTS. Additionally, we observed the 
dysregulation of calcium-dependent phospholipid-binding 
proteins from the annexin family (ANXA1/2/4/7/11). These 
proteins play important roles in a variety of processes, in-
cluding cell signaling, proliferation, differentiation, and 
apoptosis. Importantly, both proteins are frequently deregu-
lated in many cancers, though there are highly contrasting 
patterns of overexpression and downregulation reported 
depending on the tumor type.47–53 There are also reports 
that ANXA1/2 can function as tumor suppressors and that 
a decrease in expression can lead to drug resistance. In par-
ticular, ANXA2 has been implicated in regulating mesen-
chymal transformation in GB54 and has been correlated with 
GB tumor aggressiveness and grade,55 as well as GB grade 
and prognosis.55,56 Inhibition of ANXA2 in GBs has been 
shown to dramatically impair cell migration.55 In addition, 
a previous study showed that the glioma protein profile 
varied significantly by IDH1/2 mutation and 1p/19q deletion 
status18; however, in the present study we did not have GB 
samples with differences in IDH1/2 mutation status by pa-
tient survival groups in order to address this question (and 
1p/19q deletion is a hallmark feature for non-GB tumors).

Here we have shown how unbiased proteomic tech-
nologies can be harnessed to better understand GB vul-
nerabilities. Due to the cost-prohibitive nature of the work 
presented here, our work is limited by relatively small 
sample size, however, it is significantly larger than any 
cohort previously published. Our work will benefit from 
future expansion in terms of both sample size and work-
flow in order to establish the robustness of identified pro-
teins as prognostic markers or potential drug targets. In 
addition, we anticipate that the proteins and subsequent 
biomarkers we have detected to be of higher abundance. 
While the proteins that we have quantified are more highly 
abundant overall we still find that even these highly abun-
dant proteins do not always closely correlate with mRNA 
expression. In fact, in this study we have demonstrated 
that there is a significant disparity among protein abun-
dance and mRNA expression. While a strength of our study 
was the inclusion of both RNAseq and proteomics meas-
urements, future work would benefit from the inclusion of 
important phospho-proteomics data and the use of unbi-
ased proteomics platforms that capture data from a larger 
number of proteins. We have also left unresolved any 
recommendation on the number of biopsies or sections 
required from tumors in order to fully assess GB protein 
heterogeneity. Finally, work correlating patient response 
to treatment directly to proteins and protein heteroge-
neity in a clinical trial setting would elucidate the scope of 
this issue as it relates to improving GB patient treatment 

and outcome. Ultimately, our approach combined with fu-
ture work may be useful in pinpointing new drug targets, 
identifying drug response biomarkers, and stratifying pa-
tients into treatment groups. In conclusion, we make avail-
able to the glioma research community 2 independent, 
clinically annotated, shotgun proteomics datasets—one of 
which includes matched RNAseq measurements. This work 
forms the foundation for the identification of prognostic 
biomarkers, targeted molecular treatments, and patient 
stratification strategies for GB.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
Advances online.
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