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Abstract

Integration of functional genomic annotations when estimating polygenic risk scores (PRS) can provide insight into aetiology
and improve risk prediction. This study explores the predictive utility of gene expression risk scores (GeRS), calculated using
imputed gene expression and transcriptome-wide association study (TWAS) results. The predictive utility of GeRS was
evaluated using 12 neuropsychiatric and anthropometric outcomes measured in two target samples: UK Biobank and the
Twins Early Development Study. GeRS were calculated based on imputed gene expression levels and TWAS results, using
53 gene expression–genotype panels, termed single nucleotide polymorphism (SNP)-weight sets, capturing expression
across a range of tissues. We compare the predictive utility of elastic net models containing GeRS within and across
SNP-weight sets, and models containing both GeRS and PRS. We estimate the proportion of SNP-based heritability
attributable to cis-regulated gene expression. GeRS significantly predicted a range of outcomes, with elastic net models
combining GeRS across SNP-weight sets improving prediction. GeRS were less predictive than PRS, but models combining
GeRS and PRS improved prediction for several outcomes, with relative improvements ranging from 0.3% for height (P = 0.023)
to 4% for rheumatoid arthritis (P = 5.9 × 10−8). The proportion of SNP-based heritability attributable to cis-regulated
expression was modest for most outcomes, even when restricting GeRS to colocalized genes. GeRS represent a component
of PRS and could be useful for functional stratification of genetic risk. Only in specific circumstances can GeRS substantially
improve prediction over PRS alone. Future research considering functional genomic annotations when estimating genetic
risk is warranted.
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Introduction
Polygenic risk scores (PRS) are a useful research tool and a
promising opportunity for personalized medicine (1). A PRS indi-
cates an individual’s genetic liability for an outcome and is
traditionally calculated as the genome-wide association study
(GWAS) effect size-weighted sum of alleles (2). The correlation
between genetic variants, termed linkage disequilibrium (LD),
should be accounted for when estimating PRS. LD-based clump-
ing is often used to obtain LD-independent variants, though
more recent methods that estimate the joint effect of variants to
account for LD have been shown to improve prediction (3). The
predictive utility of PRS can be further increased by incorporating
prior probability distributions on causal effect sizes, thereby
reducing the signal-to-noise ratio (4). PRS can also be enhanced
using prior distributions that incorporate evidence of enrich-
ment for functional categories (5). Further research is required
to evaluate alternative strategies that integrate the functional
effect of genetic variation when calculating polygenic scores.

A wealth of research has shown enrichment in GWAS of
expression quantitative trait loci (eQTLs), variants affecting gene
expression (6,7). The eQTL studies have identified many genetic
variants associated with differential gene expression (8,9). Inte-
gration of eQTL and GWAS summary statistics enables inference
of gene expression changes associated with the GWAS pheno-
type, an approach called transcriptome-wide association study
(TWAS) (10,11). TWAS aggregates the effect of genetic associ-
ations in a functionally informed manner to highlight associ-
ated up-/down-regulated genes within the context of a spe-
cific tissue or developmental stage (12). Due to the functionally
informed aggregation of individual genetic effects, TWAS can
identify novel associations not previously identified as signifi-
cant in the corresponding GWAS. This approach has been use-
ful for highlighting plausible candidate genes for experimental
follow-up (13).

There has been limited research investigating the predic-
tive utility of PRS that considers the effect of each variant on
gene expression. One approach is to split genetic variants into
high- and low-prior groups based on whether they are eQTLs,
and then calculate the PRS using a range of mixing parame-
ters to optimally weight the contribution of high-prior variants
(14). This approach of reweighting eQTL variants improved pre-
diction over functionally agnostic PRS in type 2 diabetes. An
alternative approach is to calculate gene-expression risk scores
(GeRS), which consider the joint effect of variation on each
gene’s expression (13). GeRS are calculated as the sum of pre-
dicted expression for an individual weighted by the TWAS-based
effect size, analogous to PRS except using predicted expression
instead of individual genotypes, and TWAS effect size instead
of GWAS effect size. GeRSs were shown to significantly predict
schizophrenia, with GeRS derived using prefrontal cortex eQTL
data explaining the most variance compared with other individ-
ual tissues, but a model containing GeRS based on multiple tis-
sues providing the largest variance explained. However, whether
GeRS can improve prediction in combination with PRS was not
investigated. A recent study reports that the genetically regu-
lated transcriptome is a component of broader genetic variation,
but modelling these sources of variance separately improved
out-of-sample prediction (15). This finding suggests that a GeRS
will capture a component of PRS, but modelling GeRS and PRS
separately will improve prediction.

Previous research has shown that GeRS can explain sig-
nificant variance in schizophrenia, and that modelling vari-
ance explained by the genetically regulated transcriptome could

improve prediction over models considering the genome alone.
However, GeRS have only been applied to schizophrenia, and
no previous study has combined GeRS with PRS. In this study,
we evaluate the predictive utility of GeRS calculated using the
TWAS-based approach with eQTL data from a range of tissues.
We apply the method to a range of quantitative traits and binary
disorders in two samples, UK Biobank (UKB) (16) and the Twins
Early Development Study (TEDS) (17). Furthermore, we evaluate
whether GeRS provide novel information over PRS and explore
the effect of stratifying genes by colocalization estimates of
pleiotropy and tissue specificity of eQTL effects.

