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Abstract: Molecular optimization plays a pivotal role in many domains since it holds
promise for improving the properties of lead molecules. The advent of artificial intelli-
gence (AI)-driven molecular optimization has revolutionized lead optimization workflows,
which have significantly accelerated the development of drug candidates. However, AI
models are also confronted with new challenges in practical molecular optimization, such
as high-dimensional chemical space and data sparsity issues. This paper initially highlights
the inherent benefits of molecular optimization in terms of optimizing the properties and
maintaining the structural similarity of lead molecules, thereby highlighting its critical
role in drug discovery. The next section systematically categorizes and analyzes existing
AI-aided molecular optimization methods, comprising iterative search in discrete chemical
space, end-to-end generation in continuous latent space, and iterative search in continuous
latent space methods. Finally, we discuss the key challenges in AI-aided molecular opti-
mization methods, including molecular representations, dataset selection, the properties to
be optimized, and optimization algorithms, while proposing potential solutions and future
research directions. In summary, this review provides a comprehensive analysis of existing
representative AI-aided molecular optimization methods, thereby offering guidance for
future research directions.

Keywords: molecular optimization; artificial intelligence; iterative search; end-to-end generation

1. Introduction
In various engineering fields such as materials engineering, the chemical industry,

and drug development, molecular optimization plays a pivotal role in enhancing molec-
ular properties by modifying the structures of lead molecules [1,2]. The drug discovery
pipeline comprises several critical stages, including target identification, lead compound
screening, lead compound optimization, and preclinical and clinical validation, which is a
time-consuming and expensive process with a high failure rate [3]. The inherent complex-
ity of human pathophysiology, coupled with the vastness of chemical space, necessitates
rigorous decision-making at each stage of the discovery process. Thus, it is imperative
to employ specific techniques to accelerate the drug discovery process and enhance the
success rate [4,5]. Computer-aided drug design has significantly advanced various key
aspects of drug discovery through its applications in disease target prediction, virtual

Int. J. Mol. Sci. 2025, 26, 4878 https://doi.org/10.3390/ijms26104878

https://doi.org/10.3390/ijms26104878
https://doi.org/10.3390/ijms26104878
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0009-0003-9904-1397
https://doi.org/10.3390/ijms26104878
https://www.mdpi.com/article/10.3390/ijms26104878?type=check_update&version=1


Int. J. Mol. Sci. 2025, 26, 4878 2 of 22

screening, molecular optimization, etc. [6–8]. Among these applications, molecular opti-
mization is one of the crucial steps in obtaining optimal drug candidates, with the aim of
improving the properties of lead molecules, such as their biological activity properties and
physicochemical properties, while preserving their structural features [9,10]. The strategic
optimization of the unfavorable properties of lead molecules significantly increases their
likelihood of success in subsequent preclinical and clinical evaluations [11,12]. Therefore,
the development of efficient molecular optimization methods offers substantial potential
for streamlining the drug discovery and development process.

In recent years, artificial intelligence (AI)-aided molecular optimization methods have
been extensively developed, facilitating a more comprehensive exploration of the huge
chemical space and holding promise for enhancing the drug discovery and development
process [13–15]. For example, while conventional drug development takes around 12 years
and costs USD 2.6 billion on average [16], Zhavoronkov et al. proposed a deep learning
model to rapidly identify DDR1 kinase inhibitors in just 21 days, substantially reducing
both time and cost [17]. In general, AI-based molecular optimization methods follow
two processes: the selection or construction of appropriate chemical spaces, followed by
the exploration of the space to identify target molecules. Within this framework, many
combinatorial optimization techniques operating directly on discrete molecular representa-
tions, such as molecular sequences and graphs, have been proposed to optimize molecules.
Furthermore, the integration of deep learning has introduced novel capabilities, enabling
the construction of continuous latent spaces for chemical molecules. This advanced repre-
sentation facilitates molecular optimization through continuous vector space manipulation,
offering an alternative to traditional discrete optimization approaches.

However, AI-aided molecular optimization methods face both significant challenges
and emerging opportunities in practical drug discovery applications. The primary limita-
tion stems from the inherent constraints of conventional molecular representations, which
bring different challenges for effective AI-driven optimization [18]. Moreover, the efficacy
of these AI-driven methods is fundamentally contingent upon the availability and quality
of relevant molecular datasets [19]. Well-curated datasets are essential for training optimiza-
tion models and ensuring their applicability. Furthermore, practical molecular optimization
must navigate the complex task of simultaneously enhancing multiple properties while
maintaining critical structural constraints [20]. This multi-objective optimization problem
necessitates the development of more efficient computational frameworks. In addition, the
rapid advancement of AI technologies offers promising avenues for addressing these chal-
lenges. Novel machine learning architectures and optimization algorithms hold significant
potential for developing more efficient and reliable molecular optimization methods [21].

In this review, we provide a comprehensive overview of AI-aided molecular opti-
mization. We first emphasize the advantages of molecular optimization to highlight its
significance in drug discovery. Then, we summarize recent AI-aided molecular optimiza-
tion methods, categorizing them into two distinct paradigms: combinatorial optimization
methods operating in discrete chemical space and deep learning models operating in con-
tinuous latent space. Furthermore, we compile the experimental results of various methods
on the same experimental task to visually demonstrate the optimization performance of
different approaches. Finally, we discuss the challenges associated with AI-aided molecular
optimization in practical drug discovery and offer corresponding recommendations. Our
aims are to provide insights into AI-aided molecular optimization and offer guidance for
future directions in computational drug discovery.
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2. Definition of Molecular Optimization
In the drug discovery process, molecular optimization represents a critical stage

subsequent to the lead molecule screening stage, which focuses on the structural refinement
of promising lead molecules to enhance their properties. Therefore, molecular optimization
methods can optimize specific properties of a given molecule, leading to molecules with
enhanced properties. For example, Jin et al. [22] established a benchmark optimization task
that requires improving molecules with quantitative estimation of drug-likeness (QED)
values ranging from 0.7 to 0.8 to achieve QED scores exceeding 0.9 while maintaining a
structural similarity value larger than 0.4. It is worth noting that, compared to de novo
molecular generation, molecular optimization beginning with the lead molecule can shorten
the search process for finding target molecules. The definition of molecular optimization is
formulated as follows:

