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ABSTRACT

Long non-coding RNAs (lncRNAs) can act as scaf-
folds that promote the interaction of proteins, RNA,
and DNA. There is increasing evidence of sequence-
specific interactions of lncRNAs with DNA via triple-
helix (triplex) formation. This process allows lncR-
NAs to recruit protein complexes to specific ge-
nomic regions and regulate gene expression. Here
we propose a computational method called Triplex
Domain Finder (TDF) to detect triplexes and char-
acterize DNA-binding domains and DNA targets sta-
tistically. Case studies showed that this approach
can detect the known domains of lncRNAs Fendrr,
HOTAIR and MEG3. Moreover, we validated a novel
DNA-binding domain in MEG3 by a genome-wide se-
quencing method. We used TDF to perform a sys-
tematic analysis of the triplex-forming potential of
lncRNAs relevant to human cardiac differentiation.
We demonstrated that the lncRNA with the highest
triplex-forming potential, GATA6-AS, forms triple he-
lices in the promoter of genes relevant to cardiac de-
velopment. Moreover, down-regulation of GATA6-AS
impairs GATA6 expression and cardiac development.
These data indicate the unique ability of our compu-
tational tool to identify novel triplex-forming lncRNAs
and their target genes.

INTRODUCTION

A significant portion of the human genome encodes genes
that express long non-coding RNAs (lncRNAs). Nuclear

lncRNAs participate in several biological processes, includ-
ing chromatin organization and transcriptional regulation,
and act as structural scaffolds of nuclear domains. Their
size allows lncRNAs to facilitate simultaneous interactions
of several molecules (1,2). Of particular interest is the in-
teraction of lncRNAs with DNA. The advent of new tech-
niques, including chromatin isolation by RNA purification
(ChIRP), capture hybridization analysis of RNA targets
(CHART), chromatin oligo affinity precipitation (ChOP),
and RNA antisense purification (RAP), has helped to deci-
pher the features of some nuclear lncRNAs and their inter-
actions at the chromatin level (3–6). For example, in human
cancer cells, lncRNA HOTAIR has been found to interact
with more than 900 genomic regions close to the binding
sites of EZH2 and SUZ12 (3). Similarly, thousands of in-
teraction loci have been identified for other lncRNAs, such
as MALAT1, NEAT1 (4) and MEG3 (5). Recent protocols
go one step further and capture all potential RNA–DNA
interactions in a given cell type (GRID-Seq (7), ChAR-
Seq (8) and SPRITE (9)). Nevertheless, all these protocols
capture both direct RNA–DNA interactions as well as pro-
tein mediated RNA–DNA interactions. Therefore, they are
not able to reveal molecular mechanisms underlying the in-
teraction of particular RNAs with specific DNA loci and
further functional characterization of the RNAs is required.

One mechanism facilitating direct RNA–DNA interac-
tions are triple helices. Double-stranded DNA can form
triple-helical structures by accommodating a third single-
stranded nucleic acid in its major groove. The third strand
binds to duplex DNA by forming Hoogsteen or reverse
Hoogsteen hydrogen bonds with a purine-rich (adenine-
and-guanine–rich) strand of DNA in either the parallel ori-
entation (both 5′ to 3′) or anti-parallel orientation (5′ to 3′
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and 3′ to 5′) (10). Only specific combinations of bases pro-
mote the formation of stable triple-helical structures (Fig-
ure 1A).

Regarding the functional relevance of RNA–DNA
triplexes, research has shown that a nucleolar lncRNA
(‘pRNA’) directly interacts with a ribosomal DNA (rDNA)
promoter, forming a triple-helical structure. This struc-
ture is recognized by DNA methyltransferase DNMT3B,
which methylates rDNA promoters and represses rDNA
transcription (11). Later, several studies have revealed that
lncRNAs, including Fendrr (12), MEG3 (5), KHPS1 (13),
PARTICLE (14,15) and HOTAIR (16), directly interact
with DNA in a sequence-specific manner, forming RNA–
DNA triple helices. Such lncRNAs have been shown to
bind to proximal (12,13) or distal (5,14–16) genomic re-
gions and to activate (5,13) or repress transcription (12,16)
through recruitment of coactivator or corepressor proteins.
Besides, some lncRNAs form triple helices in cis (auto-
binding) (12,13,17), that is, at the exact location where they
are transcribed.

Computational methods are crucial for identification of
triple helices. Initial methods were based on the search of
purine rich DNA regions, but did not characterize triplex
forming RNA regions (18,19). Later, an efficient algorithm
for detection of triple helices of a RNA in large DNA
sequences named TRIPLEXATOR (20) was proposed. It
enumerates all regions of RNA and DNA sequences that
are likely to engage in the formation of triple helices with
size larger than l bp and with k maximum mismatches. This
widely used computational tool will list tens of thousands
of triple helices for a single lncRNA, but it offers few statis-
tics to select relevant triple helices. This makes the selec-
tion of triplexes for subsequent functional studies a cumber-
some manual task. LongTarget is another computational
method for prediction of triple helices (21). However, this
web based method only evaluates a single DNA region at a
time and was recently shown to be significantly slower than
TRIPLEXATOR (22). This precludes its use in the analysis
of large number of RNA or DNA regions.

Our previous in silico analysis has shown that only par-
ticular regions of the lncRNA HOTAIR are likely to form
triple helices with DNA (16). These regions were close to
but did not overlap with known HOTAIR domains that in-
teract with PRC2 and LSD1 complexes. One of these RNA
regions was confirmed to form triple helices in two target
genes distal to HOTAIR (16). This indicates the importance
of computational methods for statistical characterization of
triplex-forming regions within lncRNAs. We denote these
regions as DNA binding domains (DBD), i.e. small regions
(20–50 bp) within potentially long RNAs (>1000 bp) form-
ing triple helices with specific DNA regions (Figure 1B).
Moreover, RNA sequencing enables the discovery of hun-
dreds of lncRNAs with cell type–specific expression and un-
known function (23,24). There is a need for computational
approaches to rank lncRNAs by their probability to bind to
distinct DNA regions via triple-helix formation (25).

