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evolutionary studies
Vinh Sy Le1*†, Cuong Cao Dang1 and Quang Si Le2*†

Abstract

Background: Amino acid substitution models play an essential role in inferring phylogenies from mitochondrial
protein data. However, only few empirical models have been estimated from restricted mitochondrial protein data
of a hundred species. The existing models are unlikely to represent appropriately the amino acid substitutions from
hundred thousands metazoan mitochondrial protein sequences.

Results: We selected 125,935 mitochondrial protein sequences from 34,448 species in the metazoan kingdom to
estimate new amino acid substitution models targeting metazoa, vertebrates and invertebrate groups. The new models
help to find significantly better likelihood phylogenies in comparison with the existing models. We noted remarkable
distances from phylogenies with the existing models to the maximum likelihood phylogenies that indicate a considerable
number of incorrect bipartitions in phylogenies with the existing models. Finally, we used the new models and
mitochondrial protein data to certify that Testudines, Aves, and Crocodylia form one separated clade within amniotes.

Conclusions: We introduced new mitochondrial amino acid substitution models for metazoan mitochondrial proteins.
The new models outperform the existing models in inferring phylogenies from metazoan mitochondrial protein data.
We strongly recommend researchers to use the new models in analysing metazoan mitochondrial protein data.
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Background
An amino acid substitution model (model for short)
includes a 20 × 20 matrix and an amino acid frequency
vector. The matrix represents the instantaneous substitu-
tion rates among amino acids while the amino acid
frequency vector serves as the equilibrium frequencies of
the 20 amino acids. The substitution rates characterise the
biological, chemical, and physical correlations among
amino acids [1]. Amino acid substitution models are the
key to infer phylogenies from protein data. Distance-based
methods use amino acid substitution models to estimate
pairwise distances among sequences, while maximum
likelihood or Bayesian methods require amino acid substi-
tution models to calculate the likelihood of data [2].

Estimating amino acid substitution models is much
more challenging than estimating nucleotide substitution
models due to a large number of parameters to be opti-
mised. For example, the general time reversible model for
nucleotides contains 8 parameters in comparing to 208
parameters for models of amino acid substitutions. Thus,
amino acid substitution models are typically estimated
from large datasets.
It is well established that models of different species or

protein types would be diverse [3–5]. For example, Dang
et al. showed that the model for influenza proteins is
highly different from general models [3]. Note that protein
structures also contribute to amino acid evolution
patterns [6, 7].
Mitochondria (mt) are energy factories and play an essen-

tial role in supplying cellular energy [8]. The mitochondrial
genome encodes 13 proteins that are widely used to infer
phylogenies [7, 9–12]. Few groups have estimated empirical
models from mt protein data (mt models). Adachi and
Hasegawa were the first to estimate an mt model, named
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mtREV, from 20 complete vertebrate sequences [13]. They
argued that the difference between the universal code and
the mitochondrial code might be partially responsible to the
difference between amino acid substitution patterns from
nuclear and mitochondrial-encoded proteins. Abascal et al.
built another mt model, mtArt, from 36 arthropod species
to analyse the data of invertebrate species [14]. Note that al-
though invertebrates are paraphyletic, the term invertebrates
is widely used as a convenient shorthand in communication
[5, 13–15]. Neither mtREV nor mtArt is appropriate for
datasets consisting of diverse metazoan lineages, as they
were specifically estimated from either vertebrate or inverte-
brate protein data. Rota-Stabelli et al. solved the problem by
introducing an mt model (mtZoa) estimated from 117
general metazoan species [5]. They recommended to use
mtZoa for analysing datasets from diverse or basal metazoan
groups. The existing mt models (mtREV, mtArt, and mtZoa)
outperform general models (e.g., LG [16] and WAG [17]) in
inferring phylogenies from mt protein data, even though
they were estimated from small datasets.
The main issue of the existing mt models comes from

