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A novel extraction method
enhanced the osteogenic
and anti-osteoporosis effect
of tea extract without any
hepatotoxicity in
ovariectomized rats
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Upendra Sharma3 and Naibedya Chattopadhyay1,2*

1Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and
Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow, India, 2Academy of Scientific and
Innovative Research (AcSIR), Ghaziabad, India, 3Division of Chemical Technology, CSIR-Institute of
Himalayan Bioresource Technology, Palampur, India, 4Division of Pharmaceutics &
Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India, 5Division of Toxicology
and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
Tea (Camellia sinensis) has several reported health benefits, including that on

bone health attributed to catechins of which the most abundant is

epigallocatechin-3-gallate (EGCG). However, several preclinical and clinical

studies raise safety concerns about EGCG in tea extract causing acute liver

failure. Tea also contains kaempferol, albeit scanty, and it has hepatoprotective

and osteogenic effects. Here, we utilized a novel extraction procedure of acid

hydrolysis to enhance the osteogenic effect of tea extract while reducing its

hepatotoxicity. The resultant extract (USKECSE) has a ~40-fold increase in

kaempferol and a 2.5-fold reduction in EGCG content compared with the

hydroethanolic extract (USCSE). In a female Sprague Dawley (SD) rat femur

osteotomy model, USKECSE (100 mg/kg) but not USCSE promoted bone

regeneration. In a rat postmenopausal osteoporosis model induced by

bilateral ovariectomy (OVX), USKECSE through an osteogenic mechanism

maintained bone mass, strength, and microarchitecture to the levels of

ovary-intact rats with no hepatotoxic effect. After a single oral dose (100 mg/

kg) of USKECSE to adult rats, kaempferol was detectable for 48 hours,

suggesting its significant absorption and distribution in plasma. Peak

kaempferol concentration in plasma (Cmax) was 483 ng/ml (2 mM), and at this

concentration, kaempferol induces osteoblast differentiation. USKECSE had no

genotoxicity, and its safety index assessed by preclinical toxicity studies,

including safety pharmacology, was >20-fold. Taken together, we report a

novel extraction process that enhanced the osteogenicity and concomitantly

reduced hepatotoxicity of tea extract with significant kaempferol bioavailability
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and a favorable systemic safety profile. Based on these data, we propose

assessing the USKECSE effect for postmenopausal osteoporosis treatment.
KEYWORDS

acid hydrolysis, post-menopausal osteoporosis, hepatotoxicity, micro-computed
tomography, histomorphometry, pharmacokinetics, preclinical toxicity
1 Introduction

Estrogen deficiency at menopause causes accelerated bone

loss due to increased formation and function of the bone

resorbing osteoclasts and increased apoptosis and diminished

function of bone-forming osteoblasts (1, 2). Hormone

replacement therapy (HRT) provides an effective preventive

and therapeutic option for postmenopausal osteoporosis

(PMO). However, in light of findings of safety issues among

HRT users, including increased incidences of breast cancer,

heart disease, stroke, and formation of clots, led to its

discontinuation in postmenopausal women (3).

Currently, bisphosphonates are the first line of anti-

osteoporosis therapy for PMO. However, gastrointestinal side

effects and resultant poor compliance have led to an active

search for a better and safer alternative to clinical management

of PMO (4). Phytoestrogens represent a potential alternative to

anti-osteoporosis drugs as these are structurally similar to the

primary female sex hormone, 17b-estradiol (E2) (5).

Isoflavonoids, including genistein and daidzein, have a binding

affinity with E2 receptors (ERs) and are abundantly present in

soybean. The effect of soy isoflavonoid extract on bone mineral

density (BMD) in postmenopausal women is equivocal. A meta-

analysis study by Taku et al. showed that soy isoflavone

treatment results in BMD increase in the lumbar spine but not

in femur neck, total hip, and trochanter (6), but in a different

study, Liu et al. find no positive effect of soy isoflavone in spine

BMD (7). Habitual tea drinking has shown some beneficial

effects on bone; however, study designs are either cross-

sectional or retrospective and yielded inconsistent conclusions

(8, 9). Given the purported health benefits of habitual tea

drinking, in particular, green tea, a plethora of green tea

preparations as supplements are commercially available. The

beneficial effects of green tea are attributed to catechins of which

epigallocatechin gallate (EGCG) has been mostly implicated as

both beneficial and harmful (10). The most publicized harmful

effect of green tea extract (GTE) is hepatotoxicity reported from

studies that administer repeated oral boluses of GTE (11).

Flavonols, particularly quercetin and kaempferol, are among

the most widely distributed flavonoids in foods with diverse

reported health benefits, including bone health (5). We have

shown that kaempferol is more potent than quercetin for
02
inhibiting osteoclastogenesis (12) and has an osteogenic effect

in E2-deficient rats (13). Moreover, several preclinical studies

reported the hepatoprotective effect of kaempferol in preclinical

models of liver disease (14–16). Although catechins are the

major green tea polyphenols, kaempferol is also present, albeit

to a lesser extent (17). Therefore, substituting the hepatotoxic

compound EGCG with the osteogenic compound kaempferol

appears to be a novel approach to harness the beneficial bone

effects of tea extract with a concomitant reduction of

hepatotoxicity. Accordingly, we set out to prepare a tea extract

enriched with kaempferol but diminished in EGCG content.

To this aim, we first prepared a polyphenol-rich extract

(USCSE) from the leaves of C. sinensis and then subjected it to

acid hydrolysis and obtained a kaempferol-enriched extract

(USKECSE). We then tested the bone-regenerative effect of

both extracts in a rat femur osteotomy model, which revealed

that USKECSE was more potent than USCSE. In subsequent

studies, we tested the skeletal effects of USKECSE in

ovariectomized (OVX) rats through the assessments of bone

mass, microarchitecture, bone strength, and bone formation and

also checked their liver function. We also studied the oral

bioavailability of kaempferol upon USKECSE administration.

Finally, we assessed the preclinical safety and toxicity

of USKECSE.
2 Material and methods

2.1 Chemicals and reagents

Cell culture medium, collagenase, and all chemicals were

purchased from Sigma-Aldrich (St. Louis Missouri, USA).

Standards of EGCG (1) and kaempferol (2), were procured

from Sigma-Aldrich (St. Louis Missouri, USA). The purities of

all standards were more than 98% as determined by UPLC

analysis. Amberlyst A-21, the free base resin, was procured from

Sigma-Aldrich (St. Louis Missouri, USA). Hydrochloric acid was

purchased from Central Drug House. Formic acid was

purchased from S. D. Fine Chemicals Ltd. (Mumbai, India),

and solvents from J. T. Baker (Mallinckrodt Baker Inc., St. Louis,

Missouri, USA) and S. D. Fine Chemicals Ltd. (Mumbai, India).