Results
Predictive utility of GeRS

For the five disorders and seven quantitative traits analyzed
in UKB and TEDS, the GeRS calculated were significantly cor-
related with each phenotype. GeRS were most predictive of
height in TEDS using the genotype-tissue expression (GTEx)
nerve tibial single nucleotide polymorphism (SNP)-weight set
with a correlation between predicted and observed values of
0.22 (SE = 0.01, P-value = 6.8 × 10−61). The predictive utility of GeRS
typically increased as more relaxed P-value thresholds were
used to select genes (Fig. 1, Supplementary Material, Figs S1 and
S2). The predictive utility of GeRS for outcomes available in both
UKB and TEDS, height and body mass index (BMI) were broadly
consistent.

Combining GeRS across P-value thresholds in an elastic net
model significantly improved prediction over the single best
GeRS P-value threshold for all outcomes in UKB except Depres-
sion and IBD (Fig. 2A, Supplementary Material, Table S1). The
largest improvement in prediction when modelling multiple
P-value thresholds was for T2D in UKB (23.6% improvement,
P-value = 2.2 × 10−28). Modelling GeRS across multiple P-value
thresholds did not improve prediction for any outcome in the
TEDS sample, and led to a significant decrease in prediction
for GCSE (6.1% reduction, P-value = 1.9 × 10−3) (Supplementary
Material, Fig. S3A and Table S1).

Modelling GeRS derived using multiple SNP-weights signifi-
cantly improved prediction over any single SNP-weight set for
all outcomes except Depression in UKB, and GCSE and atten-
tion deficit hyperactivity disorder (ADHD) symptoms in TEDS
(Fig. 2B, Supplementary Material, Fig. S3B and Table S1). Signif-
icant relative improvements provided by modelling GeRS from
multiple SNP-weight sets varied from 7.1% (P-value = 2.4 × 10−2)
for height in TEDS to 29% (P-value = 3.5 × 10−27) for RheuArth
in UKB.

Comparison of SNP-weight sets

The predictive utility of GeRS derived using each SNP-weight
set separately is shown in Supplementary Material, Figures S4
and S5. Often the most predictive GeRS were derived using SNP-
weight sets capturing expression in tissues previously impli-
cated for the outcome, such as CMC DLFPC for depression and
BMI in UKB. However, the predictive utility of GeRS showed a
strong relationship with the size of the sample used to derive the
SNP-weights (rPearson = 0.15 in UKB), and the number of features
within the SNP-weight sets (rPearson = 0.29 in UKB) (Supplemen-
tary Material, Figs S6 and S7). When fitting both the SNP-weight
set sample size and number of features in a joint model, the
effect of sample size was no longer significant. After correcting
for the number of features in each SNP-weight set, the most
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Figure 1. Variance explained (R-squared) by GeRS for three outcomes in UKB across P-value thresholds. The all bar indicates the variance explained by an elastic net

model including all P-value thresholds. GeRS are based on a single SNP-weight set. Figure only shows results for the three SNP-weights with the highest variance

explained values. Values above bars are P-values indicating whether the variance explained is significantly different from zero.

predictive SNP-weight set varied for most outcomes (Supple-
mentary Material, Figs S8 and S9). For example, the most predic-
tive SNP-weight set for depression was GTEx thyroid but changed
to CMC DLPFC after accounting for the number of features within
each SNP-weight set. The CMC DLPFC splicing SNP-weight set
was often the least predictive after correcting for the number of
features due to features often capturing multiple splice variants
for a given gene which are therefore highly redundant.

Stratifying by colocalization and tissue specificity

TWAS associations can be driven by the same causal variant
driving the association with both gene expression and the
phenotype (vertical or horizontal pleiotropy), or the associations
can be driven by LD between different causal variants affecting
each outcome. As a result, TWAS associations do not necessarily
indicate that the observed differential expression of a gene
is associated with the outcome. Colocalization estimates of

whether both gene expression and the outcome are affected
by the same causal variant (PP4), were used to determine
whether restricting GeRS to colocalized associations altered
the predictive utility of GeRS. We found GeRS restricted to
colocalized genes (PP4 > 0.8) had reduced predictive utility
compared with unrestricted GeRS (Fig. 3, Supplementary
Material, Figs S10–S12).