their small training datasets of at most 117 species. This
was due to the limited mt protein data available and the
capability of estimation methods at the time these studies
were carried out. Consequently, the models might over-fit
to training data due to a large number of free parameters
of the amino acid substitution model (precisely 208 free
parameters). In other words, the existing models may fit
too well to training sequences but poorly represent others.
Above all, the existing mt models cannot appropriately
represent nearly a million available mt protein sequences
of more than 34 thousands metazoan species, as they were
estimated from only a limited number of species.
In this paper, we introduce new mt models for metazoan

and vertebrates. Although invertebrates are not monophy-
letic, their mitochondria have the same genetic codes. The
genetic codes of invertebrate mitochondria are different
from that of vertebrate mitochondria. The difference
might result in different amino acid substitution patterns
from invertebrate and vertebrate mitochondrial-encoded
proteins [5, 13, 14]. Therefore, we also introduce a new
mt model for invertebrates. To this end, we created three
datasets from 125,935 mt sequences of 13 proteins from
34,448 metazoan species. Then, we implemented the fast
and accurate method, FastMG [18], to estimate three new
mt models from these three datasets.
We validated the new models by assessing the likelihood

of phylogenies with the new models for both training and
testing data. We summarised the experimental results to
show the advantage of the new models in inferring the max-
imum likelihood phylogenies (called the best phylogenies)
in comparison to existing mt models. Experimental results
revealed remarkable distances from the phylogenies with
the existing models to the best phylogenies. We proved that

the remarkable distances imply a considerable number of
incorrect bipartitions in the phylogenies with the existing
models. Although we could not evaluate the topological
quality of phylogenies with the new models, as they were
often the best phylogenies, we would expect significant
topological improvement due to their large likelihood
advantage over the phylogenies with the existing models.
Finally, we applied the new models to tackle a debated

question about the location of Testudines within amniotes.
We used IQ-TREE with the new models to build the max-
imum likelihood phylogeny of 993 amniotes from their mt
protein data. We learned from the phylogeny that Testudi-
nes, Aves, and Crocodylia form one separated clade within
amniotes.

Results and discussion
Data preparation
We downloaded all mt protein sequences of 34,448 species
in the metazoan kingdom from NCBI (National Center for
Biotechnology Information, 2016) and then mapped them
onto 13 mt proteins. We selected one sequence per species
to eliminate bias on intensively studied species (e.g., 30,000
human sequences). As the result, we obtained 125,935 se-
quences to form three datasets for metazoan, vertebrate, and
invertebrate categories. We kept all sites, as removing sites
with missing data would lead to worse phylogenies [19]. We
divided each dataset into a training dataset and a testing data-
set containing 90% and 10% of sequences, respectively.
We implemented the fast and accurate method, FastMG

[18], to estimate three new mt models, mtMet, mtVer, and
mtInv from metazoan, vertebrate, and invertebrate train-
ing datasets, respectively. As FastMG is infeasible for
alignments of several thousands sequences, we split
alignments based on the taxonomy tree to obtain sub-
alignments of at most one thousand sequences. Then we
divided these sub-alignments into smaller sub-alignments
of at most 128 sequences using the tree-based splitting
algorithm in FastMG. In addition, we removed branches
with lengths equal to zero or larger than two in order to
eliminate data noise. The data are summarised in Tables 1
and 2. Note that the FastMG algorithm starts from an ini-
tial model and iteratively optimises the model until the
likelihood improvement is insignificant.

The fit of new models to training datasets
We measured the fit of new models to the training data-
sets. Table 3 shows significant likelihood improvements
of the new models over the initial model, mtZoa, for
metazoan, vertebrate, and invertebrate training datasets.
The first iteration contributed about 99% of the total
likelihood improvement. The optimisation process was
terminated after the third iteration, as the gain from the
third iteration was insignificant.
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The better Akaike and Bayesian information criterion
scores [20, 21] of the new models in comparison to the
initial model, mtZoa, confirm the better fit of the new
models to the training data. The scores guarantee that the
likelihood gain of the new models comes from their genu-
ine fit and overwhelm the penalty of free parameters.