Our approach

Here, we present computational methods for identifying
RNA–DNA triple helices and for characterizing lncR-

NAs and their respective DNA targets. First, we describe
TRIPLEXES (Figure 1B) a method that improves the com-
putational time for triplex identification in comparison to
TRIPLEXATOR by using an efficient bit-parallel algo-
rithm (26). TRIPLEXES also provides an efficient algo-
rithm for genome-wide detection of auto-binding triple he-
lices. Second, we introduce Triplex Domain Finder (TDF)
–– a computational tool for statistical characterization of
the triplex-forming potential of lncRNAs (Figure 1C). TDF
uses concepts similar to motif over-representation analysis,
which is commonly used to find transcription factors regu-
lating particular genes or genomic regions (27).

That is, TDF detects regions within RNA (DNA binding
domains), which are more likely to form triple helices in par-
ticular target DNA regions (ChOP-Seq peaks or promoters
of particular genes) than in background genomic regions
(random genomic regions or all gene promoters). More-
over, TDF ranks DNA target regions or RNAs according
to the triplex-forming statistics. These computational tasks
addressed by TDF are crucial in the identification of RNA
and DNA target regions for further biological validation
and, for the first time, allows exploratory analysis evalu-
ating several lncRNAs at a time. We are not aware of any
computational method providing the same functionality as
TDF.

To access the power of TDF to find novel DNA bind-
ing domains and triple helices, we evaluated the ability of
TDF to identify previously reported DNA binding domains
and triple helices of Fendrr, HOTAIR and MEG3 by ana-
lyzing genome-wide data that contain their potential DNA
targets (5,12,28). Furthermore, we applied a new sequenc-
ing approach to validate a new DBD of MEG3 predicted
by TDF. To evaluate the ability of TDF for de novo detec-
tion of triplex-forming RNAs, we performed an unbiased
evaluation of 75 lncRNAs expressed during cardiac differ-
entiation. We could confirm the triple-helix formation of the
top-ranked lncRNA GATA6-AS.

MATERIALS AND METHODS

Methods

First, we describe TRIPLEXES and its algorithm for enu-
merating all triple helices between the one (or more) pro-
vided RNA and DNA sequences following the canoni-
cal codes described in Figure 1A. Next, we describe the
Triplex Domain Finder, which is a statistical framework
to evaluate large numbers of triple helices predicted by
TRIPLEXES (or TRIPLEXATOR) on several RNA and
DNA sequences. TDF is based on two statistical tests: the
promoter test, which evaluates triple-helix formation in the
promoters of genes; and the genomic region test, which
evaluates triple-helix formation in arbitrary genomic re-
gions.

TRIPLEXES

For a given RNA sequence, P = p1p2···pn, and DNA
sequence T = t1t2···to, the triplex detection problem is
the search for (maximum length) substrings pi...pj and
tu..tv from P and T with minimum length l. Triple helices
follow the matching code from Figure 1A. For the case of
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Figure 1. The computational framework of TRIPLEXES and TDF. (A) Triplexes are formed by binding of single-stranded RNA (blue) with a purine-rich
strand (green) of a double-stranded DNA via Hoogsteen base pairing. To form a triplex in the parallel orientation, a pyrimidine or mixed motifs are
required, but the anti-parallel orientation requires a purine or mixed motifs. (B) For a given RNA and DNA sequence, TRIPLEXES identifies candidate
triple helices with a minimum size and maximum number of mismatches following one of the canonical codes. Each triplex is formed by one RNA sequence
(triplex forming oligo – TFO) and a DNA region (triple target sites – TTS). We introduce here the concept of DNA binding domains (DBD) based on the
fact that TFOs (orange) usually group in particular regions of a RNA. Contiguous regions with overlapping TFOs (marked in red) define a DNA-binding
domain. (C) TDF performs statistical tests by combing predictions from TRIPLEXES to answer the following questions: (1) which regions of a RNA
(DBD) are more likely to form triple helices with particular DNA target regions? (2) Which DNA regions (target genes) are more likely to be targeted by
the RNA? and (3) which lncRNAs are more likely to form triple helices in a set of target DNA regions?

an anti-parallel motif, matching is evaluated with the in-
verted RNA substring (pj···pi). In practice, we work with
the relaxed version of this problem, which allows up to k
mismatches to occur but no indels.

As TRIPLEXATOR, we adopt error rate e for definition
of k, such that k = �e × L�, where L is the total length of
the triplex. Each triplex is represented as tuple t = (rP, rT),
where rP = (i, j) represents the location in the RNA forming
a triplex, and rT = (u, v) represents the location in the DNA
forming a triplex. Here, we denote rP as a triplex forming
oligonucleotide (TFO) and rT as a triplex target site (TTS).
TRIPLEXES works by first searching for triple-helix seeds
of fixed size l. This problem can be loosely formulated as a
k-mismatch pattern search and is efficiently solved with the
bit-parallel algorithm of Myers (26). Initially, a suffix array
of all substrings of length l in P is built to have a unique
set of l-grams. Subsequently, this set of l-grams is approx-
imately matched against each DNA sequence T separately
by Myers’ bit-parallel algorithm, yielding a set of seeds with
length l that represent putative triple helices between P and
T.

