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Abstract: The South American continent is remarkably diverse in its ecological zones, spanning
the Amazon rainforest, the high-altitude Andes, and Tierra del Fuego. Yet the original human
populations of the continent successfully inhabited all these zones, well before the buffering effects
of modern technology. Therefore, it is likely that the various cultures were successful, in part, due to
positive natural selection that allowed them to successfully establish populations for thousands of
years. Detecting positive selection in these populations is still in its infancy, as the ongoing effects of
European contact have decimated many of these populations and introduced gene flow from outside
of the continent. In this review, we explore hypotheses of possible human biological adaptation,
methods to identify positive selection, the utilization of ancient DNA, and the integration of modern
genomes through the identification of genomic tracts that reflect the ancestry of the first populations
of the Americas.

Keywords: ancient DNA; natural selection; South America

1. Introduction

When the first people arrived in South America, many thousands of years ago, they
encountered a wide range of environments that greatly differed from their migratory point
of origin: Beringia. The oldest archeological site on the continent, Monte Verde in present-
day Chile, dates back to approximately 14,000 years ago [1], suggesting that humans had
reached the continent rapidly after the initial entry into the Americas and splitting be-
tween North and South American lineages, some 17 to 14 thousand years ago [2,3]. By
10,000 years ago, archeological evidence suggests that humans were widespread through-
out the continent, and were inhabiting some of the harshest environments, including the
high-altitude Andes [4], the tropical regions of Brazil [5], and the subpolar region of Tierra
del Fuego [6]. The successful establishment of populations within these diverse ecologies
may have prompted natural selection to drive the rise of adaptive phenotypes, which may
have involved diet, ultraviolet (UV) radiation, low-oxygen environments, and pathogens.
Depending on the ecology, some environmental factors are better candidates than others for
correlating with positive selection, especially regarding hypotheses involving pathogens
(Figure 1).

While the archaeological record can provide clues about the cultures of the first people
of South America, the use of ancient genomics has proven powerful in its greater resolution
for understanding ancient migrations and establishing genetic continuity between ancient
and living populations. Moreover, ancient genomics has the power and potential to refine
our understanding of how the first settlers successfully established populations via adap-
tive evolutionary events. This power can be utilized to discover ancient pathogens, which
are strong motivators for natural selection, and may have prompted local biological adap-
tation. A plethora of other known environmental factors may have also promoted adaptive
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responses (Figure 1), including cultural manifestations evidenced in the archaeological
record, such as the rise of agriculture.

Figure 1. Environmental factors that may have posed adaptive pressures to the indigenous peoples
of South America, including the arrival of Europeans in the 16th century.

Perhaps one of the most confounding aspects of understanding adaptation in the
Americas stems from the lack of knowledge surrounding the pathogens that the first
settlers likely encountered. Contrary to notions of pristine environments before the arrival
of Europeans, the early populations likely dealt with pathogens that may have prevented
initial settlement success without adaptation. This scenario is likely in regions where
disease vectors are present, such as mosquitos, or in tropical regions where the risk of
parasitic infection is high. On the other hand, ancient skeletons have repeatedly shown
disease indication that can be gleaned from disfigured morphology. These skeletons can
harbor the microbial genomes that caused such pathologies and thus provide a window
into the ancient pathogen landscape that existed before European contact.

Remarkably, the “omics” revolution can also yield insights into the changes that may
have accompanied major social and cultural transitions that are coded in the epigenome,
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which meditates communication between the environment and the genome. These changes
could be associated with simple differences between mobile and sedentary populations,
or major cultural shifts that may have occurred after the advent of stable food sources
from agriculture.

In this review, we will focus on various computational methods that can help leverage
information from ancient populations, discuss hypotheses where natural selection may
have been a factor, and discuss the possibility of exploring the changes that may have
occurred in the lifetime of individuals in response to specific cultural conditions. Lastly,
we will also discuss more recent adaptation in living populations that may have been the
result of admixture with migrant populations after European contact.

2. High-Altitude Adaptation

From a genetic perspective, hypoxia adaptation is perhaps the most well-studied
human trait in South America [7–9]. However, these studies have mainly focused on
modern Peruvian populations, which have been affected by the bottlenecks that ensued
upon European contact [8–10]. Furthermore, despite strong signals of positive selection
detected in other high-altitude populations that relate to the hypoxic pathway [11,12],
the highlanders of Peru do not exhibit the same signals, suggesting different adaptive
pathways, which may include cardiovascular components [8]. Theoretically speaking,
positive selection signals may be dampened in Andean highland populations due to
population collapses that occurred after European contact in the region, which may have
been as high as 80% according to historical estimates [13]. Collapses of such magnitude
may have distorted allele frequencies as populations recovered, obscuring genomic signals
related to high-altitude adaptation.