Definition 1. Given a lead molecule x, its associated properties are p1(x), · · · , pm(x), and the goal
of molecular optimization is to generate a molecule y with properties p1(y), · · · , pm(y), satisfying{

pi(y) ≻ pi(x), i = 1, 2, · · · , m,
sim(x, y) > δ,

(1)

where pi(y) ≻ pi(x) indicates that pi(y) is better than pi(x). pi represents a molecular property,
which can encompass various physicochemical and pharmacological properties, such as QED,
bioactivity, and synthetic accessibility. sim(x, y) is the similarity between x and y, and δ is the
threshold of similarity. A frequently used molecular similarity metric is the Tanimoto similarity [23]
of Morgan fingerprints [24], which is shown in Equation (2):

sim(x, y) =
f p(x) · f p(y)

| f p(x)|2 + | f p(y)|2 − f p(x) · f p(y)
, (2)

where f p represents the Morgan fingerprints of the molecule. A fundamental consideration in
molecular optimization is the necessity of maintaining structural similarity between the optimized
molecule and its lead compound. This similarity constraint serves a dual purpose. First, it effectively
delineates the chemical space to be explored around the lead molecule, thereby enhancing search
efficiency [25]. Second, it preserves crucial structural features that are essential for maintaining
desirable physicochemical and biological properties [26]. The significance of structural similarity is
reflected in its incorporation into numerous benchmark molecular optimization tasks. For example,
one widely adopted benchmark task involves optimizing the penalized logP of molecules while
maintaining a Tanimoto similarity larger than 0.4 [22]. Another extensively studied benchmark task
aims to improve biological activity against the dopamine type 2 receptor (DRD2) while preserving a
structural similarity value greater than 0.4 [22].

3. Current Approaches and Barriers
AI-aided molecular optimization methods typically involve two fundamental steps:

(1) the construction of an implicit chemical space and (2) the implementation of an optimiza-
tion approach to find the desired molecules within the implicit chemical space. Existing
AI-aided molecular optimization methods can be broadly classified based on their opera-
tional spaces: discrete chemical spaces and continuous latent spaces. For discrete chemical
space approaches, molecules are represented through discrete structural representations,
such as molecular sequences or graph-based structures, enabling direct structural modifica-
tions. Conversely, continuous latent space methods employ encoder–decoder frameworks
to transform molecules into continuous vector representations, facilitating optimization in
a differentiable space. To systematically organize these methods, this section categorizes
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these methods based on the constructed chemical spaces and the employed optimization
algorithms. For an enhanced comparative analysis, Figure 1 shows the workflows of var-
ious AI-based molecular optimization methods, and Table 1 provides a comprehensive
summary of representative AI-based molecular optimization methods, along with their
molecular representations, data types, and optimization objectives.

(b) End-to-end generation in continuous latent space

(a) Iterative search in discrete chemical space 

(c) Iterative search in continuous latent space

Encoder Decoder
Lead 

molecule Molecule
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Figure 1. The workflows of artificial intelligence models for molecular optimization.

3.1. Molecular Optimization in Discrete Chemical Spaces

Molecular optimization methods operating in discrete chemical spaces employ direct
structural modifications based on discrete representations, such as SMILES [27], SELF-
IES [28], and molecular graphs [29] (where nodes represent atoms, and edges represent
chemical bonds). These methods typically explore the discrete chemical space through
the following process: First, they generate a set of novel molecular structures through
structural modifications, and then they select promising molecules for subsequent iterative
optimization, as illustrated in Figure 1a. These methods can be primarily classified into
genetic algorithm (GA)-based methods and reinforcement learning (RL)-based methods.

3.1.1. GA-Based Molecular Optimization Methods

Genetic algorithms (GAs) are heuristic optimization approaches that show competitive
optimization performance to explore chemical spaces globally and locally. GA-based opti-
mization methods begin with an initial population and generate new molecules through
crossover and mutation operations. Then, molecules with high fitness are selected in
the new population to guide the evolution process [30]. Some GA-based molecular op-
timization methods only mutate molecules while maintaining structural similarity. For
example, STONED [31] generates offspring molecules by applying a random mutation
on the SELFIES strings of molecules, which finds molecules with better properties. How-
ever, the absence of a crossover operator limits the global exploration of the vast chemical
space. MolFinder [32] integrates crossover and mutation in the SMILES-based chemical space,
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which enables both global search and local search. All of the aforementioned methods aggre-
gate multiple properties into a single fitness function to guide the evolution, which requires
predefined weights for multiple properties. In comparison, GB-GA-P [33] employs two Pareto-
based genetic algorithms on molecular graphs, thereby enabling multi-objective molecular
optimization to identify a set of Pareto-optimal molecules with enhanced properties.

In short, GAs have gained widespread adoption in molecular optimization due to
their inherent flexibility, robustness, and ability to explore chemical space without requiring
extensive training datasets. However, the efficacy of GA-based molecular optimization
methods depends on the population size and the number of evolutionary generations, since
repeated evaluations of molecular properties can be costly.

Table 1. Representative molecular optimization methods and their categories, molecular representa-
tions, data types, and optimization objectives.

