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Abstract
There is much evidence that the vertebrate lung originated from a progenitor structure which was present in bony fish. How-
ever, critical basic elements for the evolution of breathing in tetrapods, such as the central rhythm generator sensitive to  CO2/
pH and the pulmonary surfactant, were present in the lungless primitive vertebrate. This suggests that the evolution of air 
breathing in all vertebrates may have evolved through exaptations. It appears that the capability for proliferation of alveolar 
type 1 (AT1) cells is the “critical factor” which rendered possible the most radical subsequent innovation—the possibility 
of air breathing. “Epithelial remodeling,” which consists in proliferation of alveolar cells—the structural basis for gas dif-
fusion—observed in the alimentary tract of the gut-breathing fishes (GBF) has great potential for application in biomedical 
research. Such a process probably led to the gradual evolutionary development of lungs in terrestrial vertebrates. Research 
on the cellular and molecular mechanisms controlling proliferation of squamous epithelial cells in the GBF should contribute 
to explaining the regeneration-associated phenomena that occur in mammal lungs, and especially to the understanding of 
signal pathways which govern the process.
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Introduction

The organs used for air breathing in vertebrates are very 
diverse (Duncker 2014). In spite of the differences in their 
structure and ventilation mechanisms, however, the res-
piratory organs always have some typical modifications: 
simple squamous epithelium and the distribution of numer-
ous capillary vessels among the epithelial cells. The two 
characteristics must co-occur. Such an adaptation causes 
a significant reduction in the thickness of the air–blood 
barrier, allowing for gas diffusion. The adaptation is also 
observed in air-breathing fishes which use their stomach as 
an accessory respiratory organ (Satora 1998; Podkowa and 
Goniakowska-Witalińska 2003; Cruz et al. 2009; Cruz and 

Fernandes 2016). The lungs are the main organ of the res-
piratory system in mammals. They possess a unique archi-
tecture: millions of alveoli. Each of them is lined mainly by 
thin squamous epithelial cells. The apical parts of epithelial 
cells are strongly attenuated and form an exceedingly thin, 
continuous layer covering capillary blood vessels located 
between the bodies of epithelial cells; such structures are 
primarily sites for gaseous exchange (Liem 1988; Ciechano-
wicz 2019). Although mammalian lungs are slow-turnover 
organs that are highly quiescent at steady state, they have 
the ability to repair epithelial damage (Liem 1988; Ciecha-
nowicz 2019).

Lung diseases are among the most common medical con-
ditions all over the world. Moreover, chronic obstructive pul-
monary disease (COPD) and lower respiratory infections 
are associated with high morbidity and mortality. Currently, 
they are ranked by the World Health Organization (WHO) 
as the third and fourth leading cause of death worldwide, 
respectively (WHO 2020). Both chronic and acute respira-
tory diseases affect the interstitium, for example sarcoido-
sis, idiopathic pulmonary fibrosis, autoimmune diseases, 
pneumonia, pulmonary edema (Kaku et al. 2020; Meyer 
et al. 2021). Parenchymal diseases are characterized by 
progressive remodeling of lung parenchyma combined with 
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destruction and fibrosis of alveoli and, consequently, pro-
gressive respiratory distress. With the developing inflamma-
tory reaction, the pneumocytes desquamate, which is accom-
panied by production of hyaline membranes. The altered 
alveoli cease to fulfill their primary role in gas exchange 
(Sims et al. 2005).