At the second step, to identify the maximal triplexes for
the initial matches (seeds), these regions are extended while
ensuring that all constraints, such as the maximum error

rate, minimum rate of guanines, and maximum number
of consecutive errors, are still satisfied. The extension of
each seed is based on a heuristic algorithm: first, we pre-
compute the positions of more distant mismatches on ei-
ther side of a seed, up until a maximum number of mis-
matches. This process gives us an interval within which the
seed should be maximally extended while satisfying all the
constraints. To do so, we start with a window that includes
the seed and extends to the left as much as possible. Then,
we probe the next mismatch position to the right of the seed
and verify if all constraints are still satisfied. If yes, we ex-
tend the window and proceed to the next mismatch to the
right. If not, we resize the window from the left and con-
tinue to the right. During this process, windows of vari-
ous sizes may be valid, but only the largest one is stored.
Such a search is necessary because the guanine and error
rates depend on the window length and must be recom-
puted for each shift (extension). Finally, the extended seeds
that overlap are merged to build a single continuous triplex.
As a result, TRIPLEXES reports a superset of all maximal
triplexes satisfying all the constraints. By definition, both
TRIPLEXES and TRIPLEXATOR are exact algorithms
returning the same TFO-TTS pairs when presented to the
same RNA/DNA sequences and parameters.
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A novel feature of TRIPLEXES is the detection of auto-
binding RNA–DNA triple helices. In short, in a given
RNA (or DNA) sequence, for candidate string pi...pj,
TRIPLEXES searches for triple helices in string pu...pv,
where |i − u| = |j − v| < g for small g values (default is 3).
This problem can be efficiently solved by means of an in-
terval tree to limit the search space. This approach allows
us to find all auto-binding sites in the whole genome for the
given parametrization within minutes (23 minutes for hu-
man hg19).

TDF – Triplex Domain Finder

TDF is a framework for statistical characterization of
triplex-forming potential of RNAs within particular tar-
get DNA regions. Starting from TFO-TTS pairs provided
by TRIPLEXES, TDF first defines DNA binding domains
(DBDs) by finding contiguous RNA regions with overlap-
ping TFOs (see Figure 1B). Then, it compares the num-
ber of TTS formed by a given DBD in target DNA re-
gions, i.e. promoters of the genes differentially expressed
after the lncRNA knockdown or regions with ChIRP-Seq
peaks. This is contrasted to the number of TTS of the same
DBD in background regions, i.e. all promoters or random
genomic regions. DBDs with statistically significant higher
number of target regions with a TTS than in background re-
gions are regarded as triplex-forming domains of the RNA.
Moreover, TDF uses the statistical significance to rank de-
tected DBDs in case more than one DBD is indicated as
significantly enriched. See Supplementary Figures S1 and
S2 for details on tests.

More formally, TDF executes TRIPLEXES to enumer-
ate all triple helices of the lncRNAs found in target regions
and background regions. This returns a set of triple helices
(Ttargets = {t1, ..., tn} and Tback = {t1, ..., tm}). From Ttargets ,
we can obtain the set of TFOs (RTF O = {r1, ..., rn}) and the
set of TTSs (RTTS). Next, TDF defines all candidate DBDs
by finding contiguous regions within the RNA with over-
lapping TFOs (Figure 1B). That is

DBD = {r ∪ s : r, s ∈ RTF O}, (1)

where for a pair of regions r = (i, j) and s = (u, v), r∪s defines
a merge operation for overlapping regions

r ∪ s = (min(i, u), max( j, v)) if o(r, s) = 1. (2)

and o defines the overlap between two regions

o(r, s) =
{

1 if j > u AND i < v
0 otherwise. (3)

TDF ignores DBDs with low TFO support (less than 5
TFOs or having TFOs associated to <5% of target DNA
regions). Next, for each candidate DBD, we evaluate its
triplex-forming potential by testing whether the number of
DNA regions with at least one TTS associated to a DBD is
greater in target DNA regions as compared to background
DNA regions. This operation is currently implemented in
two statistical tests described below.

Promoter test. This test evaluates whether the DNA bind-
ing domains of a RNA are likely to form triple helices in

the promoter regions of candidate target genes, i.e. list of
differentially expressed genes in a given biological study.
The test compares the events of binding of the lncRNA in
the promoters of candidate genes (target regions, Rtargets)
with the binding events in the remaining promoters of the
genome (background regions, Rback). First, TDF enumer-
ates all TTSs from a set of triple-helix predictions T associ-
ated with DBD d

TTS(T, d) = {r TTS : (r TF O, r TTS) ∈ T and o(d, r TF O) = 1}.
(4)

Then, it counts the number of target regions with at least
one TTS for the given DBD d

a = |{r : r ∈ Rtargets, s ∈ TTS(Ttargets, d) and o(r, s) = 1}|,
(5)

and non-target regions with at least one TTS for the given
DBD d.

c = |{r : r ∈ Rback, s ∈ TTS(Tback, d) and o(r, s) = 1}|.
(6)

After that, we define a two-by-two contingency table repre-
senting the numbers of target and non-target regions with
at least one (or no) TTS for a given DBD as follows:

with TTS without TTS

Target promoters a |Rtargets | − a
Non-target promoters c |Rback| − c

Finally, Fisher’s exact test is performed on the above con-
tingency table for each DBD. TDF outputs the corrected P-
value (29), an odds ratio, and binding-site statistics a and c
for all candidate DBDs (see Supplementary Figure S1 for a
schematic of the promoter test).

Genomic region test. This test evaluates whether the DNA
binding domains of a RNA are likely to form triple helices
in particular genomic regions, i.e., peaks from genome-wide
essays ChIRP-Seq, ChOP-Seq, or CHART-Seq. As a back-
ground region, we generate H random regions by random
selection of DNA regions with the same size/length as those
of the target region Rtargets . Then, we carry out an empiri-
cal statistical test to determine whether the number of tar-
get regions with at least one TTS is greater than the number
of ‘random’ non-target regions with one or more TTS for
a given DBD. Unless otherwise stated, TDF performs ran-
domization for 1000 times.