Category Model Molecular
Representation Data Type Optimization

Objective Citation

Iterative
search
in discrete
space

STONED SELFIES Unpaired Multi-property [31]

MolFinder SMILES Unpaired Multi-property [32]

GB-GA-P Graph Unpaired Multi-property [33]

GCPN Graph Unpaired Single-property [34]

MolDQN Graph Unpaired Multi-property [35]

End-to-end
generation
in continuous
space

CMG SMILES Paired Multi-property [36]

T&S polish Graph Paired Multi-property [25]

Mol-CycleGAN Graph Unpaired Single-property [37]

UGMMT SMILES Unpaired Single property [38]

IPCA SMILES Unpaired Multi-property [39]

GPMO SMILES Paired Multi-property [40]

VJTNN Graph Paired Single-property [22]

SCVAE Graph Paired Single-property [41]

Modef Graph Paired Multi-property [42]

CFOM SMILES Unpaired Single-property [43]

TamGen SMILES Unpaired Single-property [44]

Iterative
search
in continuous
space

QMO SMILES Unpaired Multi-property [45]

DST Graph Unpaired Multi-property [46]

LIMO SELFIES Unpaired Multi-property [47]

InversionGNN Graph Unpaired Multi-property [48]

MOMO SMILES Unpaired Multi-property [49]

DecompOpt 3D Unpaired Multi-property [50]

GCDM 3D Unpaired Multi-property [51]

Retmol SMILES Unpaired Multi-property [52]

MO-LSO Graph Unpaired Multi-property [53]

Prompt-MolOpt SMILES Paired Multi-property [54]

Drugassist SMILES Unpaired Multi-property [55]



Int. J. Mol. Sci. 2025, 26, 4878 6 of 22

3.1.2. RL-Based Molecular Optimization Methods

Reinforcement learning (RL) [56] is a machine learning paradigm used to address
decision-making problems, and it has shown potential in optimizing molecular properties
by designing states, actions, and rewards. Most RL-based molecular optimization methods
operate on molecular graphs. For example, GCPN [34] formalizes molecular optimization
as a Markov decision process, which modifies molecules by adding atoms or fragments
and connecting them with bonds. Additionally, GCPN uses a policy network to predict
actions, which integrates molecular properties and an adversarial loss as rewards to update
the policy gradients. In comparison, MolDQN [35] directly applies actions to the molecular
graph and ensures molecular validity by chemically valid actions. MolDQN trains a
Deep Q network to estimate the rewards, which enables it to discover molecules with
enhanced properties.

Overall, RL-based molecular optimization methods facilitate active exploration of the
chemical space beyond the training data. These approaches typically define the molecular
modification process as a Markov process that performs sequential modifications to refine
the molecular structure. However, the iterative modification can be inefficient due to the
large number of available substructures in chemical space.

3.1.3. Analysis of Molecular Optimization Methods in Discrete Space

GA-based molecular optimization methods exhibit strong flexibility and broad appli-
cability. By leveraging population-based parallel search mechanisms, GAs can explore a
wider chemical space while reducing the risk of converging to local optima. These methods
only require molecular property evaluators to compute the fitness function, significantly
reducing the dependence on labeled data. Consequently, they demonstrate superior task
scalability and can be flexibly applied to various quantifiable molecular optimization sce-
narios. In contrast, RL-based molecular optimization methods maximize the global reward
through interactions between actions and reward environments. However, RL typically
requires a large number of iterations to converge, meaning that obtaining high-quality
optimized molecules often demands substantial computational resources. It is worth noting
that molecular optimization based on discrete representations has certain limitations. It
relies on expert-designed modification rules. The generated molecular structures could be
chemically invalid. The exploration efficiency of chemical space is relatively limited.

3.2. Molecular Optimization in Continuous Latent Spaces

The rapid advancement of deep learning (DL) techniques has opened up new opportu-
nities for molecular optimization. DL-based molecular optimization methods leverage the
powerful nonlinear representation capabilities of deep neural networks to extract complex
chemical knowledge from extensive molecular datasets, thereby facilitating the construc-
tion of continuous latent spaces. These methods typically employ an encoder–decoder
framework, where an encoder transforms discrete molecules into continuous latent space,
which enables them to efficiently modify the continuous vector of the lead molecule to
obtain new vectors, and a decoder maps these new vectors back to discrete chemical space
to obtain novel molecular structures with enhanced properties. In this subsection, we
categorize molecular optimization methods in continuous latent spaces into end-to-end
generation methods and iterative search methods.

3.2.1. End-to-End Generation Methods

End-to-end generation molecular optimization methods typically employ a deep learn-
ing architecture comprising an encoder–decoder framework (Figure 1b). These methods
directly generate optimized molecular structures as output through the input of a lead
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molecule, and they can be further classified into translation-based methods and conditional
generation-based methods. Translation-based methods learn the translation rules from
matched molecular pairs or sets, which enables the model to map input lead molecules
to their optimized structures. Conditional generation-based methods integrate additional
condition features (e.g., target properties or structural constraints) with the lead molecule
to guide the generation of novel molecular structures with desired properties.

Translation-based methods. Inspired by the conceptual analogy between molecular
optimization and translation tasks in natural language processing, many translation-based
molecular optimization methods have been proposed to facilitate the transformation of lead
molecules into target molecules [57]. For example, CMG [36] treats molecular optimization
as a sequence-to-sequence translation problem, and it employs a Transformer framework
with two constraint networks to generate structurally similar molecules based on SMILES.
This approach relies heavily on molecular sequence representation and the Transformer
architecture. In comparison, Graph Polish [25] adopts molecular graph representation,
which translates lead molecules to optimized molecules through two modules, i.e., a pre-
labeling module and a translation module. To be specific, the pre-labeling module identifies
the optimization centers and label branches in the molecules, while the translation module
trains a deep neural network from the labeled molecules to translate the target molecules.
The graph-based approach emphasizes the structural integrity and topological features
of molecules.