Background

In mammals, gas exchange takes place in lung alveoli, which 
ensures a large surface area for diffusion of oxygen and car-
bon dioxide. The respiratory epithelium, which is the main 
component of the alveolar wall, contains two main types of 
cells (Liem 1988; Desai et al. 2014; Ciechanowicz 2019; 
Parekh et al. 2020). Alveolar type 1 (AT1) cells, which max-
imize surface area while minimizing the gas–blood barrier, 
occupy almost 95% of the lung surface and form a thin, con-
tinuous lining in the alveolar wall. AT1 cells supply a short 
diffusion pathway for gas exchange—creating a gas–blood 
barrier of about 0.2–2.5 µm (Liem 1988; Miettinen et al. 
1997; Desai et al. 2014). Alveolar type 2 (AT2) cells (cuboid 
cells) are almost twice as abundant as AT1 cells (Ciechano-
wicz 2019), but they occupy only 7–10% of the lung surface 
and express high levels of surfactant protein C (Ciechano-
wicz 2019; Parekh et al. 2020). The surfactant ensures low 
surface tension and contributes to the elastic properties of 
the lungs (Bensch et al. 1964; Clements et al. 1970; Pattle 
1976; Sullivan et al. 1998; Hawgood et al. 1998). In mam-
mals, AT1 cells have lost their capacity for proliferation by 
cell division and, when damaged, they are replaced by AT2 
cells (Liem 1988; Desai et al. 2014; Zacharias et al. 2018; 
Ciechanowicz 2019; Parekh et al. 2020). In fully developed 
lungs, the microenvironment regulates proliferation and dif-
ferentiation potential of populations of multipotent endog-
enous stem cells located in niches (Ciechanowicz 2019). 
Furthermore, it is proposed that AT1 cells are completely 
differentiated, since there is little evidence to indicate that 
they can divide, whereas AT2 cells are regarded as bifunc-
tional alveolar progenitor lung stem cells, which can dif-
ferentiate into AT1 cells (Desai et al. 2014; Zacharias et al. 
2018; Parekh et al. 2020). These functions are regulated by 
the bone morphogenetic protein (BMP) signaling pathway. 
During this process, BMP4 prevents proliferation of AT2 
cells and promotes differentiation; its antagonists, such as 
Noggin, promote proliferation (Parekh et al. 2020). Other 
factors and signaling pathways are implicated in the self-
renewal of AT2 cells after distal lung injury. In this case, 
stromal cell-derived factor 1 (SDF1) activates yes-associ-
ated protein (YAP), which leads to the production of growth 
factors, such as epithelial growth factor (EGF), and parac-
rine signals released by macrophages. However, following 
injury, AT2 cells possess limited proliferative ability. Further 

subclassification of AT2 cells, and ascertaining their role in 
lung regeneration processes, is still necessary (Desai et al. 
2014; Zacharias et al. 2018; Parekh et al. 2020). However, 
without recognizing the mechanisms which control human 
lung development, the precise identity and function of 
human lung stem and progenitor cell types, and the genetic 
and epigenetic control of human lung fate, progress toward 
the development of strategies for lung regeneration follow-
ing injury is impossible (Desai et al. 2014; Ciechanowicz 
2019; Parekh et al. 2020).

Research models

Studies on rodents—a group characterized by large dispari-
ties in the size, structure, cellular composition and physiol-
ogy of their airways compared to humans—impose limita-
tions on the use of this model as a preclinical animal model 
system (Parekh et al. 2020). On the other hand, differentia-
tion of AT2–AT1 cells in 3D organoid culture in research on 
cell lineages is still the main challenge (Parekh et al. 2020). 
For example, freshly isolated cells of human alveoli quickly 
lose their differentiation status during culture, and this leads 
to failure to detect types of cells in vivo (Sims et al. 2005). 
Understanding the cellular and molecular mechanisms which 
control the development of the gas exchange surface and 
differentiation of the lungs is crucial for understanding the 
pathogenesis of acute and chronic lung diseases. This per-
tains especially to regeneration after exposure to damaging 
factors. Unfortunately, for obvious reasons, there is no direct 
physiological evidence, and the lung evolution can only be 
studied in extant species, followed by extrapolations (Ran-
dal et al. 1981). In this situation it seems crucial to find an 
adequate model to observe the initial stages of lung forma-
tion in terrestrial vertebrates (Satora et al. 2020b).