Formally, we generate H non-target regions by randomly
selecting DNA positions with the same size as that of the
target regions. After that, we apply TRIPLEXES to the re-
gions and obtain predictions Ttargets and Tback

h for h = 1,
..., H. Next, we evaluate all potential TTSs from the tar-
get regions as described in Equation 4. Then, we estimate
the number of target regions (a) with at least one TTS for a
given DBD (Equation 5). Similarly, we obtain distribution
c = {c1, .., ch, .., cH}, where ch is the number of non-target
regions with at least one TTS per DBD of the hth non-target
region. We compute an empirical P-value by counting the
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values higher than a that are found in c.

p = |{c > a : ∀c ∈ c}|
H

(7)

Finally, we apply the false discovery rate (FDR) (29) as a
multiple-test correction method to the P-values (see Sup-
plementary Figure S2 for a schematic of the genomic region
test).

Ranking of target DNA regions. TDF provides statistics
to rank target regions: the number of TTSs detected in the
region normalized by kilobases and the proportion of the
base pairs covered by TTSs. For this purpose, TDF consid-
ers only TTSs from statistically significant DBDs. TDF also
allows for the inclusion of experimental evidence, e.g., gene
expression fold change or scores of ChOP-Seq peaks, as an
external criterion for ranking. TDF provides a combined
statistic involving the sum of ranks on all the available cri-
teria. Moreover, the interface enables the user to select the
criteria for ranking candidate target regions.

Ranking of multiple lncRNAs. TDF allows for evaluation
of the triple-helix formation of multiple lncRNAs targeting
a set of common DNA regions. This approach is useful in
an exploratory analysis, i.e., evaluation of all lncRNAs dif-
ferentially expressed in a particular differentiation process.
These lncRNAs are then evaluated in the same set of target
regions, i.e. promoter regions of the differentially expressed
genes or regions with particular chromatin marks. TDF
provides statistics such as the number of enriched DBDs
and the number of TTSs to rank candidate lncRNAs. Be-
cause the sizes of lncRNAs can vary (from 200 nucleotides
to 105 nucleotides in the data analyzed here), statistics are
normalized by the number of bases (N = 1000/length) to
avoid the bias for larger lncRNAs.

Materials

Fendrr sequence and DNA targets. To define targets
of Fendrr (GenBank: JQ973641.2), we obtained RNA-
Sequencing of Fendrr shRNA and control conditions de-
posited in GEO (GSE43078). We calculated the log2 fold
change between Fendrr shRNA and control. Genes with a
fold change >2 are defined as differentially expressed (1507
genes). We also included genes analysed by Grote et al. (12),
which were not present in the differentially expressed gene
list. Of those genes, only 1377 are mapped to TDF tran-
script database (Mouse GENCODE V4). Triple helix bind-
ing sites had at least 20 nt with a maximum of four mis-
matches and 2 consecutive errors. All the sequences were
based on mm9 genome.

MEG3 sequence and DNA targets. DNA target regions
of MEG3 (ENST00000451743) were obtained from ChOP-
Seq experiments on human breast cancer cell line (BT-549).
We used 532 MEG3 ChOP-Seq peaks close to the dereg-
ulated genes after MEG3 down-regulation as provided by
Mondal et al. (5) We added the peak close to TGFB2 with a
validated triple helix, as it was not included in the previous
list. Triple helix binding sites had a maximum of three mis-
matches and two consecutive errors. A minimum triple helix

size of 14 nt was used to recover the small triple helices val-
idated in the previous study (5). To get a full list of MEG3
ChOP-Seq peaks, we have also performed peak calling with
MACS2 (30) using default parameters (17 953 peaks).

HOTAIR targets. In the knockdown experiment of
lncRNA HOTAIR (ENST00000424518) in fibroblasts, 1327
up-regulated genes were identified (28). We applied TDF
promoter test on those genes with the parameter l = 15.
Five significant DBDs are identified and four of them (I,
III, IV and V) coincide with the ones detected with HO-
TAIR ChiRP-seq data (16). Besides, we also applied TDF
on the RNA-DNA interaction data in MDA-MB-231 cell
from GRID-seq experiment (GSE82312) (7). We first fil-
tered RNAs reads which overlap with HOTAIR and then
obtained reads associated to their DNA targets. Eventu-
ally 5,046 reads were identified in replicate 1 and 4,623 for
replicate 2. TDF genomic region test was applied to 792
genomics regions with at least three reads. We could not
find RNA reads in GRID-seq experiments for any other
lncRNA evaluated here.

DBD-Capture-Seq. DBD-Capture-seq (31) experiments
were performed with RNA oligos corresponding to MEG3
domain I and domain II, as well as GATA6-AS domain
I (see supplementary material for protocol details). Con-
trol experiments were based on the same protocol without
the inclusion of an oligonucleotide. Experiments were se-
quenced on a NexSeq500 Illumina platform in duplicates.
The reads were aligned to the human genome (hg38) by
BWA (32) (version 0.7.15-r1140), filtered according to the
blacklisted genomic regions from ENCODE (33). Differen-
tial peak calling was performed by RGT-THOR (34) (RGT
version 0.11.3) with the P-value cut-off = 10−2.5 by con-
trasting libraries with oligos (MEG3 domain I) versus con-
trol libraries. Peaks with highest signals in control libraries
were used as controls.

TDF - Transcript annotation. TDF employs GENCODE
annotation (35) for definition of promoters (version 24 for
humans and version 4 for mice). The promoter test can
be executed with either gene symbols or ENSEMBL IDs
as input. Mapping of gene symbols to ENSEMBL is con-
ducted via annotations provided by HGNC for humans
(http://www.genenames.org/) and by MGI (version 6.03) for
mice (http://www.informatics.jax.org).