While most translation-based molecular optimization methods rely on paired
molecules for supervised learning, several unsupervised translation-based methods have
been developed to address the challenge of limited paired data. For example, Mol-
CycleGAN [37] leverages the CycleGAN framework in the latent space of the JT-VAE
codec [58], which divides the training data into low- and high-property domains to fa-
cilitate adversarial learning across these two domains. Similarly, UGMMT [38] employs
CycleGAN to learn the translation rules based on molecular SMILES representations. Al-
though both Mol-CycleGAN and UGMMT can translate lead molecules to target molecules
with improved properties, their optimization capabilities are limited to a single molecular
property. In comparison, IPCA [39] extends UGMMT by introducing an integrated poly-
cycle architecture that concurrently optimizes multiple properties. This approach translates
molecules through a shared latent embedding space and a central decoder, thereby al-
lowing for the optimization of two properties. Additionally, translation-based methods
also face challenges such as exposure bias, where the generation of molecules depends
on the previously predicted outputs [59]. To mitigate this problem, GPMO [40] integrates
contrastive learning into the Transformer framework to translate desired molecules while
reducing exposure bias.

In summary, translation-based molecular optimization methods learn transition rules
from matched molecular pairs or sets, which enables end-to-end optimization by directly
generating optimized molecules from input lead molecules. However, these methods
face notable limitations, particularly the scarcity of molecular data that simultaneously
satisfy the multiple property conditions required for effective model training. Furthermore,
although transformation rules can be inferred from matched molecular sets categorized
by low and high property values, the lack of explicit structural guidance may impede the
optimization process.

Conditional generation-based methods. Several molecular optimization methods
generate molecules with enhanced properties by integrating the features of lead molecules
with specific conditions, such as the structures or properties of the target molecules. For
example, VJTNN [22] employs a graph message passing network to encode both the
molecular graphs and junction trees of paired molecules, i.e., the lead molecule and its
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corresponding target molecule. The features of the target molecule are extracted as condi-
tions, which are subsequently fused with the latent vector of the lead molecule to generate
new molecules. Later on, SCVAE [41] leverages the graph alignment for paired molecules,
which incorporates structural similarity as a condition during the decoding process to
produce target molecules. However, both VJTNN and SCVAE require the encoding and
decoding of entire molecular graphs, which introduces significant learning challenges due
to computational complexity and data requirements.

In contrast, Modef [42] simplifies this process by encoding only the differences between
paired molecular graphs as conditional inputs. This approach not only reduces the number
of parameters but also minimizes the amount of training data required, thereby enhancing
computational efficiency and scalability. CFOM [43] decomposes the lead molecule into
a molecular core and molecular chains. Utilizing a core encoder and a chains generator,
CFOM generates novel chains, which are subsequently attached to the core to produce new
molecules with enhanced properties. Furthermore, in recent years, several studies have
used the structure of target proteins to generate target-aware molecules. For example, the
TamGen framework [44] processes the geometric data of amino acids to generate protein
representations while simultaneously incorporating molecular SMILES to derive molecular
embeddings. The protein representation is subsequently utilized as a conditional to output
optimized molecules by a compound decoder.

Conditional generation-based molecular optimization methods generate optimized
molecules by incorporating specific conditions on properties or structures. These methods
generate high-quality molecules by leveraging the conditions to guide the optimization
process. However, a notable limitation of these approaches is the prerequisite of obtaining
the target conditions prior to model training.

3.2.2. Iterative Search Methods

Iterative search-based molecular optimization methods in continuous latent space
typically explore the space through step-by-step optimization to identify superior molecular
continuous vectors (Figure 1c). When iterative search-based methods generate a set of
molecules, these molecules are evaluated and selected to update the molecular continuous
vector or to retrain the generator model for iterative optimization. There are several
representation iterative search-based methods, which are introduced below.

For example, QMO [45] decouples the molecular representation learning and the
guided search processes by using a pre-trained encoder–decoder framework. This frame-
work evaluates molecular properties in discrete space and approximates gradients in
continuous space by a model-independent zero-gradient descent method. However, the
accuracy of the approximated gradients can significantly impact the search process. There
are some methods that compute gradients based on the property values predicted in con-
tinuous latent spaces. For example, DST [46] trains graph neural networks on molecular
differentiable scaffold tree representation to predict properties, which updates the scaffold
tree of molecules by propagating local derivatives. In addition, LIMO [47] integrates a
SELFIES-based VAE with a property prediction network, which facilitates rapid gradient-
based optimization. InversionGNN [48] is a sample-efficient, dual-path graph neural
network (GNN)-based framework designed for multi-objective molecular optimization.
In its direct prediction path, InversionGNN leverages a GNN to extract knowledge from
differentiable molecular scaffolding trees, enabling accurate property prediction. Subse-
quently, it employs gradient-based Pareto optimization to approximate molecules along
the Pareto front.

There are several iterative search-based methods that explore the continuous latent
space without updating the gradient. For example, MOMO [49], combines a pre-trained
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encoder–decoder with a Pareto-based evolutionary algorithm to collaboratively evolve
molecules between implicit space and discrete space. DecompOpt [50] uses diffusion
models to capture molecular grammar in a data-driven manner, and it integrates iterative
optimization to generate molecules with desired properties. Similarly, Morhead et al. [51]
developed a geometry-complete diffusion model (GCDM), which learns the essential
geometric properties of 3D molecules, enabling the generation of valid 3D molecular
structures. The GCDM achieves property-guided 3D molecular optimization by iteratively
accepting the generated molecules as intermediate states.

There are also existing methods that iteratively update the database for search-based
optimization. For example, Retmol [52] samples high-quality molecules from a predefined
retrieval dataset, which are combined with the lead molecule to obtain optimized molecules.
The generated molecules are dynamically added to the retrieval database for iterative
optimization. MO-LSO [53] employs an iterative weighted retraining strategy, which
progressively refines the generative model to generate desired molecules. Specifically,
MO-LSO performs Pareto ranking on the training molecules and assigns weights for these
molecules based on their ranks. Then, it trains the generative model based on the weighted
dataset to produce enhanced molecules. The newly generated molecules are ranked to
update the training set, which is further used to refine the generative model.