Model analysis
Figures 1 and 2 show significant differences in exchange-
ability patterns between amino acids among the four
models: mtZoa, mtMet, mtVer, and mtInv (see). For
example, the exchangeability rate between methionine
and glutamine in mtMet is about 10 times greater than
that in mtZoa (0.155 vs 0.0016). The exchangeability rate
between these two amino acids in mtVer is a third of
that in mtInv (0.075 vs 0.228). Figure 3 shows a clear
variety of amino acid frequencies among the four
models, especially between mtVer and mtInv). For in-
stance, the frequency of Threonine in mtVer is about
three times as much as that in mtInv (0.146 vs 0.0428).
The low pairwise correlations of exchangeability rate

matrices (or frequency vectors) of the mt models confirm
high varieties among the models (Table 4). The mtInv and

mtVer models are the most diverse pair with the smallest
correlation of exchangeability rates (0.775). Note that the
correlation between the two popular general models LG
and WAG is 0.912. As expected, mtMet is the closest
model to mtZoa in terms of exchangeability rates, with a
0.929 correlation score, as both were trained from the
metazoan data. Interestingly, mtMet is closer to mtInv
than mtVer, although the metazoan training dataset
consists of less invertebrate data than vertebrate data. The
results indicate diverse evolutionary processes among line-
ages in the metazoan kingdom.
We observed remarkably low correlations between mt

models and general models (e.g., the 0.46 correlation
score between mtInv and LG). The low correlations
imply considerably diverse evolutionary patterns be-
tween mt proteins and general proteins. Thus, general
models are not an appropriate choice in inferring phy-
logenies from mt protein data.

Likelihood improvement on testing alignments
We assessed the performance of the new mt models
(mtMet, mtVer, and mtInv) and the existing mt models
(mtZoa, mtREV, and mtArt) on building maximum likeli-
hood phylogenies. To this end, we used IQ-TREE [22] to
build phylogenies with different models on the metazoan,
vertebrate, and invertebrate testing datasets. For each testing
alignment D and a model M, we optimised parameters of
the rate heterogeneity model (i.e., proportion of invariable
sites and shape of Gamma distribution with 4 categories),
but fixed the exchangeability rates and base frequencies of
the modelM.

Table 1 The number of sequences of 13 mt proteins for
metazoan, vertebrate, and invertebrate datasets

Metazoan Vertebrate Invertebrate

Protein Training Testing Training Testing Training Testing

ATP6 8493 938 5752 636 2741 302

ATP8 8412 928 5726 632 2686 296

COX1 7090 784 4633 512 2457 272

COX2 9363 1033 5023 555 4340 478

COX3 6867 759 4208 466 2659 293

CYTB 12,894 1422 10,326 1139 2569 282

ND1 8280 912 5355 590 2926 321

ND2 14,541 1597 11,885 1306 2655 292

ND3 9074 997 6262 687 2812 310

ND4 7191 793 4567 503 2625 289

ND4L 7274 803 4498 496 2776 307

ND5 6975 769 4409 487 2566 282

ND6 6977 769 4360 480 2617 289

Total 125,935 85,493 40,442

Each dataset is divided into a training dataset and a testing dataset with a 9
to 1 ratio

Table 2 The number of sequences, alignments, and sites in metazoan, vertebrate, and invertebrate training and testing datasets

Training Testing

#Sequences #Alignments #Sites #Sequences #Alignments #Sites

Metazoan 103,637 1155 362,062 12,701 139 47,477

Vertebrate 68,536 772 238,429 8878 95 29,999

Invertebrate 35,089 390 125,849 3908 48 17,792

Table 3 Total log-likelihood of the target function (Eq. 1) on training
datasets

Metazoan Vertebrate Invertebrate

mtZoa
(initial model)

−1.23427e + 07 −5.50036e + 06 −6.85299e + 06

First iteration −1.21987e + 07 −5.32959e + 06 −6.77590e + 06

Second iteration −1.21987e + 07 −5.32671e + 06 −6.77536e + 06

Third iteration
(final model)