Cis-eQTL effects are moderately correlated across tissues (8),
meaning GeRS for a given SNP-weight set will capture variance
attributable to other tissues. To explore the predictive utility
of tissue-specific GeRS, we restricted GeRS to genes either not
significantly heritable in blood SNP-weight sets, or genes whose
predicted expression was uncorrelated with the correspond-
ing feature in the blood SNP-weight sets. We found restricting
GeRS to tissue-specific features reduced the predictive utility of
GeRS based on individual SNP-weight sets, but the predictive
utility of models including all SNP-weight sets did not change
substantially (Supplementary Material, Figs S10 and S11).
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Figure 2. Comparing the predictive utility of GeRS and PRS in UKB. (A) Compares the predictive utility of models containing GeRS across SNP-weight sets based on the

single best P-value threshold and models containing GeRS across all P-value thresholds. (B) Compares the predictive utility of models containing GeRS across P-value

thresholds based on the single best SNP-weight set and models containing GeRS based on all SNP-weight sets. (C) Compares the predictive utility of models containing

PRS and models containing GeRS and PRS. (D) Compares the predictive utility of models containing models also containing PRS derived using PRScs, and models also

containing GeRS. Values on the right of each bar indicate the absolute difference in predicted–observed correlation between the full and nested model.
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Figure 3. Shows the correlation between predicted and observed values in UKB

for models. GeRS = All SNP-weight set GeRS; GeRS (coloc) = All SNP-weight set

GeRS restricted to genes with a colocalization PP4 > 0.8; PRS = Genome-wide PRS;

PRS (Gene) = PRS restricted to gene regions considered by GeRS.

Comparison of GeRS with PRS

Compared with PRS-only models, models containing PRS and
multi-SNP-weight set GeRS provided statistically significant
improvements in prediction for all outcomes in UKB except
depression and IBD (Fig. 2C, Supplementary Material, Table S1).
Inclusion of GeRS did not significantly improve prediction over
PRS-only models for any outcome in TEDS (Supplementary
Material, Fig. S3C and Table S1). Statistically significant relative
improvements varied from 1% (P-value = 4.4 × 10−5, correlation
increased from 0.281 to 0.284) for BMI in UKB to 20.8% for
RheuArth in UKB (P-value = 1.7 × 10−31, correlation increased
from 0.133 to 0.168). Inclusion of GeRS significantly decreased
the correlation between observed and predicted values for IBD in
UKB (−9.6%, P-value = 6 × 10−4). We then explored whether GeRS
improve prediction over PRS derived using PRScs, which models
LD to estimate the joint effect of nearby variants, as opposed to
LD-based clumping which removes variants in LD. When com-
paring GeRS with PRScs scores, the improvement in prediction
provided by GeRS was attenuated for all outcomes, although
statistically significant relative improvements remained when
including GeRS for RheuArth (4%), height (0.3%), BMI (0.4%)
and intelligence (2.5%) in UKB (Fig. 2C, Supplementary Material,
Table S1).

A distinction between the pT + clump PRS and GeRS is how
they handle the MHC region. The pT + clump PRS retain a single
variant in the MHC region. In contrast, GeRS retain a single gene
in the MHC region, which considers information across multi-
ple variants. Given the large genetic effects in the MHC region
for RheuArth, we performed a sensitivity analysis to explore
whether the approach of retaining only the single variant in
the MHC region is responsible for the improved prediction when
including GeRS. The analysis showed that inclusion of GeRS still
significantly improved prediction of RheuArth over PRS alone
(P-value = 6.40 × 10−11), though the relative improvement was
attenuated from 20.8% to 8.4%.

When comparing the predictive utility of all SNP-weight
set GeRS to PRS, we found the proportion of PRS–phenotype
correlation that GeRS can explain (rGeRS/rPRS) was between
44.6% for BMI in TEDS, and 102.6% for RheuArth in UKB (Fig. 3,
Supplementary Material, S12 and Table S2). When restricting
GeRS to colocalized genes (PP4 > 0.8), the proportion of PRS–
phenotype correlation that GeRS can explain reduced to between
−2.8% for ADHD in TEDS and 96.4% for RheuArth in UKB. The

Figure 4. Estimates of SNP-based heritability and GE-based heritability for

outcomes in UKB. PRS indicates the SNP-heritability as estimated using PRS

association results in AVENGEME. GeRS indicates the GE-based heritability as

estimated using GeRS association results in AVENGEME. GeRS (coloc) indicates

the GE-based heritability as estimated using GeRS when restricted to genes with

colocalization PP4 > 0.8. The value above each bar indicates the proportion of

SNP-based heritability accounted for by cis-regulated expression.

predictive utility of PRS stratified to include only variants within
gene boundaries was reduced compared with unstratified
PRS, but still greater than the GeRS for all outcomes except
RheuArth.

Estimating heritability explained by cis-heritable
expression

AVENGEME estimated the SNP-based heritability of each
phenotype based on PRS associations, with values ranging from
7.8% (95%CI = 7.2–8.4%) for CAD in UKB to 27.9% (95%CI = 25.9–
30.0%) for height in TEDS (Fig. 4, Supplementary Material,
Fig. S13 and Table S3). AVENGEME estimated the phenotypic
variance explained by cis-heritable expression based on
GeRS associations (GE-based heritability), returning estimates
between 3.2% (95%CI = 2.9–3.5%) for depression in UKB and 15.4%
(95%CI = 14.3–16.6%) for IBD in UKB (Fig. 4 and Supplementary
Material, Fig. S13 and Table S3). The proportion of SNP-based
heritability explained by cis-heritable expression ranged from
26% for BMI in TEDS to 82% for RheuArth in UKB (Fig. 4
and Supplementary Material, Fig. S13 and Table S3). When
restricting GeRS to colocalized features, the proportion of
SNP-based heritability explained by cis-heritable expression
ranged from 3% for ADHD in TEDS to 92% for RheuArth in
UKB.