In addition, recently, the advent of large language models (LLMs) has spurred their
application in molecular optimization. For example, Prompt-MolOpt [54] integrates large
language models (LLMs) with Transformer architectures to enhance molecular optimization
capabilities. It employs an iterative fragment-based optimization strategy; i.e., at each step,
a single molecular substructure is modified, which has demonstrated potential in multi-
property molecular optimization. DrugAssist [55] is an interactive molecular optimization
framework that iteratively refines molecular structures through human–AI dialogue. After
an optimized molecule is generated by DrugAssist, its properties are evaluated. If the
molecule meets the predefined property requirements, the process terminates. If not,
DrugAssist retrieves molecules from the database that are the most structurally similar to
the lead molecule and satisfy the property constraints, guiding further optimization until
the desired molecular properties are achieved.

In summary, iterative search-based molecular optimization methods mitigate the
reliance of deep learning models on extensive training data by incrementally identifying
molecules with enhanced properties through a step-by-step optimization process. However,
this iterative nature inherently renders these methods more computationally intensive
and time-consuming.

3.2.3. Analysis of Molecular Optimization Methods in Continuous Space

Compared to molecular optimization in discrete chemical space, the construction of
continuous chemical spaces enables a more efficient and smooth exploration of high-quality
molecules [60]. Among continuous-space approaches, end-to-end generation methods offer
faster optimization speeds. Once the models are trained on relevant datasets, they can
perform batch molecular optimization in a single forward step. However, the optimization
capability of end-to-end methods heavily depends on the quality of the training data and
the training process [61]. When the training data are limited, the optimized molecules tend
to exhibit relatively lower property values. Iterative search in continuous space has emerged
as a popular new paradigm in molecular optimization in recent years. These methods
require fewer labeled target molecules for training and can search for better molecules
through iterative property evaluation. However, they typically involve multiple rounds of
iterative optimization for a single lead molecule, resulting in longer optimization times.
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3.3. Optimization Performance Comparison

To systematically evaluate the optimization performance of different AI-based molec-
ular optimization methods, this study selected three representative benchmark tasks and
integrated results from the literature with partially reproduced experimental data. The
experimental designs for the three optimization tasks are as follows:
Task 1: PlogP optimization task

The objective of Task 1 is to maximize the penalized logP (PlogP) property value of
molecules while maintaining a Tanimoto similarity of at least 0.4 with the lead molecules.
The experiment uses the benchmark dataset constructed by Jin et al. [22], which consists
of 800 molecules with low PlogP values selected from the ZINC database. The evaluation
metric for this task is the average PlogP improvement of the optimized molecules.

Task 2: QED optimization task

The goal of Task 2 is to improve the QED of molecules while preserving a similarity
value of at least 0.4 with the lead molecules. The test set proposed by Jin et al. [22]contains
800 molecules with QED values ranging from 0.7 to 0.8. The evaluation metric for this task
is the optimization success rate, defined as the proportion of lead molecules whose QED is
improved to above 0.9 while maintaining a similarity value larger than 0.4 among all tested
lead molecules.

Task 3: Multi-property optimization task

Task 3 involves optimizing four properties: QED, synthetic accessibility (SA), the
estimated inhibition score against the glycogen synthase kinase-3β target (GSK3β inhi-
bition), and the estimated inhibition score against the c-Jun N-terminal kinase-3 target
(JNK3 inhibition). The evaluation metric is the average property score (APS) of the top 100
generated molecules.

Figure 2 presents a performance comparison of different molecular optimization meth-
ods across three benchmark tasks. To ensure experimental fairness, we adopted uniform
evaluation criteria and clearly state the source of each result. In Figure 2a, the average
property improvement values of twelve methods in the PlogP optimization task are dis-
played. In the figure, the results for MolFinder, GB-GA-P, and MOMO were obtained by our
reproduction of the experiments under the same oracle call settings, while the other results
were extracted from the original publications. The results show that the iterative search
methods achieved superior PlogP improvement while maintaining molecular similarity.
Figure 2b compares eight methods in the QED optimization task. The MolFinder and GB-
GA-P results came from our reproduction experiments with matched oracle calls, and the
others were sourced from the original papers. The iterative search methods again showed
better performance in QED optimization. Figure 2c presents the results of five methods
on Task 3, all of which are cited from the original publications. Among these methods,
InverseGNN exhibited the best comprehensive optimization across all four properties.
Notably, due to architectural differences between the models, the training datasets varied
across the methods (detailed in the original references). All reproduction experiments
strictly followed the hyperparameter settings recommended in the original papers.
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Figure 2. The performance of some existing methods on three optimization tasks. (a) The average
PlogP improvement on Task 1. (b) The success rate (SR) on Task 2. (c) The average property score
(APS) on Task 3.

4. Crucial Considerations and Future Opportunities
4.1. Reasonable Molecular Representation

Molecular optimization relies on several widely used molecular representations, the qual-
ity of which significantly influences the performance of molecular optimization methods. In
this section, we outline the key characteristics of ideal molecular representations and provide
a detailed analysis of the existing representations employed in molecular optimization.

4.1.1. Informative Molecular Representations

An ideal molecular representation should be highly informative, which will enable
optimization methods to capture abundant molecular features. Molecular sequence repre-
sentations, such as SMILES and SELFIES, have been extensively utilized in drug design
due to their simplicity and interpretability. Cheng et al. [62] introduced Group SELFIES, a
fragment-based molecular representation method designed to effectively capture chemical
motifs and structural flexibility through string encoding. However, these representations
often lack detailed structural information, leading to significant structural variations, even
with minor sequence changes [63]. In contrast, graph-based representations offer greater
robustness by efficiently encoding chemical interatomic connectivity. Despite this advan-
tage, molecular graphs fail to capture certain critical features, such as the bond angles
between atoms. Molecular image representations provide richer information by incorporat-
ing bond angles and positional information [64], yet they still fall short of fully representing
molecules, which are inherently 3D quantum mechanical objects [65]. While 3D repre-
sentations include spatial information that better reflects molecular geometry, the added
complexity of 3D data significantly increases the computational challenges associated with
model learning [66].