See our supplementary material for description of exper-
iments to characterize lncRNAs relevant cardiac differen-
tiation, functional characterization of GATA6-AS and im-
plementation details of TDF and TRIPLEXES.

RESULTS

TDF identifies the known triple helices of Fendrr and HO-
TAIR

To assess the ability of TDF to find known triple helices,
we analyze Fendrr, which was reported to form a triplex
in the promoter regions of developmental genes such as
Foxf1 and Pitx2 (12). Notably, these triplexes were detected
with a computationally expensive [O(n3)] RNA–DNA base-
pairing energy model (36) and were therefore restricted to

http://www.genenames.org/
http://www.informatics.jax.org
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a few selected target genes (<10). To assess the triplex-
forming potential of Fendrr in a genome-wide manner, we
performed TDF analysis on all genes that are differentially
expressed after a knockdown of Fendrr (1,507 genes) (12).

As shown in Figure 2A, TDF detected only one enriched
DBD in Fendrr located in the region 1502–1565 (adjusted
P-value 0.0069; Supplementary Table S1). Moreover, TDF
ranked the Foxf1 promoter as the first target according to
combined ranking (the number of TTSs, coverage of TTSs,
and fold change in expression), while Pitx2 was ranked as
the gene with the second largest number of TTSs (Sup-
plementary Table S2). Besides, the same triplexes verified
in (12) were also predicted (Supplementary Figure S3).

LncRNA HOTAIR was identified to impact the differ-
entiation of mesenchymal stem cells (16). HOTAIR was
shown to form triple helices on the promoter of PCDH7
to repress its expression. In order to revalidate these re-
sults with independent data, we applied TDF analysis on
the genes up-regulated after knockdown of HOTAIR in pri-
mary foot fibroblasts (28) and the DNA regions predicted
to interact with HOTAIR in MDA-MB-231 cells by GRID-
Seq (7). TDF identifies five enriched DBDs in fibroblasts
and 6 DBDs in MDA-MB-231 cells, of which four of them
coincide with the ones detected with HOTAIR ChIRP-Seq
data (16) (Supplementary Figure S4 and Supplementary Ta-
ble S3).

Moreover, TDF ranks PCDH7 as 6th target by cover-
age (out of 984) and predicts the same triple helices veri-
fied in (16) in foot fibroblasts (Supplementary Figure S3 and
Supplementary Table S4). This indicates similar DBDs are
also used by HOTAIR in distinct cellular contexts. Taken
together, results suggest that TDF can detect known DBDs
in RNAs and their target genes.

TDF detects a new DBD in MEG3

A recent study suggests that lncRNA MEG3 interacts with
enhancers near TGFBR1, SMAD2 and TGFB2 via triplex
formation (5). We therefore wanted to predict the triplex-
forming potential of MEG3 more globally and to explore
novel DBDs forming triple helices with DNA regions iden-
tified by 533 MEG3 ChOP-Seq peaks close to MEG3 dys-
regulated genes. As shown in Figure 2B, TDF detected three
significant DBDs within MEG3 (Supplementary Table S5).
The most significant one (Domain I, adjusted P-value 1.0e–
5) corresponded to a previously validated domain (5). Ad-
ditionally, TDF ranked regions near SMAD2 and TGFBR1
as the 14th and 122th (out of 533), respectively (Supplemen-
tary Figure S3), confirming the ability of TDF to identify
reported triplexes.

To experimentally evaluate the capacity of TDF for iden-
tifying novel DBDs, we performed an RNA-based DNA
capture assay (DBD-Capture-Seq; 31). In short, we incu-
bated biotinylated RNA oligos corresponding to MEG3
Domain I (known) and Domain II (new) with sheared ge-
nomic DNA to allow for triplex formation. After binding
to streptavidin-coated beads, RNA-associated DNA was
eluted and subjected to deep sequencing. Control experi-
ments were conducted in the absence of biotinylated RNA
oligos. Differential peak calling detected 89,739 peaks for
MEG3 Domain I and 73,546 peaks for Domain II, with

12,809 peaks being common to both domains (Figure 2D).
DBD-Capture-Seq Domain I peaks coincided with DNA
regions near TGFBR1, SMAD2, and TGFB2 among other
genes that were shown to form triple helices with MEG3
(Figure 2C) (5). Of note, a repetitive GA motif is present
in Domain I DNA targets (Figure 2D). This agrees with
the formation of anti-parallel purine triple helices with the
GA-rich Domain I RNA (Figure 2F). On the other hand,
a G-rich motif was predominant in Domain II targets (Fig-
ure 2D); this finding is consistent with the formation of par-
allel pyrimidine triple helices with the C-rich Domain II
RNA (Figure 2G).

DBD-Capture-Seq peaks for Domains I and II over-
lapped with respectively 2,728 and 1,060 peaks of MEG3
ChOP-Seq peaks (5) (Figure 2D; P-value <1.0e−239 for Do-
main I and P-value <1.0e−51 for Domain II; intersection
test (37)). Note that DBD-Capture-Seq is performed in vitro
on naked DNA and therefore detects more potential DNA
target sites of MEG3 than ChOP-Seq, which identifies in
vivo MEG3 interactions with cross-linked chromatin. More-
over, ChOP-Seq and similar protocols (CHART-Seq, RAP-
Seq or GRID-Seq) also include indirect RNA–DNA in-
teractions (protein mediated), which explains why not all
ChOP-Seq peaks overlaps with a DBD-Capture-Seq peaks.
Altogether, both TDF and DBD-Capture-Seq confirms all
three known triplex helices formed by MEG3.