Future research may utilize ancient DNA before the population collapses to circumvent
this potential issue. A gold standard study could employ DNA from individuals sampled in
pre-contact populations from closely related Andean populations both from high-altitude
and low-altitude regions (Figure 2). These populations were likely trading with each other
given their proximity [14], and admixture between them would also need to be assessed
and accounted for to avoid false-negative results. A new approach for detecting positive
selection that may be particularly powerful for dealing with this type of data involves the
joint assessment of admixture and allelic differentiation. The method, known as Ohana [15],
could detect variants that deviate strongly in the high-altitude population from a genome-
wide covariance structure created using both coastal and high-altitude populations. We
describe this method further in Section 6.
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Figure 2. Detecting positive selection in the Andean highlands.

3. Ultraviolet Radiation

Another factor that may have posed an adaptive challenge for the first settlers of
the continent may be linked to ultraviolet (UV) radiation. While constant exposure in
equatorial regions may have certainly proved difficult in this regard, settlement regions
that are both equatorial and high-altitude may have been especially harsh, given the
reduced atmospheric density absorbing less of the intense radiation. These regions would
encompass the highlands of Colombia, Ecuador, and Peru, which have some of the highest
UV radiation exposures in the world [16]. For those populations that inhabited the Andean
highlands for thousands of years, variants in melanin genes may have become positively
selected and differentiated to protect against folate damage [17]. Folate has been implicated
in a variety of crucial cell pathways, including cell division, DNA repair, and embryonic
development [17]. Extreme UV radiation, as would be expected in equatorial high-altitude
regions, is thought to risk the photolysis of folate via the skin, and natural selection may
have favored skin pigmentation that could help block harmful radiation in these types
of environments [17].

Comparative genomic scans may hold the power to reveal selection on genes or path-
ways related to adaptation to excessively high UV radiation. For example, in sharp contrast
to the traditional environment experienced by the Andean highlanders are those of the
subpolar regions of Tierra del Fuego. This type of environment may have distinct selection
pressures driven by conversely deficient UV radiation. Positive selection on depigmenta-
tion to increase UV exposure for vitamin D production may have been an adaptive factor
for these subpolar populations. Vitamin D is important for both immune system support
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and fertility [18], which make significant deficiencies of this secosteroid a target for natural
selection. However, these types of studies should also take into account the possibility
of ancient selection that may have occurred before the migrations into the Americas or
false-positive signals that may result from admixture after European contact [19].

4. Adaptive and Plastic Responses to Culture

Due to the genetic continuity that has thus far been revealed about the ancient cultures
of South America (unlike Europe—where population replacements were an ongoing pro-
cess [20]), the continent represents a rare opportunity to explore how populations adapted
to cultural shifts from genomic and epigenomic standpoints. Specifically, there are two
major shifts that can be explored, given the availability of viable samples. First is the
transition from mobile to sedentary societies. This transition is observed in the archeolog-
ical record from populations all over the world, yet little is known about the impacts of
such a major shift for our species. For instance, questions arise as to whether neurological
changes were needed to adapt to such a shift. Did genes that are associated with sociality
in mammals, such as oxytocin and vasopressin [21], come under the specter of selection
to facilitate the development of these societies? Did factors like close proximity between
non-kin in urban centers drive this type of selection? On the other hand, did plasticity
play a factor? Would we notice epigenetic changes along genes associated with behavior
as humans made such major transitions in order to increase tolerance of each other? Re-
cent advancements in ancient epigenomics has made pursuing such questions possible by
computationally taking advantage of the features of post-mortem DNA damage to assess
the probability of methylation at a cytosine site [22]. Ancient populations from the Andes
present the perfect opportunity to conduct such a study, given repeated findings of genetic
continuity through various cultural transformations [7,23,24]. However, other regions of
South America remain unexplored via such time transects, including regions of Colombia,
where archeological sites have yielded ancient individuals sampled through time [25].