Cell culture supplements, viz. FBS and diaspase, were purchased
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from Invitrogen (Carlsbad, California, USA). Gum acacia was

purchased from Santa Cruz Biotechnology, Inc. (Dallas, Texas,

United States).
2.2 Plant material

The leaves of C. sinensis were collected from the Banuri tea

farm, CSIR-IHBT (36°N and 78.18°E, 1200 m above mean sea

level) and were authenticated by a taxonomy expert at the

Environment Technology division of CSIR-IHBT, Palampur,

Himachal Pradesh, India.
2.3 Extraction

Air-dried leaves (2 kg) of C. sinensis were powdered and

sequentially percolated with n-hexane (4L x 1) for 12 hours with

ethyl acetate (3L x 2) for 12 hours, and 80% ethanol in water

(3L x 2) for 24 hours at room temperature. The percolates were

combined and evaporated under reduced pressure at 50°C to

give n-hexane (15.9 g), ethyl acetate (37.7 g), and hydroethanolic

(374.6 g) extract (Figure 1).
2.4 Acid hydrolysis

C. sinensis hydroethanolic extract (220 g) was hydrolyzed

with 2 M HCl (440 ml) in MeOH:H2O (1:1, 2200 ml) for three

hours under reflux conditions. The resultant extract was dried at

50°C under reduced pressure. C. sinensis hydrolyzed extract
Frontiers in Endocrinology 03
(acidified) obtained from the hydrolysis experiment was again

dissolved in MeOH:H2O (1:1, 1000 ml) and treated with 220 g of

Amberlyst A-21 free base resin at 50°C for three hours with

constant stirring. Amberlite A-21 resin was separated from the

mixture by decantation and filtration. The solution was then

dried at 50°C under reduced pressure and further lyophilized to

obtain 110 g of kaempferol-enriched C. sinensis extract. The

entire study was conducted using one batch of USCSE

and USKECSE.
2.5 Sample preparation

Next, 20.8 mg of dried and powdered C. sinensis

hydroethanolic extract (USCSE) and 16.6 mg of kaempferol-

enriched C. sinensis extract (USKECSE) were accurately weighed

and sonicated with LC grade methanol (1 ml) for 10 minutes.

The solution was filtered with a 0.22-mm syringe filter, and

samples were stored at 4°C before UPLC analysis.
2.6 Standard solutions

The reference standards, i.e., EGCG and kaempferol, were

accurately weighed and dissolved in methanol to prepare stock

solutions. The concentration of stock solutions for each

compound was 1.0 mg/mL. The stock solution was then serially

diluted with methanol to give different concentrations in

the range of 2.5–320 mg/mL for EGCG and 0.098–31.25 mg/ml

for kaempferol. The prepared dilutions were stored at 4°C

before analysis.
FIGURE 1

Schematic diagram showing the process of preparation of kaempferol-enriched extract (USKECSE) from C. sinensis.
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2.7 UPLC conditions

The quantitative analysis of samples was performed on the

Shimadzu Nexera X-2 LC-30AD UPLC system coupled with the

Shimadzu SPD-M30A PDA detector. The separation of analytes

was carried out on the BEH-C18 column (2.1 mm × 100 mm, 1.7

mm) with a column temperature of 27°C. The eluents consisted

of water (0.01% formic acid) as solvent A and acetonitrile as

solvent B at a flow rate of 0.240 mL/min with a linear gradient

programmed for 20 minutes as, 0.10–0.30 minutes, 10% B; 0.30–

3.0 minutes, 10%–50% B; 3.0–10.50 minutes, 50%–55% B;

10.50–11.0 minutes, 55%–90% B; 11.0–12.0 minutes, 90%–90%

B; 12.0–13.0 minutes, 90%–10% B; 13.0–20.0 minutes, 10% B.

The injection volume was 2 mL for extracts and standard

solutions and 274 nm and 366 nm were chosen as the target

wavelength (l max) for the detect ion of the two

reference standards.
2.8 UPLC method validation

The UPLC method was validated for linearity, the limit of

detection (LOD), limit of quantitation (LOQ), precision, and

accuracy by ICH guidelines [1]. For the development of the

calibration curve, eight different concentrations of mixed

solutions of two reference standards were prepared, and the

graph was plotted based on areas of standard vs. concentration of

each analyte. To determine the LOD and LOQ, the lowest

concentration of mixed standard solution was further diluted.

The LOQ was determined at the signal-to-noise ratio (S/N) of

about 10, and LOD was determined at the S/N ratio of 3.

Intraday and interday experiments were carried out to test the

repeatability and reproducibility of the method. The intraday

variation was determined by six repetitive injections of the

standard mixture on the same day, whereas the interday

variation was determined by three repetitive injections of the

standard mixture on three consecutive days. A recovery test was

used to determine the accuracy of the method. An accurate

quantity of standard solutions with three different concentration

levels was added to 100 mg of sample and was further extracted

and analyzed in triplicate. The average recoveries were

determined by the formula: average recovery (%) = (detected

amount – original amount)/spiked amount ×100.
2.9 In vivo studies

2.9.1 Laboratory animals
Adult female Sprague Dawley (SD) rats (220 ± 20 g) were

obtained from the National Laboratory Animal Centre, CSIR-

CDRI. Animal care and experimental procedures were approved

by the Institutional Animal Ethics Committee (Registration no.:
Frontiers in Endocrinology 04
34/GO/ReBiBt-S/Re-L/99 CPCSEA) (IAEC/2020/60/renew/

dated-03/01/2020). Animals were acclimatized for seven days

before surgery, caged, and maintained at 22°C–25°C with 12-

hour light/dark cycles. During the experimental period, the rats

were maintained on a standard rodent chow diet and purified

water ad libitum. Before surgery, animals were anesthetized

using xylazine (10 mg/kg) and ketamine (40 mg/kg)

injection (intramuscular).

2.9.2 Osteotomy healing study
Forty-two female SD rats (220 ± 20 g, three months old,

sexually mature) were taken, and drill holes of 0.8 mm were

made at the femoral mid-diaphysis according to our previously

published protocol (18, 19). Postsurgery, rats were divided

randomly in the presence of two researchers into seven groups

(n = 6 rat/group); vehicle (water), USKECSE (100 mg/kg, 150

mg/kg, 200 mg/kg), USCSE (100 mg/kg, 150 mg/kg, 200 mg/

kg). All treatments were given orally daily for 12 days. All

animals received a subcutaneous (s.c.) injection of calcein (20

mg/kg) 24 hours before sacrifice. For the calcein labeling

studies, bones were embedded in acrylic material, and 60 mm
sections through the osteotomy site were made using an

Isomet-Slow Speed Bone Cutter (Buehler, Lake Bluff, IL)

(19). Sections were photographed using a confocal

microscope (Leica TCS SP-8, Wetzlar, Germany) and

analyzed using LAS-X software.