To evaluate the power of TDF to rank DBDs from
MEG3, we executed the TDF genomic region test using
the top 5,000 regions identified by MEG3 DBD-Capture-
Seq (Domain I, Domain II, and control peaks). This anal-
ysis ranked Domain I as the first and Domain II as the
10th for DNA sequences from Domain I DBD-Capture-Seq
peaks (Supplementary Table S6). Similarly, Domain II was
ranked first and Domain I fourth in the analysis of DNA
sequences from Domain II DBD-Capture-Seq peaks (Fig-
ure 2E; Supplementary Table S7). No enriched DBD was
detected in control peaks. The fact that Domain II is signif-
icant in forming triple helices in Domain I DBD-Capture-
Seq peaks indicates that distinct DBDs target the same or
very close genomic regions. This is supported by the over-
lap (18%) between Domain I and Domain II Capture-Seq
peaks (Figure 2D). Altogether, these results confirmed the
ability of TDF to detect novel DBDs and to rank them by
their target DNA sequences.

Evaluation of triplex-forming potential of lncRNAs in cardiac
differentiation

To investigate the capacity of TDF for ranking multiple
lncRNAs by their ability to form triple helices, we eval-
uated lncRNAs expressed during cardiomyocyte develop-
ment (Figure 3A). Human pluripotent stem cells (hPSCs)
were differentiated into cardiomyocytes (38,39). Cells were
harvested at Day 0 (undifferentiated hPSCs) and Day 4 (car-
diac progenitors) and RNA sequencing was performed in
triplicates. The identity of the cells where confirmed by the
expression dynamics of pluripotency markers and cardiac
progenitor markers as well as by the gene ontology enrich-
ment analysis for the differentially expressed genes (Supple-
mentary Figure S5).
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Figure 2. TDF detects known and novel DNA binding domains of Fendrr and MEG3. (A, B) The coverage of TFOs (y-axis) within Fendrr and MEG3
sequences (x-axis). Regions highlighted in red/grey indicate significant DBDs. (C) DBD-Capture-Seq signals and peaks for Domain I (blue), Domain II
(green), and control (red) as well as ChOP-Seq peaks in the validated triplex-forming regions (orange). (D) A Venn diagram showing the overlap between
DBD-Capture-Seq (MEG3 Domains I and II) and MEG3 ChOP-Seq. De novo motifs detected in the top 500 DBD-Capture-Seq regions are also presented.
(E) TDF analysis reveals a high propensity (higher z-score) of Domain I RNA to form triple helices in Domain I DBD-Capture-Seq peaks in comparison
with Domain II RNA sequence and vice versa. (F, G) DBD logos indicating the nucleotides from the MEG3 domain sequence, which are predicted to form
triple helices in Capture-Seq peaks of the respective domain. Higher nucleotides indicates higher number of triple helices (TTSs).

Then, we identified all differentially expressed genes dur-
ing differentiation. Of the 2,101 up-regulated genes, 75 are
annotated as noncoding in GENCODE (35). Next, we car-
ried out the TDF promoter test to evaluate the triplex for-
mation of these 75 lncRNAs in the promoters of either up-
regulated or down-regulated genes. This analysis revealed
that 38 of these lncRNAs have at least one enriched DBD in
either up ( for 37 lncRNAs) or down (for 18 lncRNAs) reg-
ulated genes (adjusted P-value <0.05; Supplementary Ta-
ble S8). Next, we ranked the combination of lncRNAs and
target genes (up or down) using the following criteria: the
number of predicted TTSs, the number of DBDs per kilo-
base, the fold change in their expression during cardiomy-
ocyte differentiation, and the sum of the above ranks (Fig-
ure 3B). The top-ranked lncRNA was GATA6-AS on up-

regulated genes. Besides, LINC00261 (40,41), which plays
a role in mesendodermal differentiation by regulating the
expression of transcription factor FOXA2, ranked 6th.

GATA6-AS forms triple helices and affects cardiac mesoderm
differentiation

For functional characterization of the top-ranked lncRNA
GATA6-AS, we confirmed its expression with rapid ampli-
fication of cDNA ends (RACE), which indicated a larger
GATA6-AS transcript than the one in GENCODE (Fig-
ure 3C and Figure S5). Moreover, RNA fractionation ex-
periments confirms that GATA6-AS is prominently local-
ized in the nucleus (Supplementary Figure S6). TDF anal-
ysis of GATA6-AS regarding the promoters of genes up-
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Figure 3. Characterisation of triple helices forming lncRNAs during cardiac differentiation. (A) The strategy for identification of lncRNAs forming triple
helices during cardiac differentiation. (B) Distribution of statistics used to rank lncRNAs according to their triplex-forming potential. (C) The expression
profile of GATA6-AS. (D) TDF showing the presence of two domains in GATA6-AS, which were predicted to form a triplex in promoters of the up-
regulated genes. (E) A de novo identified G-rich motif in 332 Domain I DBD-Capture-Seq peaks (out of 500 top-ranked peaks). (F) DBD logo indicating
the nucleotides from the GATA6-AS domain sequence, which are predicted to form triple helices in GATA6-AS Capture-Seq peaks. (G) TDF analysis
showing high propensity (higher z-score) of Domain I RNA to form triple helices in corresponding Capture-Seq peaks but not in control peaks. (H) Area
under the precision recall curve (blue) associating the overlap of GATA6-AS-Domain I-Capture-Seq peaks with the promoters of genes (±1 kb) as ranked
by TDF.

regulated during cardiac differentiation identified two en-
riched DBDs (regions 80–112 and 778–811) (Figure 3D;
Supplementary Table S9). Furthermore, TDF ranked sev-
eral important transcription factors as targets of GATA6-
AS: MEIS1 (3rd), ID2 (4th), BMI (9th), GATA6 (12th),
FOXP1 (15th), and HCN4 (79th) (Supplementary Table
S10).