−1.21987e + 07 −5.32671e + 06 −6.77536e + 06

AIC/site 0.795 1.456 1.232

BIC/site 0.790 1.430 1.220

AIC/site (BIC/site) is the AIC (BIC) improvement per site of the final model in
comparison to the initial model mtZoa
There is no likelihood improvement after two iterations

Le et al. BMC Evolutionary Biology  (2017) 17:136 Page 3 of 13



It is clear from Fig. 4 that the new models outperform the
existing models for all three testing datasets. They are the
best-fit models for their corresponding testing data (e.g.,
mtMet is the best-fit model for the metazoan testing data).
Note that the second-best fit model for a certain testing
dataset is the existing model estimated from the training
data of the same category as the testing dataset (e.g., mtZoa
is the second-best fit model for the metazoan testing data).
The log-likelihoods of the phylogenies with the new models
are significantly higher than those of the existing models.
For example, the likelihood advantage of mtMet to the
second-best model, mtZoa, on the metazoan testing data is
about 0.41 log points per site (or 1640 log points for a
concatenated alignment of 4000 sites). This improvement is
about four times as much as the improvements of LG
from WAG [16]. In short, the three new models out-
perform the three existing models in their corre-
sponding categories.
We analysed the performance of the mt models at the in-

dividual alignment level. We used the approximately un-
biased SH test [23] to compute confidence levels for
phylogenies with the models. Given a testing alignment D,
we estimated the maximum likelihood tree Ti according to
model Mi where Mi is one of the six mt models. We com-
puted the site-wise log likelihoods for every (Ti,Mi|D), and
subsequently used the CONSEL program [24] for assessing

their confidence levels. The approximately unbiased SH test
helps us to confirm whether the likelihood improvement
comes from models and trees or from artefacts of numer-
ical analyses in IQ-TREE. Figure 5 confirms the advantage
of the new models in inferring phylogenies for all three
testing datasets. The new models demonstrate a better
fit for almost all testing alignments in comparison with
the existing models (e.g., 85 out of 95 vertebrate align-
ments). The approximately unbiased SH test also con-
firms the superiority of the new models with high
confidence levels (e.g., 67 out of 95 vertebrate align-
ments at the 0.9 confidence level). The existing models
are still the best-fit models for some alignments, but
only significantly better than the new models in a few
cases. For example, the existing models are the best-fit
models for 10 out of 95 vertebrate alignments, but only
significantly better for one alignment at the 0.9 confi-
dence level.
More specifically, we examined the performance of the

six mt models individually (see Fig. 6). We highlight
some following findings:

� The best-fit model for a certain testing alignment is
typically the one estimated from the training data of
the same category as the testing alignment. For
example, 85 out of 95 vertebrate testing alignments

Fig. 1 Amino acid exchangeability rates of the mtMet, mtInv, mtVer, and mtZoa models. There are some considerable difference between mtZoa
and the new models
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fit best with mtVer, which was estimated from the
vertebrate training data.

� The mtVer model outperforms the mtInv model for all
vertebrate testing alignments and vice versa. This is
explainable, as the two models are highly diverse. The

mtMet model is usually the best-fit model for
metazoan testing alignments. However, some metazoan
testing alignments are biased on vertebrate or inverte-
brate species, therefore, mtVer or mtInv might fit bet-
ter than mtMet for those diverse metazoan alignments.

Fig. 2 The ratio of exchangeability rates between mtZoa and mtMet/mtVer/mtInv models. The size of one circle represents the exchangeability
rate between mtZoa and other models. The solid (unfilled) circles represent exchangeability rates where mtZoa is smaller (bigger) than the three
models. For visualization, the large ratios are trimmed at 10 and marked with ‘*’

Fig. 3 Amino acid frequencies of the mtMet, mtInv, mtVer, and mtZoa models. There are some considerable difference between mtZoa and the
new models
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Finally, we compared the performance of new mt
models to LG4X, C60 (site-heterogeneous models) [25]
and PHAT (a transmembrane-specific amino acid substi-
tution model) models [26]. Table 5 shows that the new
mt models outperformed LG4X, C60 and PHAT models
in terms of AIC and BIC.