2.9.3 Studies on OVX rats
We next assessed the anti-osteoporosis effect of USKECSE in

preventive mode using OVX rats. For this, 24 SD rats (220 ±

20 g, three months old) were either OVX bilaterally or sham-

operated according to the previously published method (20). In

brief, rats were anaesthetized with ketamine (40 mg/kg) and

xylazine (10 mg/kg) and bilaterally OVX, whereas in the sham

group ovaries were kept intact. Essential postoperative care was

provided. After one week of surgery, the OVX rats were

randomly divided in the presence of two researchers into two

equal groups (n = 8 rat/group): OVX +Veh (water); OVX +

USKECSE (100 mg/kg, oral) and the sham-operated animals

received vehicle (water). All the treatments were given daily for

16 weeks. All animals received calcein (20 mg/kg) twice before

sacrifice at 10-day intervals for dynamic histomorphometry (19).

Serum samples, bones (femur, tibia, and L5 vertebrae), and

urine samples were collected after the treatment and stored at

-80°C until further analysis.

2.9.4 Body composition analysis
The body weight of all the groups in the study was taken

once a week during the experimental period. The body

composition of live rats was analyzed by the EchoMRI™-500

body composition analyzer (EchoMRI Corporation Pvt. Ltd.

Singapore) 24 hours before the end of the experiment as per our
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previously described protocol (20). The machine was calibrated

by scanning known samples of canola oil and distilled water

before every scan. The total body weight and lean mass were

plotted as obtained, whereas the fat mass was plotted by

normalizing with the total body weight.

2.9.5 Determination of biochemical
measurements

Serum was also used to measure total bilirubin (DMSO,

Dimethylsulfoxide method), alanine aminotransferase (ALT or

SGPT) IFCC kinetic without P5P method, and aspartate

aminotransferase (AST or SGOT) IFCC kinetic without P5P

method. All of the parameters were measured using a fully

automated clinical chemistry analyzer EM200/B160849

(TRANSASIA Bio-medical Ltd, India, Erba Manheim) by

using supplier kits.

2.9.6 mCT analysis
Scanning of bone samples was done by a SkyScan 1276 m-

computed tomography (mCT) scanner (SkyScan Ltd.,

Kartuizersweg, Kontich, Belgium) as described in our

previously published protocol (20). Quantification of various

bone parameters was performed by batman software (18).

Reconstructed mCT images underwent a blind evaluation by a

third person to determine the extent of bone loss.
2.9.7 Serum PINP and urine CTXI
level determination

A rat pro-collagen type I N-terminal propeptide (PINP) kit

(Cat no: E-EL-R1414) and a cross-linked C-telopeptide of type I

collagen (CTX-I) kit (Cat no: E-EL-R1456) were procured from

Elabscience, USA, and measured by fol lowing the

manufacturer’s protocol.

2.9.8 L5 compression test
Bone mechanical strength was assessed by L5 compression

test using a bone strength tester, TK 252C (Muromachi Kikai

Co. Ltd. Tokyo, Japan) as described previously (21).
2.9.9 Ex vivo mineralization assay
Bone marrow from rat femur was flushed by PBS, and cells

were quantified by a hemocytometer. Bone marrow cells (2 ×

106) were seeded in a differentiation medium (a-MEM with 10

mM b-glycerophosphate, 50 mg/ml ascorbic acid, and 100 nM

dexamethasone) in a six-well plate. The media was changed

every 48 hours for 21 days. After 21 days, cultures were fixed

with 4% formaldehyde, and mineralized nodules were

visualized by staining with Alizarin red-S stain. The stain

was extracted with 10% cetylpyridinium chloride (CPC), and

the mineralization was quantified calorimetrically at OD

595 (22).
Frontiers in Endocrinology 05
2.9.10 Bone dynamic histomorphometry
Surface referent bone formation was analyzed by double

calcein labeling as described in our previously published

protocols (19, 23). Bioquant Osteo software (Bioquant Image

Analysis, Nashville, TN) was used to measure mineralizing

surface per bone surface (MS/BS), mineral apposition rate

(MAR), and bone formation rate per bone surface (BFR/BS).

2.9.11 Pharmacokinetic study
Female SD rats (n=6) were orally administered 100 mg/kg of

USKECSE after overnight fasting. Subsequently, blood samples

(approximately 0.2 mL) were collected at each time point, 0.25,

0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, and 48 hours via minimal retro-

orbital plexus in a 1.5-mL microcentrifuge tube containing

sodium EDTA. Plasma was extracted from the blood samples

by centrifugation at 8000 rpm for 10 minutes. The collected

plasma samples were transferred into fresh tubes and then stored

at -20°C until analysis.

The LC-MS/MS method was developed and samples were

processed by using an API Q-TRAP 4000 mass spectrometer

with an electrospray ionization (ESI) source. Analysis of the

analyte (kaempferol) was performed by using multireaction

monitoring (MRM) in the positive ion mode. Instrument

parameters of both kaempferol (target analyte) and phenacetin

(IS) were used, such as CUR: 30, CAD: high, ion source

temperature (°C): 5500, vaporization temperature: 400°C, GS1

and GS2: 40 and 60. Whereas, compound parameters of

kaempferol were precursor ion (m/z): 287.1, product ion (m/

z): 153.2, DP (V): 106, CE:30, EP (V): 30, CXP (V): 14. For

internal standard, phenacetin: precursor ion (m/z): 180.2,

product ion (m/z): 110.2, DP (V): 71, CE:30, EP (V):10, CXP

(V): 10. For chromatographic separation, X-bridge peptide

column BEH C-18 (300A°, 250 mm x 4.6 mm, 5 mm) column

with mobile phase of MeOH: 0.1% FA in TDW, 70:30 (v/v, %)

was used. The compound was separated at a flow rate of 0.6 mL/

min with a retention time of 6.2 minutes. Calibration standards

(CS, 20-1000 ng/mL) were used for quantification of analyte and

the liquid–liquid extraction (LLE) method was executed

followed by protein precipitation (PPT).