To validate the triplex-forming potential of GATA6-AS,
we conducted a DBD-Capture experiment with an RNA
oligo corresponding to Domain I of GATA6-AS (positions
80–112) and sequenced the associated DNA. Differential

peak calling identified 104,786 peaks for GATA6-AS Do-
main I and 36,330 control peaks in experiments without
RNA oligo. Captured regions were enriched with a G-rich
motif (Figure 3E), in agreement with the formation of a
pyrimidine parallel motif with the C-rich Domain I se-
quence (Figure 3F). Moreover, the TDF genomic region test
revealed a high triplex-forming potential of Domain I to-
ward the respective captured DNA regions, whereas no sig-
nificant potential was found for control peaks (Figure 3G).

It is noteworthy that we found an association between the
ranking of promoters proposed by TDF and GATA6-AS-
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Figure 4. Functional characterization of GATA6-AS targets: (A) GATA6-AS DBD-Capture-Seq peaks are localized within the promoter of genes predicted
to be targets of GATA6-AS by TDF. As examples of non-target regions, promoters of genes not up-regulated during cardiac differentiation are shown.
(B) ChOP-PCR showing the in vivo association of GATA6-AS with the target genes identified by GATA6-AS DBD-Capture-Seq. (C) Quantitative reverse-
transcription PCR (RT-qPCR) analysis of GATA6-AS and the predicted targets (GATA6 and MEIS1) after an ASO-based knockdown of GATA6-AS.
(D) RT-qPCR analysis of mesodermal and cardiac mesodermal genes after the ASO-based knockdown of GATA6-AS. Error bars represent standard
deviations for n = 3. The P-values were generated by a two-tailed t-test.

Capture-Seq peaks. The TDF ranking obtained a precision
higher than 80% among the top 15 genes (Figure 3H). In-
deed, GATA6-AS-Capture-Seq also finds peaks in the pro-
moter of top ranked mesoderm genes (Figure 4A). To con-
firm these interactions in vivo, we assessed the association of
GATA6-AS with these regions in a GATA6-AS ChOP exper-
iment. PCR-based analysis uncovered an association with
predicted MEIS1, ID2, BMI1, GATA6, FOXP1 and HCN4
but not with E2F2 or MNS1 (Figure 4B).

Finally, to test the functional relevance of GATA6-AS, we
employed antisense oligos (ASOs) to deplete the GATA6-
AS transcript after mesoderm induction in human embry-
onic stem cells (hESCs). Targeted depletion of GATA6-AS
led to a decrease in GATA6-AS levels upon differentiation
into cardiac mesoderm as compared to the control ASO
condition (Figure 4C). Moreover, depletion of GATA6-AS
down-regulated the sense transcript of GATA6 and up-
regulated transcripts of mesodermal markers MEIS1 and
CDX2 (Figure 4C and D). As expression and function of
GATA6 are essential for differentiation of mesodermal cells
into the cardiac mesoderm, our data suggest that down-
regulation of GATA6 owing the depletion of GATA6-AS
in mesodermal cells may impact on differentiation into the
cardiac mesoderm. These results reveal a novel regulatory
role of GATA6-AS, which interacts with the promoters of

GATA6 and other mesoderm genes via triple helices to reg-
ulate differentiation of mesodermal cells into the cardiac
mesoderm.

Comparative analysis of TRIPLEXATOR, TRIPLEXES
and TDF

First, we evaluate the time performance of TRIPLEXES
and the two algorithms of TRIPLEXATOR (brute force
and q-gram) on detection of triple helices in the sequences
of 75 lncRNAs from our case study on cardiac differentia-
tion (total combined length 283,501 nucleotides) and DNA
from chromosome 22 (846,976 bp). The other triplex predic-
tion tool, LongTarget (21), cannot be evaluated since it does
not support multiple RNA sequences. Moreover, recent
benchmarking work indicates its poor performance con-
trasted to TRIPLEXATOR (22). Time performance analy-
ses show that TRIPLEXES is faster than TRIPLEXATOR
algorithms in most parameterizations (Supplementary Fig-
ure S7). For high mismatch rates (20%), TRIPLEXES is
1.86-fold faster than TRIPLEXATOR. The use of high
mismatch rates is important because they were adopted
during the detection of triple helices for lncRNAs HO-
TAIR (16) and MEG3 (5). As expected, both TRIPLEXES
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Figure 5. Benchmarking of TDF and TRIPLEXATOR. (A,B) Precision recall curves based on ranking of DNA target regions from TDF and TRIPLEX-
ATOR for MEG3 and GATA6-AS. TDF has an area under the curve of 0.54 for GATA6-AS and 0.04 for MEG3, while TRIPLEXATOR has AUPR of
0.46 for GATA6-AS and 0.03 for MEG3. Background precision corresponds to the proportion of possible DNA target regions (promoters for GATA6-AS
and whole genome for MEG3), which overlap with a DBD-Capture-Seq peak of the corresponding lncRNA.

and TRIPLEXATOR return the same triple helices under
same input parameters.

Next, we evaluate the predictive performance of TDF and
TRIPLEXATOR in finding functionally relevant triple he-
lices. For this, we evaluate how well TDF and TRIPLEXA-
TOR ranked DNA target regions, which overlap with DBD-
Capture-Seq peaks in MEG3 or GATA6-AS. TRIPLEXA-
TOR predictions are ranked by its criteria ‘length-adjusted
triplex potential (Total Rel)’, which consider the number of
TFO-TTS pairs normalized by RNA/DNA sequence size.
As indicated in the Precision-Recall curves (Figure 5) and
Receiver operating characteristic (ROC) curves (Figure S8),
TDF has higher AUPR and ROC values than TRIPLEX-
ATOR for both GATA6-AS and MEG3. Moreover, TDF
indicates higher rankings of known MEG3 and GATA6-
AS DNA targets than TRIPLEXATOR. This reinforces the
unique ability of TDF to rank DNA target regions.