Estimates of the proportion of variants with no causal effect
on the trait were broadly consistent when using PRS or GeRS,
with PRS-based estimates ranging from 76.1% (95%CI = 70.9–
80.6%) for GCSE in TEDS and 96.4% (95%CI = 95.9–96.9%) for IBD
in UKB (Table S3).

Discussion
This study has characterized the predictive utility of GeRS, an
approach that leverages gene expression summary statistics,
GWAS summary statistics and target sample genotype data to
infer genetic risk conferred via cis-regulated gene expression.
We investigate factors affecting the predictive utility of GeRS,
test whether GeRS can improve prediction over PRS alone, and
estimate the proportion of SNP-based heritability that can be
accounted for by cis-regulated expression. Our findings indicate
GeRS represent a component of PRS, with GeRS explaining a
substantial proportion of variance explained by PRS, suggest-
ing GeRS may provide a useful approach for stratifying genetic
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risk into functional categories. Furthermore, this study finds
GeRS generally provide small improvements in prediction over
PRS alone, though GeRS can more substantial improvements in
specific circumstances.

Prediction using GeRS versus PRS

GeRS typically explained less phenotypic variance than PRS
derived using the same GWAS summary statistics. However,
for several outcomes, linear models combining GeRS and PRS
did improve prediction over PRS alone. GeRS typically provided
relative improvements of 1–6% for the correlation between pre-
dicted and observed phenotype values, although for rheumatoid
arthritis GeRS provided a 20.8% improvement when combined
with pT + clump scores. All improvements in prediction pro-
vided by inclusion of GeRS were attenuated when using PRScs
scores, which models LD as opposed to LD-based clumping,
with GeRS only providing a 4% improvement for rheumatoid
arthritis.

This pattern of results is likely due to the different method’s
approaches and ability to jointly model variants in LD. The atten-
uated improvement for rheumatoid arthritis when using PRScs
is particularly pronounced due to the methods ability to model
effects within the MHC region as there are well-documented and
strong HLA allele effects within the MHC region for rheumatoid
arthritis (18). The large effect of HLA alleles is confirmed in
the rheumatoid arthritis TWAS results (Supplementary Mate-
rial, Table S4). The PRScs method models all variation within
the MHC region, where as pT + clump PRS considered only the
strongest associated variant within the MHC region. In con-
trast, GeRS jointly models variants integrating their effect of
gene expression, and then retains the single lead gene. This
explanation is supported by our sensitivity analysis showing the
gain in prediction for rheumatoid arthritis was also attenuated
when compared with pT + clump PRS that were not clumped
to a single variant within the MHC region. Nonetheless, the
GeRS approach still provides some advantage over PRS in all
cases, indicating that the functionally informed approach used
by GeRS for jointly modelling variants better captures the risk
in the MHC region than pT + clump or even PRScs can, possi-
bly due to the documented eQTL effects in the locus altering
expression of relevant HLA genes (19). Therefore, these results
suggest GeRS can provide novel information over PRS alone,
albeit in specific circumstances where multiple variants affect-
ing gene expression are the causal risk factor. Given that the
gene expression SNP-weights used in GeRS are derived using
linear models, further improvement may be provided by using
non-linear models that can capture haplotypes more effectively
(20).

Inclusion of GeRS did not significantly improve prediction
over PRS alone in the TEDS sample for any outcome. GeRS
showed a similar correlation with height and BMI as was found
in the UKB. These findings indicate the non-significant improve-
ment in prediction when including GeRS is due to the smaller
sample size of TEDS compared with UKB as this will reduce the
power to detect small increases in prediction between models,
and increase the likelihood of overfitting due to the large num-
ber of predictors in the model compared with the number of
individuals in the sample. The increased likelihood of overfitting
may also be responsible for the decrease in prediction accuracy
for IBD when including GeRS, as the number of cases for this
phenotype was relatively low. Approaches to efficiently integrate
transcriptomic data without using many predictors would help
alleviate this issue.

Opportunities provided by GeRS

Although GeRS explain less variance than PRS, they may provide
novel opportunities over PRS for several reasons. Firstly, GeRS
are a gene-based genetic risk score, meaning the GeRS are well
suited to stratification by biological pathways or other gene-
based characteristics. Gene-based polygenic scores can also be
created by restricting the variants considered to those prox-
imal to genes (21). However, genetic variation proximal to a
gene may have no effect on the gene’s expression or function.
Secondly, GeRS are sensitive to the properties of the original
gene expression dataset used to derive the expression SNP-
weights and can capture gene expression within a range of
contexts such as tissues and developmental stages. Therefore,
GeRS could serve as a useful predictor for stratifying individuals
based on the underlying aetiology of their disorder, addressing
the possible that criticism of functionally agnostic PRS, that
they are disconnected from aetiological considerations. Com-
plex disorders are heterogenous at the phenotypic level and
at the aetiological level. For example, it may be possible to
stratify individuals based on the specific tissue underlying their
condition.

Factors affecting predictive utility of GeRS

Models containing GeRS derived using multiple tissues improve
prediction over the single best tissue, congruent with a previous
study (13).