From water to land

In the almost four billion years since life on earth emerged, 
evolution has generated a number of marvelous metamor-
phoses. One of the most spectacular changes is that which 
produced terrestrial creatures bearing limbs, fingers and toes 
from water-bound fish with fins. The replacement of fins 
with limbs was a crucial step in this transformation, but was 
by no means the only crucial step (Clack 2005). Land is a 
radically different medium from water, and to conquer this 
medium, tetrapods had to evolve novel ways to breathe and 
become equipped with a respiratory organ for air breath-
ing. Most accounts of vertebrate evolution describe early 
air-breathing fishes, and stress the importance of aerial res-
piration in the origin of the tetrapods (Randal et al. 1981; 
Graham 1997). Nevertheless, the focus of these treatments 
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usually shifts to the tetrapods themselves and the changes 
occurring in the phyletic progression from amphibians to 
mammals. Such accounts rarely consider the evolution of 
fishes beyond the Paleozoic and as a result succeed, more 
often than not, in conveying the impression that both fish 
evolution and the importance of air breathing to fishes ended 
with the appearance of amphibians. Similarly, comparative 
surveys of air-breathing fish respiratory adaptation have not 
considered the phyletic histories of fish, and thus most often 
treat both the primitive and modern air-breathing fishes sim-
ilarly, as inferior grades of the mammalian specialization, 
evolutionary curiosities, or both (Randal et al. 1981; Graham 
1997). Air breathing has persisted throughout the evolution-
ary history of the fishes and has played a fundamental role in 
the evolution of this group (Graham 1997; Icardo 2018). In 
general, air-breathing organs sequester a bubble of air out of 
contact with the water but in contact with a thin epithelium 
through which  O2 diffuses into the blood. In contrast to water 
breathing, ventilation of the air-breathing organ is periodic 
(Kramer and Braun 1983).

Exaptation

Exaptation is defined as existing structures that now enhance 
fitness but were not produced by natural (or sexual) selec-
tion for their current role (Gould and Vrba 1982; Tattersall 
2009). There is much evidence to indicate that the verte-
brate lung originated from a progenitor structure present in 
bony fish (Randall et al. 1981; Graham 1997; Nelson and 
Dehn 2011; Hoffman et al. 2016), but crucial structures for 
the evolution of air breathing were present in the vertebrate 
ancestors (lungless) prior to the evolution of the lung (Sulli-
van et al. 1998; Hoffman et al. 2016). In 2016, Hoffman and 
co-authors proposed a completely novel hypothesis, namely 
that the evolution of air breathing in all vertebrates occurred 
through exaptations (Gould and Vrba 1982; Tattersall 2009; 
2014) derived from critical basic elements (Hoffman et al. 
2016). One of them is the central rhythm generator sensitive 
to  CO2/pH present in lamprey—a lungless vertebrate (Hoff-
man et al. 2016).

Additionally, Sullivan and co-authors point out that the 
evolution of air breathing must have been preceded by evo-
lution of the surfactant system—evolved initially in the gut 
and subsequently utilized and modified in the lung (Sullivan 
et al. 1998). Pulmonary surfactant (mixture of lipids and 
proteins) is present in all air-breathing vertebrates, synthe-
sized in the endoplasmic reticulum of cuboid alveolar cells 
(Bensch et al. 1964; Clements et al. 1970; Pattle 1976; Haa-
gsman and van Golde 1991) and stored in dense multilayered 
structures called lamellar bodies (Bensch et al. 1964; Cheva-
lier and Collet 1972). The surfactant forms a thin, amor-
phous alveolar lining, spreading over all the cells in contact 

with air (Bensch et al. 1964; Clements et al. 1970; Pattle 
1976; Haagsman and van Golde 1991; Satora 1998). The 
surfactant reduces surface tension at the air–liquid interface 
and protects the cells against drying and the toxic effects of 
oxygen (Clements et al. 1970; Pattle 1976; Smits et al. 1994; 
Sullivan et al. 1998; Satora 1998). The study of surfactant 
protein A (SP-A) in members of all the major vertebrate 
groups implies that the surfactant had a single evolutionary 
origin in the vertebrates (Sullivan et al. 1998).

However, the presence of AT1 epithelial cells is indis-
pensable for gas diffusion. The appearance of such epithe-
lium, combined with the capability for proliferation, in the 
alimentary tract is the next critical element for the evolu-
tion of breathing in Tetrapoda. In addition, the ability of 
these cells to proliferate seems to be a “critical factor” of the 
practical breakthrough in the evolution of lung. The environ-
mental factor—hypoxia—has turned out to be the main driv-
ing force of such changes leading to the origin of the lung 
(Randal et al. 1981; Graham 1997; Nelson 2014). According 
to Tattersall, exaptations, combined with “critical factors,” 
constitute a powerful evolutionary mechanism, and they are 
the driving force of development. On the other hand, all new 
genomic variants must arise as exaptations, mutations occur 
at random, and new functions cannot be adopted without 
prior new structures (Tattersall 2006; 2009; 2014).