4.1.2. Modifiable Molecular Representations

Ideal molecular representations should facilitate easy modifications while preserving
the chemical validity of molecules. The molecular SMILES representation is simple and
easy to learn; however, it does not guarantee molecular validity, as minor changes in
a single character can lead to significant structural modifications [34]. Although some
researchers have attempted to address this issue by incorporating grammatical constraints
into the encoding–decoding process, they still struggle to ensure the validity of the gen-
erated molecules [67]. In contrast, SELFIES [28] achieves 100% validity by separating
information related to branches and rings, but it falls short when representing complex,
crystalline, and large molecules [68]. Graph-based molecular optimization methods can
generate molecules with high validity; however, their modeling processes are more com-
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plex than those of sequence-based methods [69]. Image-based molecular optimization
encounters challenges in generating valid structures from optimized images. Addition-
ally, 3D molecular representations face difficulties in capturing translation, rotation, and
reflection invariance.

4.2. Appropriate Datasets

The availability of appropriate datasets poses a significant challenge in the develop-
ment of effective molecular optimization methods. In this subsection, we first categorize
the types of molecular data used across different optimization methods. Then, we review
widely adopted molecular datasets and discuss key considerations associated with data
acquisition and utilization.

4.2.1. Types of Molecular Datasets

Existing molecular optimization methods typically rely on two types of datasets:
paired and unpaired molecular datasets. Unpaired molecular optimization methods often
require two sets of molecules with low and high properties or a single set of molecules
exhibiting low properties [37,39]. In comparison, paired molecular optimization methods
necessitate datasets consisting of numerous molecular pairs, where each pair includes two
similar molecules with distinct property values, one with a low property and the other
with a high property.

The molecular datasets employed in molecular optimization methods are often sourced
from public databases [70,71], for example, the ZINC database [72], which provides 3D
molecular structures for virtual screening applications; the ChEMBL database [73], special-
izing in bioactive molecules with drug-like properties; the QM9 dataset [74], encompassing
small organic molecules with quantum chemical properties; and the GDB-13 database [75],
which is the largest publicly available repository of small organic molecules. For unpaired
molecular datasets, the molecules in these databases can be filtered based on property
values, such as low or high QED values. For paired molecular datasets, both the property
values of the molecules and their structural similarity must be considered. For example, Jin
et al. [22] constructed a paired QED dataset selected from ZINC, in which one molecule in
each pair had a QED value between 0.7 and 0.8, while the other had a QED value between
0.9 and 1, with a similarity score exceeding 0.4. Table 2 provides statistics and descriptions
of the databases commonly used in molecular optimization tasks.

Table 2. Common datasets and statistics for molecular optimization tasks.

Dataset Description Amount Website

ZINC
Free database of commercially available
compounds for virtual screening >750,000,000 https://zinc15.docking.org/ (accessed on 9 April 2025)

ChEMBL
A manually curated database of
bioactive molecules with drug-like
properties

2,300,000 https://www.ebi.ac.uk/chembl/ (accessed on 9 April 2025)

PubChem
Largest collection of freely accessible
chemical information 119,000,000 https://pubchem.ncbi.nlm.nih.gov/ (accessed on 9 April 2025)

MOSES
Benchmark platform for training
process of standardized molecular
generation model

1,940,000 https://github.com/molecularsets/moses (accessed on
9 April 2025)

https://zinc15.docking.org/
https://www.ebi.ac.uk/chembl/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/molecularsets/moses
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Table 2. Cont.

Dataset Description Amount Website

QM9 Molecules with up to 9 heavy atoms 133,885 http://quantum-machine.org/datasets/ (accessed on 9
April 2025)

GDB-13 Small organic molecules database 977,468,314 https://gdb.unibe.ch/downloads/ (accessed on 9 April
2025)

GDB-17 Small organic molecules database 50,000,000 https://gdb.unibe.ch/downloads/ (accessed on 9 April
2025)

QED Pairs
Similar molecule pairs with low and
high QED values 88,000

https://github.com/wengong-jin/\iclr19-graph2graph
(accessed on 9 April 2025)PlogP

Pairs
Similar molecule pairs with low and
high PlogP values 99,000

Drd2 Pairs
Similar molecule pairs with low and
high Drd2 values 34,000

4.2.2. Challenges and Suggestions in Obtaining Datasets

Data quality. High-quality molecular datasets are crucial for enhancing the perfor-
mance of molecular optimization methods. However, the quality of molecules is affected
by potential errors [76]. To address these issues, data reduction and cleaning techniques
are useful for providing reusable and trustworthy data, and they have been employed in
drug design to improve data quality [71,77]. For example, Papadatos et al. [78] discussed
several molecular data management strategies applied to the ChEMBL database, including
enhancing data integrity, flagging outliers, and adding annotations.

Data quantity. The scarcity of molecular data impedes the performance of drug design
methods, particularly for novel or poorly studied diseases [79,80]. In the pharmaceutical
industry, data related to drug and lead candidates are often confidential due to intellectual
property protections. To address the challenges posed by limited data, several techniques
can be employed. First, data augmentation can efficiently expand the training dataset [81].
Second, meta-learning frameworks facilitate knowledge transfer from tasks with abundant
information to those with limited data [82]. Furthermore, privacy-preserving computa-
tional methods, such as secure multi-party computing [83], federated learning [84], and
differential privacy [85], can be employed to jointly train a model from multiple parties
without disclosing the original molecular data [86].

Imbalanced data. Molecular optimization methods also encounter the challenge of
imbalanced data. For a given protein target, the majority of molecules may exhibit inactivity,
with only a small fraction demonstrating activity. Several strategies have been proposed
to mitigate this issue. First, resampling and oversampling techniques can be employed at
the data level to adjust the proportion of active and inactive molecules [87]. Second, deep
learning-based molecular optimization methods can integrate the imbalanced training loss
to enhance learning efficacy from datasets with imbalances [88].