The second major cultural transition that is nearly ubiquitous across global popula-
tions is the one to agriculture. Once again, the Andes present an ideal focal region as it is
one of the main hubs of agricultural development on the planet. In general, diet is likely a
trait that has come under strong positive selection in various populations through time,
since it is tightly linked with survival and reproduction. However, agriculture marks a
major deviation from evolutionary strategies in the past that likely relied on a variety of
foods, probably compounded by location and seasonality. Agriculture marks the major
shift in this trend, as food sources and diversity may have become limited. Famously,
this has been observed in other parts of the world, evidenced by signatures of positive
selection on variants associated with lactase persistence [26]. A glimpse of this adaptation
has already been detected in the Lake Titicaca region of the Andes, where a variety of tubers
were first domesticated some 6000 years ago, including the potato [27]. In this particular
case, populations may have adapted to a consistent increase in starchy foods via a gene
responsible for the final stages of starch digestion in the duodenum [7]. Also of note are
previous notions that human copy number variation on amylase genes, associated with sali-
vary starch digestion, are thought to be under selection in European populations [28]. This
variation was not detected in the Andean populations despite the starch-heavy agriculture.
However, recent population-level whole genome studies have demonstrated that copy
number variation in European populations is highly variable and may not be a consequence
of selection due to the advent of agriculture [29], while functional molecular studies have
revealed no benefit for additional copy number with respect to starch digestion [30].

5. Ancient Pathogens and European-Borne Disease

Much speculation and theory has been associated with the pathogen loads that ex-
isted in the Americas. Upon entry into North America, new pathogens not present in
Eurasia may have been encountered early, possibly prior to the population splits across
South America [31]. However, it is likely that local ecologies and later specific sustenance
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strategies exposed populations to differential pathogen risk, such as those from agricultural
vs. nomadic lifestyles. Ancient populations from South America present a rare opportu-
nity to test adaptive evolutionary hypotheses in humans by juxtaposing closely related
populations (potentially stemming from a single migration into South America) who un-
derwent distinct cultural adaptations across environments. However, populations from
South America suffered their greatest onslaught from European contact, where several
pathogen strains were introduced in a short period of time [32]. While the extent of the
collapses across various populations after European contact is debated with estimates
varying wildly [13], there is little doubt that European-borne pathogens played a part. To
further complicate the story, disease resistance was less likely in indigenous populations
that suffered multiple epidemics at once, which may have overwhelmed their immune
systems [32]. And yet, some indigenous populations survived, and this resilience may
have been, in part, due to positive selection on variants that may have conferred some
resistance to certain pathogens. One such scenario has been found in the high-altitude
population of the Aymara in modern-day Bolivia. Not only was the ancient population
collapse in this region found to be less severe compared to other parts of South America,
but the population also shows patterns consistent with positive selection on variants that
may be involved in the immune response to smallpox [7]. Evidence for positive selection
was identified by utilizing ancient populations that showed genetic continuity with the
living populations. In doing so, selection was detected along the branch of the living
population, which diverged from their ancestors prior to European contact (Figure 3B).
This type of technique may be used in the future to reveal further disease resilience in other
indigenous populations.
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Figure 3. European contact and detecting selection. (A) The population collapse after Euro-
pean contact may obscure ancient signals of selection by causing variants not under selection
to rise to high frequency stochastically. (B) Design to detect positive selection in response to
European-borne pathogens.
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There is also the prospect of adaptive gene flow. The theory here aims to examine
indigenous populations that began to admix with differentiated populations from other con-
tinents, including Europe and Africa. Variants introduced into the indigenous population
may have been positively selected for in subsequent epidemics. This is a distinct possibility
given the widespread admixture found throughout the continent. A new method for
detecting this type of selection utilizes haplotypes that are assigned to a particular ancestry.
These haplotypes are then assessed in a probabilistic manner to examine whether their
frequencies are more consistent with stochastic forces, such as demography, or determin-
istic forces, such as positive selection (Figure 3A). The use of such methods has yielded
potential targets of positive selection that involve both the innate and adaptive immune
response [33,34]. However, these findings fail to correlate the specific genes with pathogens
that were introduced after European contact, which weakens arguments for selection by
lacking a connection to a known environmental factor.