Plasma samples (50 µl) were treated with 50 µl of 1 mg/mL of

b-glucuronidase in 100 mM ammonium acetate buffer (pH-5)

for two hours at 37°C. Subsequently, 200 µl ACN containing

phenacetin (IS, 10 ng/mL) was added and gently vortexed for 20

seconds, and then, 2 mL ethyl acetate was added for separation

of the compound from the plasma matrix and again vortexed for

10 minutes at 1000 rpm on a BenchMixer™. Samples were

centrifuged at 10,000 rpm for five minutes, and supernatant

(1.6 ml) was collected in a fresh RIA vial tube. After that,

samples were completely dried on turbo Vap at 40°C

temperature. The dried residue was reconstituted with 100 µl

of methanol, and 10 µl was injected for LC-MS/MS analysis.

Data were used for pharmacokinetic and statistical analysis, and
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the plasma concentration vs. time data was plotted and analyzed

by noncompartmental analysis using Pheonix 6.3 WinNonlin

(Pharsight Corporation, Mountain View, CA, USA). Different

parameters, viz. Cmax (ng/mL) - maximum plasma

concentration; Tmax (h) - time to reach Cmax; AUC0-∞ (ng h/

mL) - area under concentration vs. time curve extrapolated to

infinity; t½ (h) - elimination half-life; Vd (l) - volume of

distribution; and Clr (L/h) - total clearance, were calculated

(18, 24).

2.9.12 Genotoxicity studies
A standard battery of tests was done to evaluate the

genotoxicity of USKECSE according to the standard protocols

as described in OECD (Organization for Economic Co-

operation and Development) guidelines.

2.9.12.1 Ames assay

USKECSE was tested for its mutagenic potential in the

bacterial reverse mutation assay. The study was conducted

using TA98, TA100, TA1535, and TA1537 tester strains of

Salmonella typhimurium and WP2uvrA (pKM101) tester

strains of Escherichia coli following our previously published

protocol (25). The bacterial tester strains were exposed to

USKECSE in triplicates at 50, 158, 500, 1581, and 5000 mg/
plate. This study was conducted in accordance with the OECD

Guideline No. 471 for testing of chemicals, “Bacterial Reverse

Mutation Test” adopted July 21, 1997 (OECD, 1997) (26). The

number of revertants was compared with controls and positive

controls to draw the conclusion.

2.9.12.2 In vitro mammalian chromosomal
aberration test

This study was conducted in accordance with the OECD

Guideline No. 473 for testing of chemicals, “In vitroMammalian

Chromosomal Aberration Test” adopted July 29, 2016 (OECD,

2016). Blood cells were exposed to USKECSE at 69, 208, and 625

µg/mL concentrations along with a DMSO control for three

hours in the presence or absence of exogenous metabolic

activation for 22 hours in the absence of metabolic activation.

Following exposure, dividing lymphocytes were treated with

colchicine to arrest the cells in a metaphase-like stage of

mitosis (c-metaphase). Cells were then harvested, and

metaphase preparations were made for chromosomal analysis.

Preparations were stained with Giemsa, and metaphases were

analyzed for chromosomal aberrations. One hundred fifty

metaphases from each replicate culture were analyzed for

chromosome aberrations.

2.9.12.3 In vivo mammalian bone marrow
chromosomal aberration test

This study was performed in accordance with the OECD

Guidelines for the Testing of Chemicals , No. 475,
Frontiers in Endocrinology 06
“Mammalian Bone Marrow Chromosomal Aberration Test”

adopted July 29, 2016. USKECSE was administered at three

doses (500, 1000, and 2000 mg/kg/day) along with vehicle

(5% ethanol + 10% PEG 400 + 0.5% w/v sodium

carboxymethyl cellulose - medium viscosity containing 0.1%

v/v Tween 80 in Milli Q water) and positive control

(cyclophosphamide monohydrate, 15 mg/kg/day) twice at

an interval of 24 hours by oral gavage to Swiss albino mice.

The mice were sacrificed 24 hours after the test item

administration. Before sacrifice, the mice were treated with

a spindle inhibitor, 0.04% colchicine (10 ml/kg), to arrest the

cells in metaphase. Chromosome preparations from the

femur bone marrow cells were stained and scored for

aberrations and the mitotic index (%) was determined. The

frequency of mitotic divisions (mitotic index) was estimated

by counting the number of metaphase plates per 1000 blast

cells per animal. Slides were screened for 200 analyzable

metaphases per animal and scored for aberrations.

2.9.13 Acute toxicity study
The acute toxicity study in rats was carried out as per OECD

Principles of Good Laboratory Practice [C(97)186/Final] and US

FDA Good Laboratory Practice for Nonclinical Laboratory

Studies (21 CFR Part 58). Healthy adult SD rats (n = 25 males

and 25 females) were recruited. Rats were divided into five

groups in each sex and given oral gavage of vehicle (1% gum

acacia in water) and USKECSE (500 mg/kg, 1000 mg/kg, 1500

mg/kg, and 2000 mg/kg). The behavior of animals was observed

for 14 days after which all groups were terminated to observe the

gross pathology.
2.9.14 In vitro studies
2.9.14.1 Rat calvarial osteoblast culture and ALP assay

Rat calvarial osteoblasts (RCO) were cultured from one- to

two-day-old rat pups as described before in our previously

described protocol (19). At 90% confluence, cells were

trypsinized and seeded in 96-well plates to obtain adherent

cells for ALP assay. These cells were treated with either vehicle

or kaempferol (2 µM) for 48 hours in a differentiation medium

(a-MEM supplemented with 10 mM b-glycerophosphate and
50 mg/mL ascorbic acid). After 48 hours, diethanol amine

buffer (DAE) with 2 mg/ml para-nitrophenyl phosphate

(pNPP) was added to measure ALP activity colorimetrically

at OD 405 nm.

2.9.15 Quality control for all studies
All the studies conducted and data collected were checked

by minimum of two observers. Critical phases of the study

plans as well as any amendments were applied to the test site

in accordance with GLP compliance management guidelines,

and the audited raw data were deposited with the

senior author.
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2.9.16 Statistical analyses
Data are expressed as the mean ± standard error of the mean

(SEM). Statistical differences among the different treatment

groups were analyzed by one-way ANOVA followed by a post

hoc Tukey test using GraphPad Prism 5 with a significance level

of 0.05% (95% significance).
3 Results

3.1 Optimization of extraction and
hydrolysis conditions

To achieve the optimal extraction of the target compound,

different extraction solvents [n-hexane, EtOAc methanol, ethanol,

methanol-water (4:1, 1:1) and ethanol-water (4:1, 1:1), ethanol-

EtOAc (4:1, 1:1)], and extraction techniques (percolation,

sonication, and reflux) were optimized. The developed UPLC

method was applied for the quantification of kaempferol in

different samples. Extraction by repeated percolation technique

[n-hexane! EtOAc! ethanol-water (4:1)] was found to be the

best method for the highest extraction of the target compounds.