Sometimes, a combination of pre-existing elements (exap-
tations) results in something totally unexpected (Tattersall 
2006). In the case of limb development, Clack discovered in 
2005 that many of the critical innovations arose while verte-
brates were still largely aquatic (Clack 2005). Furthermore, 
Clack suggested that the first changes appeared to have been 
related not strictly to locomotion but to an increased depend-
ence on breathing air (Clack 2005).

Promising natural model

It is believed that regular occurrence of aquatic hypoxia (low 
oxygen conditions), being a primary factor, led to the evolu-
tion of air breathing in the Late Silurian fishes and as a result 
enabled vertebrates to invade land in the Devonian period 
(Randall et al. 1981; Graham 1997). Also, in modern air-
breathing fishes, hypoxia is the greatest inducing force for 
air breathing (Graham 1997; Seymour et al. 2008; Nelson 
2014). Among the air-breathing fishes, the gut-breathing 
fishes (GBF) seem especially interesting; they must have 
special adaptations to use their alimentary tract as an acces-
sory respiratory organ during low oxygen levels in the water 
(Nelson and Dehn 2011; Nelson 2014).

Studies on GBF showed that aquatic hypoxia induces pro-
liferation of the squamous cells (similar to AT1 cells) in the 
digestive tract and makes gas diffusion possible (Fig. 1a) 
(Satora 1999). The phenomenon was described as a type 
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of “epithelial remodeling” (Fig. 3) (Satora et al. 2020a, b). 
The majority of epithelial cells in the respiratory region 
of the digestive tract in the GBF are differentiated into the 
enlarged basal part containing the nucleus, and strongly 
flattened, anuclear peripheral extensions. The resulting 
gas–blood barrier is composed of three thin layers (Fig. 1a): 
capillary endothelium, basement membrane and flattened 
projections of epithelial cells (Jasiński 1973; Satora 1998, 
1999; Podkowa and Goniakowska-Witalińska 2002, 2003; 
Cruz et al. 2009; Cruz and Fernandes 2016). The minimum 
measured thickness of this barrier is 0.2 µm (Jasiński 1973). 
At the same time, numerous capillary vessels are located 
between the bodies of the epithelial cells (Jasiński 1973; 
Satora 1998; Satora and Winnicki 2000). Some GBF can 
adjust almost 50% of the digestive tract into an additional 
respiratory organ under hypoxic water conditions (Leknes 

2015). Also, AT2 cells of varied shape and with numerous 
lamellar bodies (Fig. 2a) have been observed in the GBF 
(Jasiński 1973; Satora 1998; Podkowa and Goniakowska-
Witalińska 2002, 2003). Their role as progenitors for AT1 
cells in GBF requires further research, but the observed 
change in their shape, which consists in flattening/extension, 
with the decreasing number of lamellar bodies may indicate 
formation of AT1 cells (Figs. 1b and 3).

Lungs, as well as respiratory and non-respiratory blad-
ders of chondrosteans, appear to have originated from a 

Fig. 1  a Transmission electron micrograph of the gas–blood barrier 
in the corpus of the stomach of Ancistrus multispinnis (Loricariidae). 
The gas–blood barrier is composed of three layers: external, thin 
cytoplasmic sheets of respiratory epithelial cells (remodeled gastric 
epithelial cells), narrow interstitial space, with basement membrane 
(BM), and thin parts of endothelial cells (EN). E erythrocyte with 
nucleus; GE gastric epithelium; GL gastric lumen; N nucleus of epi-
thelial cell. Taken from Satora (1999). Scale bar = 1  µm. b Trans-
mission electron micrograph of a section of the stomach corpus 
epithelium of Ancistrus multispinnis. Flattened epithelial cells with 
nucleus (N) and lamellar bodies (arrows) are visible. BM basement 
membrane; E erythrocyte; GE gastric epithelium; GL gastric lumen. 
Taken from Satora (1999). Scale bar = 1 µm. The cell body with large 
nucleus (N) is situated between capillaries covered by thin epithelial 
sheets (insert in 1b). Taken from Satora (1999). Scale bar = 1 µm