Phylogeny topology differentiation on testing alignments
We investigated the topological quality of phylogenies
with the six mt models by measuring their topological
distances from the best phylogenies. Specifically, we used
the RobinsonFoulds (RF) metric to measure the distance

between two phylogenies, as it represents the number of
unique bipartitions in two phylogenies [27]. We learn
from Lemma 1 that the lower-bound number of incor-
rect bipartitions in a phylogeny can be approximated as
a quarter of its RF distance from the best phylogeny.

Lemma 1. Given two binary unrooted trees T and T’ in-
ferred from the same alignment of n taxa. The number
of incorrect bipartitions in the worse likelihood phyl-
ogeny is at least a quarter of the RF distance between
T and T’.

Proof: Let T0 be the true binary unrooted tree. It is true
that T, T’, and T0 have the same number of bipartitions,
2n − 3 [28].
Let p be the number of shared bipartions in both T

and T’. Let x and y be the number of unique bipartitions
in T and T’, respectively. As x = (2n − 3) − p and y = (2n −
3) − p, x must be equal to y.
The RF distance between T and T’ is x + y or 2x.
Let S be the set of all bipartitions in T and T’, and S

consists of (2n − 3) + x bipartitions. Since the true tree
T0 has (2n − 3) bipartitions, S must consist of at least x
(half of the RF distance) incorrect bipartitions.
Let T be the worse likelihood phylogeny. Then ,T

should include at least half of the incorrect bipartitions
(x/2) as T is considered the worse phylogeny. In other
words, T includes at least a quarter of RF distance be-
tween T and T’. Figure 7 illustrates an example with five
taxa.
Table 6 discloses remarkable topological distances

from the phylogenies with the three existing models to
the best phylogenies. The distances imply a considerable
number of incorrect bipartitions in the phylogenies. For
example, the phylogenies with mtZoa for metazoan test-
ing alignments contain at least 6.37% incorrect biparti-
tions (i.e., a quarter of their normalised RF distance
from the best phylogenies, 0.255). The results reconfirm
the essential role of model selections in inferring phylog-
enies as a poor model selection (i.e., model and testing
data coming from different categories) would lead to low
quality phylogenies. The lower-bound numbers of incor-
rect bipartitions of phylogenies with the new models are
indeterminable as they are often the best phylogenies.
However, the significant likelihood improvement would
expectedly lead to better phylogenies with fewer incor-
rect bipartitions.
We also applied the approximately unbiased SH test

to examine the tree topologies under the best-fit models.
Given a testing alignment D and its best-fit model Mb,
we fixed tree topologies, but reoptimised other parame-
ters (i.e., branch lengths, parameters of rate heterogen-
eity model) under the best-fit model Mb. Then we used
the CONSEL program for assessing their confidence

Table 4 Correlations between four models: mtMet, mtInv,
mtVer, and mtZoa

mtMet mtInv mtVer mtZoa LG WAG

mtMet 0.976 0.89 0.929 0.527 0.439

mtInv 0.959 0.775 0.875 0.457 0.363

mtVer 0.94 0.866 0.893 0.591 0.529

mtZoa 0.92 0.956 0.829 0.619 0.587

LG 0.837 0.887 0.787 0.894 0.912

WAG 0.825 0.878 0.778 0.85 0.961

The values in the top triangle represent the correlations between
exchangeability matrices, while values in the low triangle are the correlations
between frequency vectors

Fig. 4 Difference per site between log-likelihood of phylogenies
with mtZoa and that with the existing models (mtREV and mtArt),
and the new models (mtMet, mtVer, and mtVer). The red line
represents the improvement of LG from WAG
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levels. The test shows that the tree topologies built with
the new models are better than that with the existing
models in term of likelihood but with lower confidence
(Fig. 8). The significant drop of confidence levels reveals
that a large proportion of likelihood gain is due to the
new models other than tree topologies.