To achieve the optimal hydrolysis of kaempferol glycosides

present in the extract, solvents such as methanol-water (1:1) and

ethanol-water (1:1), the quantity of solvent (60 ml and 100 ml),

hydrolysis conditions such as concentration of acid (2 M, 4 M,

and 6 M), and quantity of acid (15 ml and 25 ml) were optimized

under reflux conditions and were analyzed by UPLC. One gram

of extract refluxed with 2 M HCl (2 mL) in methanol-water (1:1,

10 ml) for three hours provided the best condition for the
Frontiers in Endocrinology 07
enrichment of kaempferol. These optimized conditions were

further applied to enrich kaempferol in C. sinensis

hydroethanolic extract at a 220 g scale. C. sinensis hydrolyzed

extract (acidified) thus obtained from the hydrolysis experiment

was treated with 220 g of Amberlyst A-21 free base resin in

MeOH: H2O (1:1, 1000 ml) at 50°C for three hours under

constant stirring (Figure 1).
3.2 Optimization of chromatographic
conditions

The UPLC conditions were optimized by using a standard

mixture of the compounds and the C. sinensis hydroethanolic

extract. Different mobile phases, such as acetonitrile-water (0.1%

and 0.05% formic acid), methanol-water, acetonitrile-water, and

column temperatures (25°C, 27°C, and 30°C), were optimized

for the accurate detection of standard compounds in the UPLC

analysis. The best separation was obtained under a low-pressure

gradient with a flow rate of 0.240 mL/min from acetonitrile-

water (0.1% formic acid) at a 27°C column temperature. The

optimized conditions yielded reproducible retention time and

symmetric peak shape (Figure 2).
3.3 UPLC method validation for
quantitative analysis

The compounds showed a coefficient of determination (r2)

in the range of 0.99, which indicates good linearity of the
C E

B D F

A

FIGURE 2

Quantification of EGCG and kaempferol by UPLC-PDA in C. sinensis hydroethanolic extract and kaempferol-enriched C. sinensis extract.
(A) Chromatogram of the standard mixture of kaempferol and EGCG at 274 nm. (B) Chromatogram of the standard mixture of kaempferol and
EGCG at 366 nm. (C) Chromatogram of C. sinensis hydroethanolic extract (USCSE) at 274 nm. (D) Chromatogram of C. sinensis hydroethanolic
extract (USCSE) at 366 nm. (E) Chromatogram of kaempferol enriched C. sinensis extract (USKECSE) at 274 nm. (F) Chromatogram of
kaempferol enriched C. sinensis extract (USKECSE) at 366 nm.
frontiersin.org

https://doi.org/10.3389/fendo.2022.951800
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Kulkarni et al. 10.3389/fendo.2022.951800
developed method. The LOD for the two analytes was observed

in the range of 0.03–0.83 mg/mL, whereas the LOQ was observed

in the range of 0.09–2.5 mg/mL. The RSD value of intraday (n =

6) and interday (n = 3) precisions were found to be in the range

of 0.4% and 4.4%, respectively. The recoveries of both analytes

were found to be in the range of 89.0%–97.9% with RSD ranging

from 0.07% to 1.08% (Table 1). The results demonstrate that the

developed method is sensitive, precise, and accurate for the

quantitative analysis of the intended compounds in C.

sinensis extract.
3.4 Qualitative and quantitative analysis
of samples

The developed UPLC-PDA method was applied

for simultaneous quantification of two target analytes in

C. sinensis hydroethanolic extract (USCSE) and kaempferol-

enriched C. sinensis extract (USKECSE). The chromatograms

for the standard mixture and samples are presented in

Figure 2. Different samples were analyzed for the

quantification of standard compounds in the optimization

experiments. As shown in Table 2, kaempferol content in

two different samples ranged from 0.2 to 7.8 mg/g. With 7.8

mg/g, USKECSE has higher kaempferol content than USCSE

(0.2 mg/g). Of the two analyzed compounds, kaempferol was

enriched in the samples after the acid hydrolysis procedure,

whereas the EGCG amount decreased from 232.2 mg/g to 93.4
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mg/g. These data demonstrate enrichment of kaempferol in

the C. sinensis extract, i.e., USKECSE was achieved by

developing a precise and accurate analytical method for the

simultaneous quantification of kaempferol and EGCG via

UPLC-PDA.
3.5 Bone regenerative effect of
kaempferol-enriched USKECSE in
osteotomy model

We first tested the osteogenic effect measured by bone

regeneration at the osteotomy site of rats treated with USCSE

and USKECSE at 100-, 150-, and 200-mg/kg doses. Compared

with vehicle-treated rats, USKECSE at all doses significantly

increased calcein intensity (nascent bone formation). USCSE,

however, had no effect at any of the doses tested (Figures 3A, B).

Because the 100-mg/kg dose of USKECSE showed a significant

bone regenerative effect, we selected this dose as the minimum

effective dose in our further studies.
3.6 Effect of USKECSE on body
composition and liver function in
OVX rats

OVX increased body weight compared with control, and

USKECSE had no effect on the OVX-induced body weight in
TABLE 2 Amount (mg/g) of target analytes in C. sinensis hydroethanolic extract (USCSE) and kaempferol enriched C. sinensis extract (USKECSE).

Sample code EGCG Kaempferol

Hydroethanolic extract (USCSE) 232.2 ± 6.6 0.2 ± 0.2

Kaempferol enriched extract (USKECSE) 93.4 ± 3.9 7.8 ± 0.8
TABLE 1 Regression equation, linear range, LOD, LOQ, intra-day, inter-day and recovery studies for the target analytes.

Analyte Regression
equationa

R2 Linear
range

(µg/mL)

LODb LOQc Intra- dayd

RSD (%)
n = 6

Inter-day
RSD (%)
n = 3

Recoverye

Original
(µg)

Spiked
(µg)

Detected
(µg)

Average
recovery

(%)

RSD
(%)

EGCG Y= 4847.90X +
7970.49

0.9945 2.5 - 320 0.83 2.5 4.46 0.40 5567.4 96 5654.6 90.7 0.10

120 5674.3 89.0 0.27

144 5708.5 97.9 0.30

Kaempferol Y= 16892.4X
-2790.77

0.9998 0.09 -31.25 0.03 0.09 3.16 1.20 7.7 48 54.6 97.6 1.08

60 66.01 97.0 0.07

72 77.36 96.6 0.90
frontier
aThe regression equations were presented as Y = mX + c. Y and X were defined as peak area and concentration of compound, respectively.
bLOD, limit of detection, S/N = 3.
cLOQ, limit of quantification, S/N = 10.
dIntra and inter-day precision was determined on the basis of peak area. RSD (%) = (SD/mean) × 100.
eAverage recovery (%) = (detected amount − original amount)/spiked amount × 100.
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rats (Figure 4A). Fat mass was significantly increased in

OVX rats compared with control, but it was comparable

between the USKECSE and control groups (Figure 4B).