4.3. Optimization Properties
4.3.1. Common Molecular Properties

Non-biological activity properties. Non-biological activity properties are often de-
rived from molecular structures, which can be directly assessed using publicly available
tools such as MOSES [71], RDKit [89], TDC [90], and ADMET [91]. Several important

http://quantum-machine.org/datasets/
https://gdb.unibe.ch/downloads/
https://gdb.unibe.ch/downloads/
https://github.com/wengong-jin/\iclr19-graph2graph
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non-biological activity properties in molecular optimization are described in Table 3, in-
cluding QED, logP, PlogP, SA, and similarity. These molecular properties can be calculated
by RDkit.

Biological activity properties. In practical drug development, biological activity
properties are crucial for assessing the activity, inhibition, and binding affinity of molecules
to disease targets. Biological activity properties are typically estimated by trained prediction
models. Table 3 presents several commonly used activities, i.e., DRD2 activity, GSK3β

inhibition, and JNK3 inhibition, which have been integrated on the Therapeutics Data
Commons (TDC) platform [90].

Table 3. Common non-biological activity molecular properties for optimization.

Properties Descriptions

Quantitative estimate of
drug-likeness (QED) [92]

A comprehensive index that quantifies the drug-likeness of a molecule as a value between 0
and 1, calculated by combining eight physical descriptors.

Octanol–water partition
coefficients (LogP) [93]

A metric assessing the dissolution and diffusion of molecules in the human body through their
combined water and lipid solubility, reflecting the membrane absorption capacity.

Penalized logP
(PlogP) [58]

The logarithm of the partition ratio of the solute between octanol and water minus the synthetic
accessibility score and the number of long cycles.

Synthetic accessibility
(SA) [94]

Quantification of the difficulty of synthesizing small molecules in the laboratory on a scale
ranging from 1 to 10, where a lower score indicates easier synthesis.

Similarity [23] Similarity between the lead molecule and the optimized molecule. Tanimoto similarity is
widely employed in existing molecular optimization studies due to its computational efficiency.

DRD2 activity [95] The predicted biological activity score against the dopamine receptor D2 target.

GSK3β inhibition [96] The estimated inhibition score against the glycogen synthase kinase-3 target.

JNK3 inhibition [96] The estimated inhibition score against the c-Jun N-terminal kinase-3 target.

1SYH [97] The docking score of a molecule and an ionotropic glutamate receptor that is associated with
neurological and psychiatric diseases.

6Y2F [97] The docking score of a molecule and the main protease of SARS-CoV-2 that is responsible for
the translation of the viral RNA of the SARS-CoV-2 virus.

4LDE [97] The β2-adrenoceptor GPCR receptor that spans the cell membrane and binds adrenaline, a
hormone that mediates muscle relaxation and bronchodilation.

Moreover, the interaction between molecules and proteins is crucial for practical
protein–ligand design, which is typically evaluated by docking scores obtained from
molecular simulation docking platforms [98]. For example, Nigam et al. [97] established
three benchmark tasks to optimize the docking scores of molecules with target proteins,
including the 1SYH, 6Y2F, and 4LDE proteins (Table 3). It is worth noting that practical
drug development often involves numerous other disease-related targets that require
consideration. When assessing the biological activity of molecules against novel targets,
the property values can be obtained through laboratory experiments. Additionally, the
biological activity properties can be predicted by surrogate models trained on molecular
data with known values of biological properties. To incorporate the docking scores between
molecules and new targets, these scores can be simulated using docking platforms such as
AutoDock [98], based on the structures of the protein and the molecule.
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4.3.2. Multi-Property Optimization.

As for the aforementioned properties, practical molecular optimization must simul-
taneously balance multiple conflicting properties. For example, a drug candidate must
exhibit desirable drug-likeness, demonstrate effective interactions with disease targets, and
possess synthetic feasibility. Furthermore, practical molecular optimization often incorpo-
rates further constraints, such as adherence to specific molecular descriptor thresholds or
compliance with predefined structural rules [99]. Consequently, molecular optimization is
an inherently constrained multi-objective optimization problem that encompasses various
objectives and constraints. For multi-objective optimization problems, since multiple prop-
erties are in conflict with each other, there is no single molecule with the highest value of all
properties but rather a set of Pareto molecules with different preferences for various prop-
erties [100]. Moreover, the introduction of additional constraints renders certain regions of
the chemical space infeasible, thereby increasing the complexity of the exploration process.
Figure 3 visually contrasts the search processes for single-objective, multi-objective, and
constrained multi-objective optimization.

To effectively address multi-property optimization challenges, Pareto-based optimiza-
tion has emerged as a robust framework. This approach avoids the need for assumptions
regarding the relative importance of properties and generates a diverse set of Pareto-optimal
molecules [101]. Such molecules have been successfully employed in various methods for
screening and identifying desired candidates [60].

Figure 2. Comparison of search processes for single-objective, multi-objective, and constrained 
multi-objective optimization. The deeper the colored region, the higher the value. a) Single 
objective optimization, search for areas with a higher objective. b) Multi-objective (take three-
objective as an example), search for target according to the balance of three objectives. c) 
constrainted multi-objective optimization, the search space is limited by constrains (gray), search 
for target with multiple better objectives in constrained region.

(a) Single objective optimization (b) Multi-objective optimization

True objective Three true objectives

Three true objectives with constraints

(c) Constrained multi-objective optimization

Lead molecule
Optimized molecule
Search trajectory
Constrained region

图2：单目标，多目标，约束多目标优化对比。图中为搜索空间对应目标值，颜色越深目标值越高。
a单个目标搜索，朝单属性优的区域搜索；b多个目标（3个为例），平衡3个目标搜索；c约束多目
标，在约束的空间内，平衡三个目标进行搜索

Figure 3. Comparison of the search processes of single-objective, multi-objective, and constrained
multi-objective molecular optimization. The darker the colored region, the higher the property. (a) Single-
objective optimization searches for regions with a high objective value. (b) Multi-objective optimization
searches for molecules with different trade-offs between three objectives (taking three objectives as an
example). (c) In constrained multi-objective optimization, the search space is limited by constraints (in
gray), and it aims to search for molecules with multiple desired objectives in the constrained region.
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4.3.3. Challenges in Practical Molecular Optimization Tasks