Location of Testudines within amniotes
We applied the new models to tackle a question about the
phylogenetic position of Testudines within amniotes. The
question has a long history of debate with at least four
hypothesises [29]. To this end, we built a concatenated
alignment of 13 proteins for 993 amniotes and used IQ-
TREE with all mt, LG4X, and C10 models to infer the best
phylogeny, named Ta(Fig. 9). As expected, mtVer resulted
in a huge likelihood advantage over other models (i.e.,
18,351 log-likelihood advantage over the second-best
model, mtMet). We also used a bootstrap method [30] to
estimate the reliability of clades in Ta.
In general, Ta strongly supports the main clades of the

NCBI taxonomy at the family, subfamily, and genus levels.
However, the low bootstrap values of some clades at more
high levels show the limitation of mt protein data in re-
solving ambiguous relationships among high level clades.
Specifically, Ta shows strong support (100% bootstrap

values) for the clades of the Testudines order, Crocodylia
order, and Aves class. In other words, mt proteins con-
tain sufficient phylogenetic signals to correctly place a
Testudines, Crocodylia, or Aves species into its

corresponding order or class. Moreover, Ta also displays
a strong support (100% bootstrap value) for the clade of
all Testudines, Crocodylia, and Aves. This means that
Testudines, Crocodylia, and Aves form one separated
group within amniotes. We validated the finding by
moving Testudines out of the clade of Crocodylia and
Aves to other positions around. We found that Ta was
much better than other phylogenies examined (i.e., bet-
ter than the second-best phylogeny with 76 log-
likelihood points). In other words, Testudines is unlikely
to be located elsewhere, rather than within the clade of
Crocodilian and Aves. The finding agrees with the con-
clusion by Crawford et al. [31].
Although Ta shows a strong support for the position of

Testudines within the clade of Crocodylia and Aves, unfor-
tunately it cannot determine the exact relationships among
them. The low bootstrap value of the clade including Testu-
dines and Aves suggests the uncertainty of the ((Testudine-
s,Aves),Crocodylia) topology. We examined this hypothesis
by comparing the topology to two other possible topologies
((Crocodylia,Testudines),Aves) and ((Crocodylia, Aves),
Testudines). The tiny likelihood difference among the three
topologies implies that none of these topologies really out-
weighs the others (Table 7). For example, the 0.467 log-
likelihood advantage of ((Testudines,Aves),Crocodylia) to
((Crocodylia,Aves),Testudines) is likely caused by the limits
of numerical optimisation in IQ-TREE rather than by topo-
logical differentiation. The approximately unbiased SH test
shows no evidence in favour of any topology (Table 7).

Fig. 5 We used the approximately unbiased SH test to compute the confidence levels for phylogenies with the new and existing models on
metazoan, vertebrate and invertebrate testing datasets. For each testing alignment D, we computed the site-wise log likelihoods for every (Ti,
Mi|D) where Mi is one of six mt models and Ti is the phylogeny of D under Mi. The CONSEL program was used for assessing the confidence levels
for each (Ti,Mi|D)
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Conclusions
We introduced three new mt models estimated from
large mt protein datasets of metazoan, vertebrate, and
invertebrate species. Experimental results showed the
advantage of the mt new models in inferring phylogenies

for both training and testing data in comparison to the
existing mt models. The significant likelihood improve-
ment for almost all testing alignments suggests that the
new mt models would help find better phylogenies. The
phylogenies with the existing mt models may consist of

Fig. 6 We used the approximately unbiased SH test (explanations are given in Fig. 5) to compute the confidence levels for phylogenies with six
mt models (mtMet, mtVer, mtInv, mtArt, mtREV, and mtZoa) on metazoan, vertebrate and invertebtate testing datasets

Table 5 The AIC (BIC) per site of nine models on three testing datasets (the smaller AIC (BIC) the better model)

mtZOA mtREV mtArt LG4X C60 PHAT mtMet mtInv mtVer

Metazoan 120.049
(122.011)

120.478
(122.440)

120.476
(122.438)

124.613
(126.629)

124.748
(126.710)

132.966
(134.928)

119.216
(121.178)

120.125
(122.087)

120.769
(122.731)

Invertebrate 133.182
(134.831)

136.229
(137.878)