Lean mass was , however , comparab l e ac ros s the

groups (Figure 4C).

Given the reported hepatotoxicity in C. sinensis extract (11,

27), we assessed the liver function of OVX rats after 16 weeks of

USKECSE treatment. SGPT (ALT) and SGOT (AST) were

comparable across the groups (Figures 5A, B). Total bilirubin

(Bil-T) was significantly decreased in OVX compared with

sham, whereas USKECSE treatment brought the Bil-T levels to

the sham levels (Figure 5C). The results suggest that USKECSE

has no hepatotoxicity.
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3.7 USKECSE maintained bone volume
and microarchitecture of trabecular
bones in OVX rats

Trabecular bones at femur metaphysis, tibia metaphysis, and

L5 were studied using mCT (Figure 6A for representative

images). Bone volume (BV/TV%) was significantly reduced in

the OVX compared with control at all three sites and USKECSE

treatment to OVX rats increased it at all sites compared with

OVX rats given vehicle. Tb.N and Tb.Th were significantly

decreased at all three sites studied in OVX rats compared with

control, and USKECSEmaintained these parameters to the sham

level only at L5. Tb.sp was comparable across all groups in L5,
B

A

FIGURE 3

USKECSE promoted bone regeneration at the femur osteotomy site. Adult female rats were treated with vehicle, USCSE, or USKECSE at
indicated doses 24 hours after femur osteotomy and continued for 12 days. (A) Representative images of calcein deposition at the osteotomy
site and (B) quantification of calcein by confocal microscopy. Values are expressed as mean ± SEM (n = 6 bones/group); ***p<.001 vs. vehicle.
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and the OVX-induced increase in Tb.sp at femur and tibia

remained unchanged by USKECSE treatment (Figure 6B).

The topological parameters, including connectivity density

(Conn.D.) and structural model index (SMI), were significantly

altered in OVX rats compared with control. Conn.D was

reduced in OVX, and USKECSE-treated rats showed a

significantly higher value than OVX rats. OVX rats displayed

significantly higher SMI at the femur and L5, and USKECSE

t r ea tmen t ma in t a ined the va lu e s comparab l e to

control (Figure 6B).

Furthermore, we studied biomechanical strength at L5 by

applying compression force, which showed a significant decrease

in maximum power in OVX rats, but USKECSE maintained it to

the sham level (Figure 6C). Our study in OVX rats suggests that

the osteoprotective property of USKECSE was more effective at

L5 than femur and tibia. We next assessed the osteoanabolic

effect of USKECSE.
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3.8 USKECSE stimulates bone formation
in OVX rats

Serum PINP (an osteogenic marker) was reduced in OVX

rats compared with sham, and USKECSE treatment maintained

it to the sham level (Figure 7A). In the ex vivo nodule formation

(mineralization) assay, we observed a sharp decrease in

mineralization in the OVX group compared with the sham

group. USKECSE-treated OVX rats displayed mineralization

significantly higher than the sham (Figure 7B). Urine CTX-1

(a resorption marker) was significantly elevated in OVX rats

compared with control, and USKECSE treatment failed to

reduce the OVX-induced increase (Figure 7C).

The surface-referent bone formation measurement was

studied, and we observed a decrease in MS/BS and BFR in

OVX rats, and USKECSE treatment significantly increased both

over the OVX group (Figure 7D).
B CA

FIGURE 4

USKECSE decreased fat mass in osteopenic rats. (A) Body mass, (B) normalized fat mass, and (C) lean mass were measured. For parameters shown
in (B) and (C), Echo-MRI was used. Values are expressed as mean ± SEM (n = 6 rats per group); *p <.05, **p <.01, vs. sham.
B CA

FIGURE 5

USKECSE has no hepatotoxicity. (A) Serum glutamic pyruvic transaminase (SGPT), (B) serum glutamic oxaloacetic transaminase (SGOT), and
(C) serum total bilirubin (T-Bil) data in the indicated groups are shown. Values are expressed as mean ± SEM (n = 6 serum samples per group);
*p <.05, **p <.01, vs. sham.
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3.9 Pharmacokinetic study

After a single oral dose (100 mg/kg) of USKECSE,

kaempferol was detectable for 48 hours in the plasma as

shown in the time-concentration plot (Figure 8A), suggesting

its significant absorption and distribution. From the time-
Frontiers in Endocrinology 11
concentration plot, various PK parameters were determined as

shown in Figure 8B.

Based on the Cmax o f kaempfe ro l , the mola r

concentration was calculated to be ~2 mM. Cultured

osteoblasts treated with 2 mM kaempferol promoted

osteogenic differentiation (Figure 8C).
B

C

A

FIGURE 6

USKECSE prevented bone loss in osteopenic rats. (A) Representative images of femur metaphysis, tibia metaphysis, and L5 vertebrae are shown.
(B) Shown are the quantitative µCT parameters of the femur, tibia metaphysis, and L5. %BV/TV, percent bone volume per tissue volume; Tb.N,
trabecular number; Tb.Th, trabecular thickness; Tb.Sp, trabecular spacing; Conn.D., connectivity density; and SMI, structure model index.
(C) The L5 compression strength was determined by a bone strength tester. Values are expressed as mean ± SEM (n = 6 bones/group); *p <.05,
**p <.01, and ***p<.001 vs. sham.
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3.10 Genotoxicity of USKECSE