Lastly, considerable questions remain around the existence of human pathogens in the
environments of South America before the arrival of Europeans. A common misconception
depicts the Americas as a place without significant pathogens, as European colonizers
brought disease with them but ostensibly did not suffer the reverse exposure to native
pathogens from the Americas [35]. This observation has more to do with the speed and
sheer abundance of pathogens presented to indigenous people by Europeans, coupled with
the myriad social disruptions, including warfare, displacement, and slavery [35]. However,
instances have been recorded where Europeans suffered devastating losses due to disease.
One such record occurred during the French attempt at building the Panama Canal, where
disease killed many of the French laborers. However, local indigenous people seemed
immune to the various fevers afflicting the French, which were likely caused by arboviruses
and flaviviruses being spread by mosquitos [36]. If this is true, then the indigenous people
of Panama might display signs of strong positive selection on genetic variants that may
correlate with the immune response to these types of viruses.

Bioarcheology also has the potential to reveal the presence of ancient human pathogens
in South America. Ancient skeletons that exhibit pathologies may contain the genomes
of the associated pathogens. The use of metagenomics, which extracts and aligns DNA
sequences from ancient bone to the genomes of known microbes, may hold the key to
revealing ancient disease. For the most part, research in this area has focused on detecting
the presence of tuberculosis before European contact in the Andes [37], but the potential is
high for revealing other endemic pathogens throughout South America.

6. Methods for Detecting Positive Selection

Testing the various hypotheses and scenarios posed in the article requires careful
consideration of the populations utilized. Aside from requiring ancient samples with high
endogenous DNA to reliably call genotypes, populations being compared across transects
of time need to demonstrate genetic continuity. In other words, the researcher needs
to be testing the same population through time when dealing with certain questions of
adaptation. This is pertinent to questions concerning adaptation to pathogens introduced
after European contact, where the researcher may test for positive selection before and
after European contact (Figure 3B). On the other hand, it is possible to contrast genomic
differences in ancient populations with known cultural or environmental differences to
assess selection that is specific to a distinct environmental variable, which is seen in one
population but not the other.

The population branch statistic (PBS) [11], a variant of the locus-specific branch
length [38], lends itself well to this type of hypothesis testing, as it can handle juxtaposing
a single population through time, as in the case of testing a population before and after
European contact, or two distinct populations with different cultural or environmental
attributes (Figure 4A). Depending on the hypothesis, PBS could detect strong selection that
has occurred along one population but not the other since their divergence from a closely
related outgroup. Careful attention also needs to be given to the outgroup, which could
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potentially obscure results, if the outgroup is too distantly removed from the comparative
groups and has experienced a distinct evolutionary history.

Figure 4. Various schemes for detecting selection in South American living and ancient populations. (A) Detecting allelic
differentiation through time in a single population. (B) Detecting ancestral selection leading to adaptive phenotypes in two
populations; (C) Detecting selection with admixture aware methods.

Methods for detecting ancestral selection have also been developed. These methods
employ both model-free approaches based on allele frequencies, which can detect shared
ancestral selection between a set of populations since they diverged from a closely related
outgroup (Figure 4B) (ancestral branch statistic (ABS) [39], the similar levels of exclusively
shared differences (LSD) method [40,41], and the model-based 3P-CLR [42]). A wealth of
additional approaches also exist for detecting shared ancestral selection events [43–47].
This collection of methods could potentially be utilized to test ancestral selection in ancient
and living indigenous populations that share coastal environments and marine sustenance
strategies. This test would be intriguing given that the first migrating people may have
taken a coastal route into the Americas [48], potentially utilizing a marine diet along the
way. Early South American archeological sites also show settlements along the South
American Pacific coast [49], and these settlers are likely to be closely connected to the
first migrants. One testable hypothesis is that the marine settlers came prepared with an
adaptive phenotype that allowed them to thrive on the specific nutrients associated with a
marine diet.

New methods are also available that directly compare populations without the need
of an outgroup. One such approach is SS-H12 [47], which employs haplotype data. This
method has great power to detect shared positive selection events, and excellent accuracy at
distinguishing between events that occurred prior to population splits (ancestral selection)
and independently in each population after their split (convergent selection). These two
scenarios are difficult to disentangle with allele frequencies alone, and they lend insight
into different interpretations of the adaptive history of the populations. This method
could be useful in detecting independent adaptive events to similar agriculture products in
different parts of South America. Another method employed by Ohana [15] is particularly
dynamic because it involves the simultaneous assessment of admixture along with allelic
differentiation (Figure 4C). In doing so, admixture between populations, if any exists,
can be integrated into the test to prevent potential false positives or negatives. In a case
where low- and high-altitude Andean populations are contrasted, Ohana could detect
variants that deviate strongly in the high-altitude population with respect to a genome-
wide covariance structure created using both coastal and high-altitude populations, which
includes any admixed features. This method proved powerful in detecting selection on
variants associated with the adaptive ability of deep sea divers in the indigenous Bajau
people, who can hold their breath while diving for extraordinary amounts of time [50],
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and may provide the key for unlocking the hidden genetic components behind hypoxia
adaptation in the Andes.