Fig. 2  a Transmission electron micrograph of the stomach of Ancis-
trus multispinnis (Loricariidae). Epithelial cell with nucleus (N) 
and lamellar bodies (arrows). GL gastric lumen. Taken from Satora 
(1999). Scale bar = 1 µm. b Ultrastructure of neuroendocrine-like cell 
of the stomach corpus Ancistrus multispinnis. The cytoplasm contains 
characteristic secretory vesicles (dense core vesicles). Taken from 
Satora and Winnicki (2000). (TEM) Scale bar = 1 µm
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respiratory, posterior pharynx through proliferation of the 
squamous cells and gradual enlargement. The fish groups 
which have lungs, or a pulmonoid/respiratory swim blad-
der, tend to develop only the skin as an accessory aerial 
gas exchange organ, whereas those with non-secretory or 
secretory swim bladder also modify their gills, opercular 
or branchial cavities, pharynx, pneumatic duct, stomach or 
intestine (Perry et al. 2019). It is suggested that this mecha-
nism has developed independently in several species of the 
GBF (Satora et al. 2020b). The epidermal growth factor 
receptors (EGFR) seem to be among the factors responsible 
for the adaptation of the gastrointestinal tract to the role 
of additional respiratory organ in the GBF (Satora et al. 
2017; Mytych et al. 2018). In mammals, the EGFR plays an 
important role in lung maturation; EGFR deficiency results 
in a mild respiratory distress syndrome and delayed lung 
maturation (Miettinen et al. 1997). Other essential elements 
include secretory neuroepithelial-like cells (NECs), puta-
tive chemoreceptors (Zaccone et al. 2017, 2018, 2019, 2020, 
Capillo et al. 2021; Lauriano et al. 2021), which are prob-
ably responsible for the control of proliferation of AT1 cells 
(Fig. 3) in the digestive tract in the GBF during hypoxia 
(Satora et al. 2020b).

In vertebrates, specialized sensory cell types called neu-
roepithelial sensors, or neuroendocrine cells (NECs), dis-
play characteristics of both neurons and hormone-secreting 

endocrine cells (Lauriano et al. 2021). In the mammalian lung, 
pulmonary neuroendocrine cells (PNEC) are widely distrib-
uted throughout the airway mucosa as solitary cells and as 
distinctive innervated clusters—called neuroepithelial bod-
ies (NEB). They can detect airborne allergens and relay sig-
nals to stimulate immune cells and induce tissue/organ-wide 
responses. Their increase is associated with a wide range of 
congenital and infantile lung disorders (Cutz 2015; Jonz et al. 
2016; Whitsett et al. 2019). The PNEC and NEB also play an 
important part in mammalian lung development (Cutz 2015; 
Whitsett et al. 2019). It is suggested that the groups of neu-
roendocrine cells represent an ancient mechanism for environ-
mental sensing that integrates epithelial receptors with innate 
immunity (Lauriano et al. 2021). Understanding their role in 
lung regeneration and aging is of utmost importance (Cutz 
2015; Branchfield et al. 2016; Sui et al. 2018; Whitsett et al. 
2019). The chemoreceptors have both receptor and secretory 
function, and initiate reflex responses to hypoxia (Jonz et al. 
2016); they were observed to be active (releasing granules) in 
hypoxic conditions (Tzaneva et al. 2011)—the strongest air-
breathing-inducing factor (Randall et al. 1981; Graham 1997; 
Nelson 2014).

Additionally, in the respiratory intestine of the bronze 
corydoras (Corydoras aeneus), a hypoxia-inducible factor-1α 
(HIF-1α) has been found, which is considered the main 

Fig. 3  Summary schematic of “epithelial remodeling” in the gas-
trointestinal tract in gut-breathing fishes under hypoxic conditions. 
Aquatic hypoxia causes degranulation of graininess within putative 
chemoreceptors (NEC), which triggers a “cascade of events.” As a 
result, proliferation of oval epithelial cells situated between colum-
nar enterocytes follows, combined with a change in the shape of 
the cells—gradual flattening and stretching. The capillaries (c) get 

closer in relation to the future respiratory surface. At the same time, 
the number of lamellar bodies contained within decreases. In the 
final stage of this process, the epithelial cells differentiate into the 
enlarged basal part (with nucleus) located between the capillary (c) 
and strongly flattened peripheral extensions. Numerous capillaries are 
covered only with flattened projections of epithelial cells, thereby cre-
ating a gas–blood barrier which enables gas diffusion
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transcriptional regulator of the cellular and the developmental 
response to hypoxia (Satora et al. 2018).