Furthermore, we found the relative predictive utility of GeRS
derived using different SNP-weight sets was strongly correlated
with the number of genes captured by the SNP-weight set. This
is likely due to a multitude of factors including the sample
size and quality of the original gene expression dataset. Both
of these factors will increase the number of genes captured by
the SNP-weight set by detecting more genes with significantly
heritable cis-regulated expression, and increase the variance in
gene expression the SNP-weights explain out-of-sample. It is
likely that the relevance of the tissue to the outcome is also an
important factor influencing the predictive utility of an outcome,
however, the sample size and number of features have a larger
effect on the predictive utility of GeRS due to the moderately cor-
related cis-regulated expression across tissues enabling tissues
irrelevant to the outcome to act as a proxy for gene expression
within relevant but unavailable tissues.

Quantifying heritability accounted for by cis-regulated
expression

GeRS capture only a small amount of novel phenotypic variance
compared with PRS, indicating that GeRS largely represent a
component of PRS. These findings are congruent with a previous
study modelling the genome and genetically regulated transcrip-
tome using CORE GREML (15). We estimate the proportion of
phenotypic variance that can be explained by cis-regulated gene
expression and compare the results with SNP-based heritability
estimates using PRS results. Across the phenotypes, we estimate
cis-regulated gene expression explains 26–82% of SNP-based
heritability. However, due to LD GeRS are likely to capture effects
mediated through other mechanisms. To more accurately esti-
mate the proportion of SNP-based heritability accounted for by
cis-regulated expression, we restricted the analysis to genes that
colocalize and their association is therefore unlikely to be driven
by linkage. When restricting the analysis to colocalized genes,
we estimated 3–92% of SNP-based heritability was accounted for
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by cis-regulated expression. For most outcomes, this supports
previous research showing strong enrichment of eQTLs in GWAS
summary statistics (6,7). Our findings suggest that restricting
GeRS to colocalized genes will reduce their predictive utility but
may provide a more accurate estimate of an individual’s risk
mediated via cis-regulated expression. This raises a further issue
for gene-based polygenic scores, as they are more liable to cap-
turing linkage effects and there is no option to restrict analyses
to colocalized genes. Even when restricting our analysis to colo-
calized genes, our estimates of phenotypic variance attributable
to cis-regulated expression may still be upwardly biased due
to GeRS capturing effects driven by horizontal pleiotropy as
opposed to vertical pleiotropy (mediation). An example of hori-
zontal pleiotropy would be where a disease-associated variant is
an eQTL for a gene, but the variant confers risk for the disease via
another mechanistic route, such as trans eQTL effects. A recently
developed method called mediated expression score regression
(MESC) can be used to identify the variance explained by vertical
pleiotropy (mediation) alone (22). Indeed, the results reported by
MESC are lower than the estimates based on GeRS in this study.

Opportunities for GeRS based on observed expression

Although the colocalization and tissue specificity of genes
did not improve prediction of GeRS when based on predicted
expression in the target sample, restricting genes by these
criteria is likely to improve the predictive utility of GeRS derived
using observed gene expression in the target sample. This is
supported by a previous study which found GeRS derived
using GWAS summary statistics and eQTL data, and observed
gene expression data, could substantially improve prediction
over PRS but only when using eQTL data from the relevant
tissue and restricting the risk scores to colocalized genes (23).
Tissue specificity and colocalization is more important when
integrating with observed gene expression as the GeRS must
capture genuine differences in expression associated with the
outcome. Future research exploring the predictive utility of
GeRS derived using TWAS results and observed expression is
warranted.

In summary, this study has demonstrated that GeRS explain
a substantial proportion of variance for a range of outcomes,
with multiple tissue GeRS explaining more variance than the
single best tissue. Furthermore, we demonstrate that GeRS can
improve prediction of outcomes over PRS alone in specific cir-
cumstances, where multiple eQTL effects must be considered to
fully capture the genetic risk conferred by a locus. However, the
results largely indicate that GeRS capture a component of risk
captured by functionally agnostic PRS, and estimates of variance
explained by cis-regulated expression is 26–82% of total SNP-
based heritability, although these estimates likely captures risk
not only mediated via cis-regulated expression due to horizontal
pleiotropy and linkage. In conclusion, GeRS may serve as a useful
research tool by providing a novel opportunity to stratify genetic
risk by expression within specific tissues, developmental stage
and other gene-based characteristics.

Materials and Methods
UK Biobank

UKB is a prospective cohort study that recruited >500 000 indi-
viduals aged between 40 and 69 years across the United Kingdom
(16). The UKB received ethical approval from the North West –
Haydock Research Ethics Committee (reference 16/NW/0274).

Genetic data. UKB released imputed dosage data for 488 377
individuals and ∼96 million variants, generated using IMPUTE4
software (16) with the Haplotype Reference Consortium refer-
ence panel (24) and the UK10K Consortium reference panel (25).
This study retained individuals that were of European ances-
try based on four-means clustering on the first two princi-
pal components provided by the UKB, had congruent genetic
and self-reported sex, passed quality assurance tests by UKB,
and removed related individuals (>third degree relative, KING
threshold > 0.044) using relatedness kinship (KING) estimates
provided by the UKB (16). The imputed dosages were converted
to hard-call format for all variants.