The approaches we have discussed thus far seek to measure and summarize genomic
diversity with a single statistic, which is often engineered to detect a common footprint
of some adaptive processes. However, more power and accuracy in detecting adaptive
genomic targets may be acquired when examining multiple statistics in aggregate. In the
last decade, advancements in computing power and artificial intelligence methodologies
have fueled a renaissance in the development of new machine learning frameworks [51–54]
that detect and quantify diverse evolutionary processes. These powerful approaches have
been developed to identify diverse adaptive events [51,54,55], which include different
mechanisms of positive selection and the estimation of key underlying evolutionary genetic
parameters, such as recombination rates, population sizes changes over time, strengths of
selection, frequencies of beneficial variants when selection is initiated, and ages at which
variants became adaptive [52,56–58]. These methods can be utilized with large genomic
datasets and multiple populations, allowing for hypothesis testing between populations
with different attributes. Moreover, the varied modeling techniques employed by these
methods permits them to directly account for the expected correlation structure among
summary statistics across genomes (such as with Trendsetter [59] and SURFDAWave [60]),
as well as to even automatically estimate genomic features from raw genotype calls that
yield the highest prediction accuracies (such as with the methods of Flagel et al. [56],
ImaGene [61], and BaSe [62]). One particular caveat of these methods is that an accurate
demographic model is generally needed for the production of training data. Utilizing an
ill-fitting model to the populations in question could potentially negatively influence the
selection results. Luckily, recent work has provided significant insights on the demographic
history of the South American continent [2,3,24], and studies have shown that training such
machine learning models on diverse demographic histories may help rescue the negative
effects of uncertain demographic history [59,60]. An additional caveat, however, remains in
the “black box” nature of machine learning methods, which make it difficult to understand
other evolutionary scenarios that could confound results.

While the above methods are powerful at detecting positive selection, the tests apply
to instances where variants carry a very strong association to a particular phenotype.
However, complex traits, which are governed by many variants and are complicated by
environmental interactions, might also play a part in adaptive phenotypes. Moreover, the
difficulties in identifying adaptation in genomic regions that are weakly associated with a
particular phenotype, such as those related to complex traits, may be exacerbated when
admixed populations are concerned, as is the case for methods that detect more classical
signatures of positive selection. Though a number of frameworks have been developed
to address such hurdles [63–66], we highlight one method known as PolyGraph [64],
which implements a model-based approach to detect polygenic adaptation on complex
traits that accounts for relationships among multiple putatively admixed populations
using an admixture graph, and which could effectively be able to integrate genetic data
from contemporary and ancient populations. This admixture graph is estimated from
the genome-wide genetic variation within and across populations, which is taken as a
null hypothesis of neutrality and attempts to account for the myriad demographic forces
affecting such variation. PolyGraph has great power to pinpoint particular branches (either
contemporary or ancestral populations) on the graph where adaptation may have occurred,
and also has the ability to estimate strength of selection at each identified branch. Because
demographic factors such as historical divergence and complex admixture history are
directly incorporated, the method is able to uncover the subtle genomic footprints expected
due to selection on complex traits.

7. Conclusions

The use of ancient DNA, and genomics in general, remains in its infancy with regard to
understanding the evolutionary histories of the many populations of South America. Most
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of the research, to date, has been conducted in the Andes, in order to better understand
the high-altitude phenotype and the complexities of the massive empires that existed
before European contact. However, even in this region, many questions remain that can be
addressed by future studies, including nuanced cases of adaptation and even epigenetic
changes associated with cultural shifts. However, the Andes represents but one region of
South America, which is filled with a great breadth of environments. These environments
were successfully inhabited many thousands of years ago and little work has been done on
the genomic level to understand the adaptive aspects of this success. To further complicate
the issue, European contact dramatically shifted the population history of many cultures
over the past 500 years, and the genomic impact of this shift is yet to be fully understood.
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