In mammalian cells, kaempferol is reported to have a

genotoxic effect likely mediated by its P450-dependent

biotransformation to quercetin (28, 29). In prokaryotic cells,

through the Ames assay, kaempferol has been reported to have a

direct genotoxic effect (30). In view of these reports, we assessed

the genotoxicity of USKECSE in prokaryotic and eukaryotic cell

systems in a GLP-accredited laboratory.
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USKECSE ranging from 50 to 5000 µg/plate showed no

bacterial mutagenicity assessed by the Ames test. The tested

doses showed no positive mutagenic increase in the mean

number of revertant colonies for all tester strains when

compared with the respective vehicle control plates either in

the presence or absence of the metabolic activation. The results

indicate that USKECSE is not mutagenic (Supplementary

Tables 1, 2, and 3 and its corresponding raw data in

Appendices 1, 2, and 3, respectively).
B

C

D

A

FIGURE 7

USKECSE has an osteoanabolic effect in osteopenic rats. (A) Serum procollagen type I N-propeptide (PINP). (B) Ex vivo mineralization assay was
performed in samples obtained from the indicated groups. (C) Cross-linked C-telopeptide of type I collagen (CTX1) levels were determined by
ELISA from the urine of rats with indicated treatments. (D) Upper panel showing representative images (scale bar, 100 mm) of double calcein
labeled surface at femur metaphysis and the lower panel showing dynamic histomorphometry parameters in the indicated groups. For ELISA,
serum samples of n = 6 rats from each group were taken, and for ex vivo mineralization and histomorphometry femurs, sections of n = 3 rats
from each group were used. Values are expressed as mean ± SEM; *p <.05, **p <.01, and ***p<.001 vs. sham.
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Next, we tested USKECSE in the clastogenic assay in vitro

using human peripheral blood lymphocytes, and chromosomal

aberrations were analyzed. Briefly, the human lymphocytes in

the whole blood culture were first stimulated to divide by the

addition of phytohemagglutinin (PHA) 48 hours before

treatment and then were exposed to USKECSE in the presence

and absence of an exogenous metabolic activation system (S9

fraction prepared from Aroclor 1254 induced rat liver). We first

tested the lymphocyte cytotoxicity in response to USKECSE at

69, 208, and 625 mg/ml concentrations, and at the highest

concentration, it caused cytotoxicity both in the presence and

absence of metabolic activation (Supplementary Tables 4 and 5

and its corresponding raw data in Appendices 4 and 5,

respectively), and hence, 625 mg/ml was considered to be the

maximum concentration for the chromosomal aberration assay.

Subsequently, blood cultures were treated with USKECSE in

duplicate at the aforementioned concentrations in the presence

and absence of metabolic activation for three hours and also in

the absence of metabolic activation for 22 hours (Supplementary

Table 6 and its corresponding raw data in Appendix 6). We used

similar experimental conditions for vehicle control (DMSO) and

the positive controls (cyclophosphamide monohydrate in the

presence of metabolic activation and ethyl methanesulfonate in

the absence of metabolic activation). Cells in all experimental

groups were harvested at the C-metaphase stage at the end of the

indicated treatments. A total of 300 metaphases from duplicate

cultures from each treatment group were evaluated. The data
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from the treatment groups and the positive controls were

statistically compared with the vehicle control. The mitotic

index was reduced by ~45%. There was no statistically

significant increase in the incidence of structurally aberrant

chromosomes in the metaphases either in the presence or

absence of metabolic activation in any of the tested

concentrations of USKECSE. The respective positive controls

showed statistically significant (p <.05) increases in aberrant

metaphase chromosomes, confirming the sensitivity of the test

system and the activity of the S9 mix (Supplementary Tables 4–

6). The results suggest that USKECSE was not clastogenic on

peripheral human blood lymphocytes up to the highest

concentration (625 mg/ml) tested.

We next tested the clastogenicity of USKECSE in Swiss

albino mice as it provides a rational basis for mutagenic risk

assessment in humans. USKECSE was given oral administration

(500, 1000, and 2000 mg/kg) for two consecutive days. An

additional group of mice were given the positive control

cyclophosphamide monohydrate (15 mg/kg) (Supplementary

Table 7). The incidences of individual aberrations and

percentage of mitotic index in bone marrow smears of males

and females were comparable to the corresponding vehicle

control group at all the doses of USKECSE (Supplementary

Tables 8 and 9 and the corresponding raw data in Appendices 7

and 8, respectively). By contrast, cyclophosphamide

monohydrate treatment resulted in a significant increase in the

percentage of cells with structural chromosomal aberrations
B

C

A

FIGURE 8

Kaempferol has oral bioavailability and an osteogenic effect upon USKECSE treatment. (A) Time-concentration profile of kaempferol in plasma
after a single oral dose (100 mg/kg) of USKECSE in adult female rats. (B) Table showing calculated pharmacokinetic parameters. (C) Rat calvarial
osteoblasts (RCO) were treated with 2 µM kaempferol, and differentiation was assessed by alkaline phosphatase (ALP) assay. Values are
expressed as mean ± SEM; ***p <.001 vs. vehicle.
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(including and excluding gaps) and a decrease in mitotic index

compared with vehicle controls. The results indicate that

USKECSE was nonmutagenic in male and female mice at

a >10X osteogenic dose.
3.11 Acute toxicity study

USKECSE was orally administered to adult rats at 500-,

1000-, 1500-, and 2000-mg/kg doses. None of the rats showed

any adverse clinical signs at the time of sacrifice on the 15th day.

This study suggests that the maximum tolerated dose of

USKECSE is >2 g/kg.
4 Discussion

Green Tea Polyphenol (GTP) protected OVX and

orchidectomized rats from trabecular bone loss (31, 32), where

EGCG was the major polyphenol. However, in these studies,

GTP was given in drinking water, thus precluding accurate

estimation of the dose. Besides this, systemic administration of

EGCG (3.4 mg/kg) has a bone-conserving effect in OVX rats

(33). At the molecular level, EGCG activates the cellular nutrient

sensor AMP-activated protein kinase (AMPK) in osteoblasts

resulting in the downstream activation of mitochondrial

biogenesis that, in turn, stimulates osteoblast differentiation

(34). However, green tea–associated liver disease, including

acute and fulminant liver damage, has been attributed to

EGCG (35–38). By contrast , kaempferol showed a

hepatoprotective effect in various preclinical models of liver

damage (39–42) and, at the same time, has beneficial effects in

bone (13, 43, 44). The anti-osteoporosis effect of kaempferol is

mediated by various mechanisms in bone cells, including

modulation of estrogen receptors, activation of BMP2

signaling, increasing the molecular interaction of TAZ

(transcriptional coactivator with PDZ-binding motif) and

Runx2 (osteoblast transcription factor) to augment the

transcriptional activity of Runx2, inhibition of NF-kB and

mTOR pathways, and inhibition of autophagy through

downregulation of p62/SQSTM1 (45–47). Therefore, we

developed USKECSE from C. sinensis extract by using a novel

acid hydrolysis procedure to harness the salutary effect of green

tea extract in bones by enhancing kaempferol and concomitant

depletion of EGCG for liver safety. We observed that the

kaempferol-enriched USKECSE promoted bone formation at

the osteotomy site and, in OVX rats, maintained bone mass,

microarchitecture, and bone strength solely by an osteoanabolic

mechanism. Finally, USKECSE displayed no hepatotoxicity,

genotoxicity, and systemic toxicity.