Phenotype data. Eight UKB phenotypes were analyzed. Five phe-
notypes were binary: depression, Type 2 diabetes (T2D), coronary
artery disease (CAD), inflammatory bowel disease (IBD) and
rheumatoid arthritis (RheuArth). Three phenotypes were contin-
uous: intelligence, height, and BMI. Further information regard-
ing outcome definitions can be found in the Supplementary
Material.

Analysis was performed on a subset of ∼50 000 UKB partic-
ipants for each outcome to reduce the computational burden
of the analysis whilst maintaining sufficient power to perform
downstream analyses. For each continuous trait (intelligence,
height, BMI), a random sample was selected. For disease traits,
all cases were included, except for depression and CAD where
a random sample of 25 000 cases was selected. Controls were
randomly selected to obtain a total sample size of 50 000. Sample
sizes for each phenotype after genotype data quality control are
shown in Table 1.

TEDS

The TEDS is a population-based longitudinal study of twins
born in England and Wales between 1994 and 1996 (17). Ethical
approval for TEDS has been provided by the King’s College Lon-
don ethics committee (reference: 05/Q0706/228). Parental and/or
self-consent was obtained before data collection. For this study,
one individual from each twin pair was removed to retain only
unrelated individuals.

Genetic data. As previously described (26), TEDS genotype data
underwent stringent quality control prior to imputation via
the Sanger Imputation server using the Haplotype Reference
Consortium reference data (24). Imputed genotype dosages were
converted to hard-call format using a hard call threshold of 0.9,
with variants for each individual set to missing if no genotype
had a probability of >0.9. Variants with an INFO score < 0.4,
MAF < 0.001, missingness > 0.05 or Hardy–Weinberg equilibrium
P-value <1 × 10−6 were removed.

Phenotypic data. This study used four continuous phenotypes
within TEDS: height, BMI, educational achievement (GCSE) and
ADHD symptom score (Table 1). Further information regarding
the phenotype definitions can be found in the supplementary
material and a previous study (27).

Genotype-based scoring

GeRS and PRS were calculated within a reference-standardized
framework, whereby the resulting PRS and GeRS are not influ-
enced by target sample specific properties including availability
of variants and measurements of LD and allele frequency. This

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab053#supplementary-data
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Table 1. Sample size for each target sample phenotype

Description Total sample size No. of controls No. of cases

UKB phenotype
Depression Major depression 49 995 24 999 24 996
Intelligence Fluid intelligence 49 998 NA NA
BMI Body mass index 49 993 NA NA
Height Height 49 993 NA NA
T2D Type-2 diabetes 49 990 35 102 14 888
CAD Coronary artery disease 49 991 24 998 24 993
IBD Inflammatory bowel disease 50 000 46 539 3461
RheuArth Rheumatoid arthritis 50 000 46 592 3408

TEDS phenotype
GCSE Mean GCSE scores 7296 NA NA
ADHD ADHD symptoms 7880 NA NA
BMI21 Body mass index at age 21 5220 NA NA
Height21 Height at age 21 5455 NA NA

is achieved by using a common set of typically well imputed
variants (HapMap3) and using reference genetic data (European
1KG Phase 3) to estimate LD and allele frequencies. Lastly, all
genotype-based scores are scaled and centred based on the
mean and standard deviation of scores in the reference sample.
This reference-standardized approach and its merits have been
described previously (3).

A schematic representation of calculating GeRS is shown in
Figure 5.

GWAS summary statistics. GWAS summary statistics were iden-
tified for phenotypes the same as or similar as possible to
the UKB and TEDS phenotypes (descriptive statistics in Sup-
plementary Material, Table S5), excluding GWAS with docu-
mented sample overlap with the target samples. GWAS sum-
mary statistics were formatted using the LD-score regression
munge_sumstats.py script (see Web Resources) with default set-
tings (listed in the Supplementary Material) except the mini-
mum INFO score was set to 0.6.

Transcriptome-wide association study. FUSION software (10) was
used to integrate GWAS summary statistics with precomputed
SNP-weights of gene expression to infer differential gene expres-
sion associated with the GWAS-phenotype. The term SNP-weight
refers to a multi-SNP-based predictor of a gene’s expression.
SNP-weights used in this study were derived using gene expres-
sion data from a range of distinct tissues and European-ancestry
adulthood samples, downloaded from the FUSION website (see
URLs). The weights pertained to five RNA reference samples: (i)
the GTEx Consortium (Version 7) (8), measuring gene expression
across 48 tissues, including brain regions, blood and peripheral
tissues, (ii) The CommonMind Consortium (CMC) (9), measur-
ing expression and differential splicing in the dorsolateral pre-
frontal cortex, (iii) The Netherlands Twins Register (NTR) (28)
and (iv) Young Finns Study (YFS) (10), which both provide infor-
mation on blood tissue gene expression, and (v) Metabolic Syn-
drome in Men (METSIM) (10), assessing adipose tissue expres-
sion. The SNP-weights obtained from a given sample and tissue
(e.g. GTEx thyroid, NTR peripheral blood) are referred to as SNP-
weight sets. Characteristics for the 53 SNP-weight sets used are
available in Supplementary Material, Table S6. The SNP-weights
include 260 598 features (SNP-weight set and gene pairs), captur-
ing expression of 26 434 unique genes (protein-coding and non-
protein coding). The number of features that could be reliably

imputed for each GWAS is shown in Supplementary Material,
Table S7. TWAS was performed using default settings in FUSION
and LD estimates from the European subset of the 1KG Phase 3
reference sample (N = 503).