DISCUSSION

LncRNAs have the unique capacity for interaction with
multiple proteins, DNA, and RNA simultaneously (1,2).
While the ability of RNAs to form triplexes with DNA se-
quences have been studied extensively in vitro (42), psoralen-
labeled oligo- and triplex-specific antibody-based assays
indicate the occurrence of triplex structures in vivo as
well (5,11,13). As many lncRNAs, such as HOTAIR, MEG3
and PARTICLE, have been suggested to target genomic
loci in trans via triplex-formation (5,14,16), prediction of
domains that participate in such interactions is crucial to
understand lncRNA function. Here, we describe TDF, the
first method to detect DBDs in RNAs by statistical analy-
sis of multiple RNA sequences and target DNA sequences.
We also present TRIPLEXES, which is a novel algorithm
for prediction of triple helices among RNA–DNA pairs
of sequences. Our results show that TRIPLEXES is faster
than TRIPLEXATOR in the evaluation of long RNA–

DNA sequences when high mismatch rates are used, which
are crucial in the search for triple helices (Supplementary
Figure S7). Moreover, TDF was more accurate in ranking
DNA regions supported by DBD-Capture-Seq peaks than
TRIPLEXATOR.

We show that TDF can recapitulate previously de-
scribed DBDs and DNA targets of known lncRNAs Fendrr,
HOTAIR and MEG3 by analysis of target regions from
genome-wide data, i.e. ChOP-Seq for the RNA-interacting
chromatin regions or expression data for the genes show-
ing misregulation after a knockdown of respective triplex-
forming RNA. Additionally, we identified a novel DBD
in MEG3 by TDF analysis and validated its ability to
form a triplex in a genome-wide DNA capture experiment.
Sequencing of the captured DNA indicated that the two
triplex-forming domains of MEG3 target distinct genomic
regions and have distinct sequence specificity (GA repeats
for Domain I and G-rich sequences for Domain II). No-
tably, modularity, i.e. the ability to have several interactive
domains and to use them in a context-specific manner, is an
important characteristic of lncRNAs (1,2). To our knowl-
edge, this is the first study showing that a single lncRNA
may utilize two DBDs to target distinct genomic loci in a
sequence-specific manner.

Using TDF and lncRNAs up-regulated during car-
diac differentiation, we obtained an unbiased ranking
of lncRNAs by their triplex-forming potential. We next
studied the lncRNA with the highest triplex-forming
potential––GATA6-AS––and validated its triplex forma-
tion in a genome-wide DNA capture assay. Our finding
that Domain I of GATA6-AS can form triple helices in the
promoter of genes up-regulated in cardiac differentiation,
e.g., GATA6 and MEIS1, points to the importance of this
lncRNA and triplex formation for this process. In accord
with this result, our ChOP-qPCR and GATA6-AS knock-
down experiments confirmed that GATA6-AS binds to pro-
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moter regions of these target genes in vivo and controls the
expression of GATA6 and of early mesodermal genes. No-
tably, in a recent study, GATA6-AS was shown to be asso-
ciated with angiogenesis via negative regulation of repres-
sive chromatin remodeler LOXL2 (43). It is conceivable that
tethering of GATA6-AS via triple helices protects promot-
ers of target genes from LOXL2 repression.

Application of TDF to functional data on a specific
lncRNA, e.g., chromatin association or knockdown stud-
ies of MEG3 and Fendrr, helped delineate known and novel
DBDs of these lncRNAs. Our analysis of cardiac differenti-
ation indicates that TDF can also be used to identify de novo
triplex-forming lncRNAs by evaluating standard RNA-Seq
data. Novel protocols as GRID-Seq (7), ChAR-Seq (8),
and SPRITE-Seq (9) are great resources for genome-wide
RNA–DNA interactions in cells. Note however that these
protocols cannot discern between direct RNA–DNA inter-
actions as triple helices from protein mediated interactions.
TDF and DBD-Capture-Seq are unique tools for detec-
tion and characterization of triple-helix forming RNAs pre-
dicted by these protocols. This brings us a step closer to dis-
sect mechanisms and function of DNA-binding lncRNAs.

DATA AVAILABILITY

DBD-Capture-Seq of control RNAs, MEG3 Domain I,
MEG3 Domain II, GATA6-AS Domain I as well as To-
tal RNA-Seq data for Day 0 and Day 4 of cardiac dif-
ferentiation are deposited in GEO with accession numbers
GSE119638 and GSE115575.

Source code, tutorial and examples of the use of
TRIPLEXES and TDF are found at www.regulatory-
genomics.org/TDF.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We would like to thank Elmar Weinhold (RWTH Aachen)
for discussions and the IZKF Genomics Core Facility
(RWTH Aachen Medical School) for sequencing experi-
ments.

FUNDING

This work was supported by the Start Grant and the Inter-
disciplinary Center for Clinical Research RWTH Aachen
Medical Faculty (IZKF Aachen) to IC; by the Excellence
Initiative of the German federal and state governments to
IC; and computing resources by ITC RWTH Aachen Uni-
versity to IC; by the NRW Stem Cell Network Indepen-
dent Group Leader Grant [3681000801 and 2681101801 to
LK]; by the Else Kroener-Fresenius Foundation (EKFS) to
LK; by the Deutsche Forschungsgemeinschaft (DFG) to
LK; by the KAW, Swedish Foundation for Strategic Re-
search, Swedish Cancer Research foundation, Swedish Re-
search Council, Barncancerfonden and LUA/ALF to C.K..
Funding for open access charge: institutional funding.
Conflict of interest statement. None declared.

REFERENCES
1. Guttman,M. and Rinn,J.L. (2012) Modular regulatory principles of

large non-coding RNAs. Nature, 482, 339–346.
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