We compared the bone regeneration efficacy of USKECSE

and its unformulated version, USCSE, in a rat femur osteotomy
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model to first determine the osteogenic dose. The osteogenic

property of the extracts was determined by the amount of callus

formation at the osteotomy site by calcein labeling (18, 48). We

found that USKECSE (100 mg/kg) but not USCSE promoted

bone regeneration. We next used 100 mg/kg USKECSE to study

its effect on the development of osteopenia in OVX rats. Previous

studies show that OVX induces gain in fat mass and body weight

(20). Our data show that USKECSE treatment prevented fat

mass gain to maintain it to the level of the control group. These

results are consistent with a previous report that observed a

significant decrease in body fat mass in visceral fat-type obesity

in Japanese men and women by green tea extract (49). Increased

kaempferol in USKECSE may also have contributed to reduction

in fat mass as a kaempferol-rich extract of Rhizoma Polygonati

falcatum (50) and pure kaempferol inhibited adipogenesis, and

the latter effect was likely mediated by peroxisome-proliferated

activator receptor-a (PPARa) (51). In our study, the liver

function of OVX rats treated with USKECSE was comparable

to control, which suggests that the formulation was devoid

of hepatotoxicity.

mCT analysis of trabecular bones showed that USKECSE

maintained bone mass, microarchitecture, and bone strength of

the trabecular bones in OVX rats solely by an osteoanabolic

mechanism. mCT data revealed that the preservation of

trabecular bone volume and the integrity of the trabecular

network by USKECSE was attributable more to the

preservation of Tb.Th than Tb.N at the femur and tibia,

whereas at L5, both Tb.Th and Tb.N were maintained to the

sham levels. Conn.D represents the integrity of the trabecular

network and is a measure of intact branches, whereas SMI

represents rod and plate structures in trabecular bone

determined by surface structures such that, for spherical,

cylindrical rods and planar surfaces for which the values are 4,

3, and 0, respectively (52). Hence, higher SMI values indicate

more spherical or cylindrical structures that are less stable, and

lower values indicate more stable planar structures (53). In OVX

rats, Conn.D. was reduced, which indicates broken trabecular

branches, and USKECSE-treated rats showed a significantly

higher value than OVX rats, indicating maintenance of

intertrabecular connectivity. SMI at femur and L5 was

significantly higher, whereas USKECSE treatment maintained

values comparable to control. Taken together, from these 3-D

topological parameters, it appears that the trabecular bone of

OVX rats would have less buckling strength than the control,

and USKECSE significantly maintained these, particularly at L5.

Indeed, measurement of compression strength at L5 showed that

USKECSE maintained the strength in OVX rats comparable to

the control. Osteoporotic vertebral compression fractures affect

~25% of all postmenopausal women (54), and our study

demonstrates that the bone-conserving and strength-

maintenance effects of USKECSE were most effective at L5 of

OVX rats. The first line of osteoanabolic therapy, teriparatide
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acting via the type 1 parathyroid hormone receptor, was found

to be more efficient in inhibiting vertebral fracture than hip

fracture (69% vertebral fracture vs. 54% hip fracture reduction)

(55). The action of USKECSE was reminiscent of teriparatide’s

action as it was more effective in improving L5 parameters

than femur.

The serum PINP was maintained in the OVX +USKECSE

group comparable to the sham level, whereas USKECSE

treatment had no effect on urine CTX-1. Ex vivo nodule

formation data clearly displays that USKECSE treatment

promoted mineralization higher than the sham. The surface-

referent bone formation measurement, which is considered the

most reliable determinant of the osteoanabolic effect in

response to any treatment, showed that both MS/BS and BFR

in the OVX + USKECSE group were significantly increased

compared with OVX rats. These data suggest that USKECSE is

a pure osteoanabolic agent. In the future, the effects of

USKECSE in a therapeutic regimen (OVX rats with

established osteopenia) are required to be investigated to

firmly establish it as an osteogenic agent before evaluating it

in postmenopausal osteoporosis patients. In this regard, it

would be interesting to combine USKECSE with alendronate,

a widely used oral bisphosphonate having a strong

antiresorptive effect to assess whether the combination

therapy is better than the monotherapy. Besides EGCG, green

tea contains other catechins, including epigallocatechin,

gallocatechin, and gallocatechin gallate, having beneficial

effects on bone (56). Our process of enriching kamepferol in

USKECSE, although reduced in EGCG (an osteogenic

compound), however, likely retained other catechins with

salutary effects on bone. Thus, a combination of a high

amount of kaempferol and tea catechins afforded a dual

advantage of inducing osteogenic response and eliminating

the hepatotoxic effect of EGCG.

A PK study of a single oral dose (100 mg/kg) of USKECSE

suggests significant absorption and distribution of kaempferol,

and the profile was similar to that observed with pure

kaempferol in adult rats (13). Based on the Cmax of

kaempferol, the molar concentration was calculated to be ~2

mM. At this concentration, kaempferol significantly increased

osteogenic differentiation of cultured osteoblasts, which suggests

that the serum level of the compound achieved by 100 mg/kg

USKECSE was functional as it was sufficient to induce

osteogenic response.

Genotoxicity of USKECSE was assessed in prokaryotic,

eukaryotic cells, and in Swiss albino mice. In the Ames test,

USKECSE showed no mutagenic effect, and in human peripheral

blood lymphocytes, USKECSE was not clastogenic up to the

highest concentration tested. Similarly, in male and female mice,

USKECSE showed no mutagenic effects. In an acute toxicity

study, the therapeutic index of USKECSE was derived >20-fold,

which suggests the safety of the extract.
Frontiers in Endocrinology 15
Conclusions

A formulation, USKECSE, developed from tea extract by a

novel extraction procedure enhanced kaempferol content and

concomitantly depleted the hepatotoxic compound, EGCG.

USKECSE is more potent than the hydroethanolic extract in

terms of the beneficial skeletal effects and is devoid of

hepatotoxicity. Kaempferol in USKECSE has significant oral

bioavailability that translates to an osteogenic effect. Safety

studies reveal that USKECSE has a 20X therapeutic index and

has no genotoxicity. Based on these findings, we propose a

pilot cl inical trial of USKECSE in postmenopausal

osteoporosis for enhancing the evidence base toward

positioning this novel extract as a nutraceutical supplement

for bone health.
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