Colocalization analysis tests whether the association
between a genetic locus and two or more traits is driven by the
same causal variant, or whether the association for each trait is
driven by different causal variants that are in LD. Colocalization
was performed using the coloc R package (29), implemented
within the FUSION software, to estimate the posterior probability
that the GWAS phenotype and gene’s expression share a single
causal variant, termed PP4. A coloc P-value threshold of 0.05
was used, to perform colocalization for all features with a TWAS
P-value < 0.05.

Predicting expression in target samples. The cis-heritable com-
ponent of expression for each gene was imputed in each target
sample using the same gene expression SNP-weights described
above, and target sample genotype data. Predicted expression
levels are calculated as

GeneExpj =
m∑

j=1

Xj × βj (1)

where the predicted level of expression (GeneExp) for an individ-
ual is the number of effect alleles carried by the individual (Xj)
weighted by the effect of each variant on gene expression as esti-
mated from penalized regression model (β), across m variants.
This was implemented using the FUSION script ‘make_score.R’
to convert the TWAS SNP-weights into PLINK score file format,
and then using PLINK to carry out the scoring in the target
sample. Predicted expression levels are then centred and scaled
based on the mean and standard deviation of the predicted
expression in the 1KG Phase 3 European reference sample.

Gene expression risk scoring. GeRS were calculated as.

GeRS =
g∑

j=1

GeneExpj × Zj (2)

where the GeRS of an individual is equal to the TWAS effect
size (Z)-weighted sum of the individual’s predicted expression

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab053#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab053#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab053#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab053#supplementary-data
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Figure 5. Schematic representation of GeRS Calculation. The top left panel describes the process of deriving SNP-weights predicting gene expression in a sample of

individuals with both genotype and gene expression measured (e.g. GTEx consortium). These SNP-weights can be used to perform TWAS, whereby SNP-weights are

integrated with GWAS summary statistics to infer gene expression associations with the GWAS trait (upper right panel). The SNP-weights can also be used to predict

gene expression levels in a target sample with only genotype data available (lower left panel). Finally, GeRS can be calculated in the target sample by combining the

level of predicted expression in each individual weighted by the TWAS effect size (lower right panel). This figure has been adapted from Gusev et al. (10).

(GeneExpj), at g genes. GeRS were calculated for each SNP-weight
set separately, meaning 53 GeRS for each GWAS/TWAS pheno-
type were generated. To remove genes with highly correlated
predicted expression due to LD, genes were ranked by TWAS
P-value and clumping was performed to remove genes with a
predicted expression R2 > 0.9 within 500 kb of the lead gene
boundaries. Within the MHC region, the single most significant
gene was retained due to long range and complex LD structures.
Predicted expression estimates used for clumping were esti-
mated in the European 1KG Phase 3 reference. A range of nested
P-value thresholds were used to select genes considered in the
GeRS: 1, 5 × 10−1, 1 × 10−1, 5 × 10−2, 1 × 10−2, 1 × 10−3, 1 × 10−4,
1 × 10−5 and 1 × 10−6. Scripts used to perform GeRS can be found
on the GenoPred website (see URLs).

In addition, we evaluate the predictive utility of GeRS
restricted to genes with evidence of colocalization with the
outcome (PP4 > 0.8), and GeRS restricted to genes showing
tissue specific expression. Tissue-specific GeRS were derived
by only considering genes that were either not significantly
heritable in blood SNP-weight sets (GTEx Whole blood, YFS or
NTR), or genes whose predicted expression was uncorrelated
with the corresponding feature in the blood SNP-weight sets
(R2 < 0.01). This approach is congruent with a previous study
identifying tissue specific eQTL effects prior to risk scoring (23).

Blood-specific features were identified using the same criteria
but comparing predicted expression across all non-blood SNP-
weight sets. The number of tissue-specific features for each
SNP-weight set are listed in Table S6.

Polygenic risk scores. Polygenic scoring was carried out using
the traditional P-value thresholding and LD-based clumping
approach (pT + clump), and a more recent method, PRScs (30),
which models LD between genetic variants and applies shrink-
age parameters to avoid overfitting. PRScs has been previously
reported to out-perform other polygenic scoring methods (3).
The pT + clump approach was used as it is analogous to the
approach used to remove highly correlated features in the GeRS.
pT + clump was performed using an R2 threshold of 0.1 and win-
dow of 250 kb. Within the MHC region (28–34 Mb on chromosome
6), the pT + clump method retains only the single most signifi-
cant variant due to long range of complex LD in this region. A
range of P-value thresholds were used to select variants: 1 × 10−8,
1 × 10−6, 1 × 10−4, 1 × 10−2, 0.1, 0.2, 0.3, 0.4, 0.5 and 1. PRScs
were performed using a range of global shrinkage parameters
(1 × 10−6, 1 × 10−4, 1 × 10−2 and 1) and the fully Bayesian mode,
which estimates the optimal shrinkage parameter. Analogous
to the GeRS, only HapMap3 variants were considered during
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Figure 6. Schematic representation of nested cross-validation procedure. The outer loop splits the sample into five parts, four parts are used as a training sample for

hyperparameter optimization, and the resulting model is then used to predict the outcome in the remaining part (test sample). This process is repeated until predictions

are available for all parts of the sample. Hyperparameter optimization is carried out within the inner loop, which consists of 10-fold cross validation.

polygenic scoring, and the European subset of the 1KG Phase 3
reference was used to estimate LD.