Natural model organism

Proliferation of the squamous epithelial cells observed in 
the alimentary tract of the GBF in conditions of water 
hypoxia (Fig. 3) has probably led to the gradual evolu-
tionary development of lungs in terrestrial vertebrates 
(Satora et  al. 2020a). HIF-1α, depending on the nor-
moxic/hypoxic conditions, is one of the most important 
downstream effector molecules of the EGFR pathway 
(Lu et al. 2012). Also, NECs—putative chemoreceptors 
(Figs. 2b,  3)—were found to play an important role in 
stimulating the development of organs for air breath-
ing in the early terrestrial vertebrates (Jonz 2018; Sma-
tresk 1990). Thus, the most important factors associated 
with proliferation of AT1 cells, such as HIF-1α, NECs 
and EGFR, are present in the GBF (Satora and Winnicki 
2000; Satora et al. 2017; Mytych et al. 2018; Satora et al. 
2018). GBF antibodies directed against human EGFR and 
HIF-1α were successfully used in immunohistochemical 
and western blot studies (Mytych et al. 2018; Satora et al. 
2018), which additionally facilitates the observations. 
The research on signals and interactions between those 
elements in conditions of hypoxia makes it possible to 
observe a “switching pulse” initiating the proliferation of 
squamous epithelial cells (Fig. 3). In addition, the state of 
normoxia causes inhibition of the proliferation process. 
The GBF can be considered a natural research model of 
great potential, enabling a breakthrough in research on 
AT1 cell proliferation.

The presence of NECs was detected in developing sites 
of gas exchange in the GBF (Satora and Winnicki 2000; 
Podkowa and Goniakowska-Witalińska 2002, 2003). Thus, 
understanding the function of NECs in the formation of 
the squamous epithelium which enables gas diffusion in 
the GBF seems crucial (Satora et al. 2020b). On the other 
hand, experimental studies on NECs of a simple model—
GBF—may lead to a breakthrough and contribute to an 
understanding of the processes which govern proliferation 
of squamous epithelium, and thus regeneration of respira-
tory epithelium in the lungs. Therefore, the GBF would 
seem to be an ideal, low-cost model organism for devel-
opmental and molecular biology, but also for physiology.

At the end

Understanding the mechanism of proliferation of AT1 
cells which enable gas diffusion is critically important. 
However, models using cell cultures are too simplistic 
and may lead to misinterpretations (Sims et al. 2005). In 
turn, studies using mammalian models constitute highly 
interactive models (Sonnenschein and Soto 2018). Thus, 
a relatively simple natural model which allows for easy 
stimulation of squamous epithelial cell proliferation is 
extremely valuable. Numerous experiments have shown 
that fishes are promising models for molecular studies, 
with great potential. For example, the zebrafish (Danio 
rerio) is a vertebrate model widely used in biomedical 
research (Bradford et al. 2017).

There is an increasing body of evidence that air breath-
ing in tetrapods arose as an exaptation. Furthermore, the 
proliferative ability of squamous epithelial cells, observed in 
the GBF, seems to be a practical breakthrough which came 
into existence under the effect of environmental stimulus—
hypoxia (Capillo et al. 2021). Using the GBF as a natural 
model organism opens a completely new avenue which is not 
available with other models such as mammals and cell line-
ages. In the studies on such models, tools dedicated to mam-
mals (such as antibodies) can be used successfully (Mytych 
et al. 2018). Moreover, the model is not expensive and the 
experiments are relatively easy to conduct.

In conclusion

Despite efforts, it has been impossible to identify the 
mechanisms which control human lung development, the 
precise identity and function of human lung stem and pro-
genitor cell types, and the genetic and epigenetic control 
of human lung fate, without which progress toward the 
development of strategies for lung regeneration following 
injury is impossible.

The suggestion that the evolution of air breathing in 
all vertebrates occurred through exaptations opens a com-
pletely new research perspective. Studies on the mecha-
nisms that control the proliferation of squamous epithe-
lium in the alimentary canal in GBF may contribute to a 
precise understanding of the signal pathways which govern 
this process in mammals. This in turn may lead to a break-
through in the study of mammalian lung regeneration.
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