In real-world drug design, candidate molecules must simultaneously satisfy multiple
critical property requirements, including the specific binding affinity to target proteins,
synthetic feasibility, good solubility, appropriate blood–brain barrier permeability, low
toxicity, and minimal side effects. Beyond these quantifiable optimization objectives,
molecular structures must also meet stringent drug-like constraints, such as compliance
with Lipinski’s Rule of Five, the avoidance of structural alerts, and the maintenance of a
reasonable molecular weight. These multiple requirements make molecular optimization
an inherently complex constrained multi-objective optimization problem. Notably, these
properties often exhibit intricate interrelationships and trade-offs, making it extremely
challenging to identify a single molecule that is optimal across all attributes. Instead, the
solution typically involves identifying a set of Pareto-optimal solutions that represent the
best possible compromises among competing properties.

For the multi-property optimization challenges, Pareto-based optimization methods
have demonstrated significant advantages and are considered the most robust multi-
property optimization frameworks. These methods do not require predefined weights
of relative importance among properties and can generate a diverse set of candidate
molecules. Furthermore, in practical applications, the number of properties to be optimized
may exceed four, and additional properties may be introduced over time. In these scenarios,
the chemical space containing the desired molecules shrinks considerably, which increases
the difficulty of optimization. Traditional Pareto optimization methods often struggle to
generate and select high-quality molecules under multi-property optimization. To address
these challenges, intelligent generation strategies can be designed to dynamically adjust
optimization priorities based on the optimization status of each property, and more efficient
selection strategies can also be developed to identify high-quality candidates. For dynamic
molecular optimization problems, progressive optimization frameworks offer flexible
solutions to accommodate emerging optimization requirements. For instance, DyMol [102]
initiates optimization with a single objective and incorporates additional objectives over
time, which decomposes complex multi-objective problems into manageable sub-problems
for incremental optimization.

In drug design practice, the synthetic feasibility of generated molecules serves as a
critical determinant of whether an optimization model can be practically applied in real-
world development. Current AI-driven molecular optimization methods predominantly
employ synthetic accessibility (SA) [94] scores to evaluate the synthesis of molecules.
However, a significant gap persists between these computational scores and the actual
synthetic feasibility. To generate molecules that can be reliably synthesized in laboratory
settings, on the one hand, it may be useful to train sophisticated deep generative models
on extensive databases of known synthesizable molecules to learn synthetic rules; on the
other hand, domain-specific knowledge and expert experience from medicinal chemistry
should be incorporated during model training to compensate for the limitations of purely
data-driven approaches.

In the field of computer-aided drug discovery, structure-based molecular design
plays a pivotal role in the development of therapeutic agents for specific diseases. This
approach enables the efficient design of candidate molecules with a high binding affinity
to target proteins by exploring vast chemical spaces. Notably, leveraging protein–ligand
interaction information can significantly enhance the pharmacological activity of generated
molecules. For example, PMDM [103] incorporates protein structural information as
generation constraints, which establishes a conditional equivariant diffusion model that
simultaneously considers both local atomic interactions and global molecular dynamics.
The practical utility of PMDM was demonstrated through case studies on two critical
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drug targets. In a CDK2 lead optimization study, the researchers synthesized molecules
generated by PMDM and validated their significantly improved inhibitory activity against
CDK2 through in vitro assays. These results demonstrate the practical value of structure-
based molecular generation technology in real-world drug development scenarios.

4.4. Optimization Algorithms

To enhance molecular optimization, various emerging techniques can be employed to
design novel and effective optimization methods. In this subsection, we introduce several
promising techniques that provide valuable guidelines for future molecular optimization.

First, practical molecular optimization can be formulated as a constrained multi-objective
optimization problem, which aims to find molecules with high properties while satisfying con-
straints. While most existing methods overlook constraints, making it challenging to generate
drug-like molecules, constrained multi-objective optimization algorithms can systematically
explore feasible chemical spaces to produce constrained Pareto fronts [104].

Second, molecular optimization methods can be significantly enhanced by leveraging
the complementary strengths of different molecular representations. Multi-modal learning,
which integrates diverse representations, enables the capture of richer implicit information,
thereby improving the robustness and accuracy of optimization [105]. For instance, Luo et al.
developed a method that effectively combines 2D and 3D molecular data to extract more com-
prehensive chemical knowledge [106]. Moreover, within real-world drug discovery pipelines,
the incorporation of target protein structural or functional data is critical to computationally
guide the generation of bioactive molecules exhibiting specific binding interactions [107].

Third, advanced AI techniques hold potential to enhance molecular optimization [108].
For example, active learning can reduce the labeling cost by iteratively selecting the most
informative samples for model training, and it has been used to predict biological activity
and target–ligand interactions [109]. Furthermore, transfer learning enables the transfer of
knowledge from well-studied tasks to related but data-scarce tasks, making it particularly
suitable for molecular optimization in novel diseases with limited datasets [110]. Moreover,
multi-task learning can mitigate bias and overfitting by simultaneously training on different
tasks in a single model [111], and it can be integrated with existing molecular optimization
methods. In addition, with the advancement of large language models (LLMs), integrating
LLMs with molecular optimization enables the enhanced extraction of molecular infor-
mation, the robust capture of chemical rules, and effective knowledge transfer, thereby
facilitating the multi-property optimization of molecules [103,112].

5. Conclusions
This review provides a comprehensive analysis of existing research in molecular op-

timization. We first explicitly formulate definitions of molecular optimization problems
and highlight their significance in drug discovery and development. We then comprehen-
sively categorize and analyze existing AI-aided optimization models based on the chemical
spaces that they explore and the optimization methods that they employ. Furthermore, we
discuss the challenges and future prospects associated with the application of molecular
optimization models. Thus, this review offers potentially beneficial recommendations for
the advancement of AI-based molecular optimization approaches.
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