As a sensitivity analysis, pT + clump PRS were also calcu-
lated using only variants within 500 kb of genes used in the
TWAS, thereby restricting the PRS to the same variants within
the gene expression SNP-weights and highlighting the effect of
reweighting genetic variants by their effect on gene expression.

Furthermore, pT + clump PRS for rheumatoid arthritis were
also calculated without restricting to a single variant in the MHC
region to gain insight into difference between PRS and GeRS
prediction for this outcome.

Evaluating predictive utility of GeRS

Prediction accuracy was evaluated as the Pearson’s correlation
between the observed and predicted phenotype outcomes. Cor-
relation was used as the main test statistic as it is applicable for
both binary and continuous outcomes and standard errors are
easily computed. Correlations can be easily converted to other
test statistics such as R2 (observed or liability) and area under
the curve (equations 8 and 11 in (31)), with relative performance
of each method remaining unchanged.

Logistic regression was used for predicting binary outcomes,
and linear regression was used for predicting continuous out-
comes. If the model contained only one predictor, a generalized
linear model was used. If the model contained more than one
predictor (e.g. GeRS for each P-value threshold), an elastic net
model was applied to avoid overfitting due to the inclusion of
multiple correlated predictors (32).

Elastic net modelling. Previous research has shown that mod-
elling multiple PRS based on a range of parameters (P-value

thresholds or shrinkage parameters) optimizes prediction out-
of-sample (3). Therefore, elastic net models were derived using
multiple pT + clump PRS based on a range of P-value thresholds,
or multiple PRScs scores based on a range of global shrinkage
parameters. Furthermore, elastic net models were derived for
GeRSs based on a range of P-value thresholds and SNP-weight
sets to evaluate the effect of modelling multiple GeRS simulta-
neously. For example, if 8 P-value thresholds were used, and 2
SNP-weight sets were used, the elastic net model would contain
16 GeRS.

A nested cross validation procedure (33) was used to esti-
mate the predictive utility of elastic net models (Fig. 6), where
hyperparameter selection is performed using inner 10-fold cross
validation, while an outer 5-fold cross validation computes an
unbiased estimate of the predictive utility of the model with
the inner cross validation based hyperparameter tuning. This
approach avoids overfitting whilst providing modelling predic-
tions for the full sample. The inner 10-fold cross validation for
hyperparameter optimization was carried out using the ‘caret’ R
package.

The correlation between observed and predicted values of
each model were compared using William’s test (also known as
the Hotelling–Williams test) (34) as implemented by the ‘psych’
R package’s ‘paired.r’ function, with the correlation between
model predictions of each method specified to account for their
non-independence. A two-sided test was used when calculating
P-values.

Estimating variance explained by cis-heritable expression. A
schematic representation of this analysis is in Figure S14. To
estimate the proportion of SNP-based heritability explained by
cis-regulated expression, we used the R package AVENGEME
(35) to estimate SNP-based heritability of each phenotype in
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the target sample based on pT + clump PRS associations across
P-value thresholds, and the phenotypic variance explained
by cis-regulated expression (GE-based heritability) based on
the GeRS associations across P-value thresholds. To estimate
the association with GeRS at each P-value threshold, we used
predictions from elastic net models containing GeRS across all
SNP-weight sets for a given P-value threshold. The proportion of
SNP-based heritability explained by cis-heritable expression was
then calculated as GE-based heritability divided by the SNP-
based heritability. AVENGEME also estimates the fraction of
non-causal variants. AVENGEME has been previously used to
estimate the proportion of SNP-based heritability attributable
to cis-regulated gene expression based on GeRS associations,
acknowledging that the estimate will be inflated due to LD
causing gene expression SNP-weights to tag other causal
mechanisms, such as variants affecting protein structure
and function (13). As a sensitivity analysis, we estimated
the GE-based heritability using GeRS restricted to genes with
colocalization PP4 > 0.8 to remove genes which do not colocalize.
For the GeRS analysis, the ‘nsnp’ variable in AVENGEME,
indicating the number of independent markers in the score
was set to the number of LD independent markers in the TWAS
gene stratified PRS.

Supplementary Material
Supplementary Material is available at HMG online.

URLS
• LDSC HapMap 3 SNP-list: https://data.broadinstitute.org/a

lkesgroup/LDSCORE/w_hm3.snplist.bz2
• LDSC Munge Sumstats: https://github.com/bulik/ldsc/blob/

master/munge_sumstats.py
• Impute.me: https://impute.me/
• GenoPred website: https://opain.github.io/GenoPred
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