132.394
(134.044)

138.975
(140.675)

137.979
(139.628)

146.924
(148.573)

132.587
(134.236)

131.674
(133.324)

137.432
(139.082)

Vertebrate 97.129
(99.249)

95.979
(98.099)

98.301
(100.421)

99.851
(102.028)

99.040
(101.159)

107.722
(109.842)

96.195
(98.315)

98.180
(100.299)

95.435
(97.555)

Nine models include six mt models, two site-heterogeneous models (i.e., LG4X, C60), and PHAT model (a transmembrane-specific substitution model)
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a considerable number of incorrect bipartitions due to
their large distances from the best phylogenies.
The low pairwise correlations among mt models for

both amino acid frequency vectors and exchangeability
rate matrices suggest remarkable varieties of evolution-
ary processes of different metazoan lineages. This is par-
ticularly true for vertebrates and invertebrates, where
their models are the most diverse pair. The new mt
models are highly specified to the category of the train-
ing data and significantly different from the general
models. Note that we also applied the approach to

estimate mtPro and mtDeu models for Protostomia and
Deuterostomia clades, respectively.
Experimental results confirmed the essential role of

model selections in inferring phylogenies from mt pro-
tein data. As a general rule, the best-fit model for a cer-
tain alignment is the new model estimated from the
training data of the same category as the alignment.
However, we recommend testing all three new mt
models for the study of datasets containing diverse
metazoan groups, as mtVer and mtInv might fit better
than mtMet for the diverse metazoan alignments.
An alternative approach for model selection is to use

model averaging method that allows the estimation of
phylogenies and model parameters using all available mt
models [32]. In addition, the new empirical mt models
can be used as prior probability distribution of amino
acid substitution rates in Bayesian analyses [33]. As the
new empirical models do not explicitly encode site-
specific biological constrains, it is worth testing site-
heterogeneous models (e.g., LG4X or C60). Finally, mito-
chondrially encoded proteins are transmembrane pro-
teins with non stationary evolutions, researchers should
consider to test transmembrane-specific amino acid sub-
stitution models (e.g. PHAT [26]) and non stationary
models (e.g. Coala [34]).
The phylogeny of 993 amniote species inferred from

mt proteins with the new models shows strong support
for the hypothesis that Testudines, Crocodylia, and Aves
form one separated clade within amniotes. However, we
could not determine precise relationships among Testu-
dines, Crocodylia, and Aves.

Methods
Model
We assume the amino acid substitution process to be a
general time-reversible process and that the substitution
processes of amino acid sites are independent [16]. The
amino acid substitution model is characterised by a

Fig. 7 Unrooted binary trees T , T′, and true tree T0 each has 7 bipartitions. The bipartitions that in T but not in T’ is {(12| 345), (124| 35)}. The
bipartitions that in T’ but not in T is {(15| 234), (152| 34)}. The Robinson and Foulds distance between T and T′ is four. The set S of all bipartitions in

T and T′ is
12j345ð Þ; 124j35ð Þ; 15j234ð Þ; 152j34ð Þ;

1j2345ð Þ; 2j1345ð Þ; 3j1245ð Þ; 4j1235ð Þ; 5j1234ð Þ
� �

: As the set S consists of 2 incorrect bipartitions (i.e., (124| 35) and (15| 234)), the

worse tree must contain at least one incorrect bipartition (a quarter of the Robinson and Foulds distance between T and T′)

Table 6 Normalised RobinsonFoulds (RF) distances between
phylogenies with six mt models

mtArt mtREV mtZoa mtMet mtInv mtVer

Metazoan mtREV 0.323

mtZoa 0.243 0.286

mtMet 0.307 0.281 0.28

mtInv 0.299 0.318 0.293 0.239

mtVer 0.353 0.277 0.313 0.276 0.332

Best 0.304 0.269 0.255 0.058 0.242 0.277

Vertebrate mtREV 0.115

mtZoa 0.087 0.103

mtMet 0.109 0.099 0.100

mtInv 0.098 0.104 0.095 0.093

mtVer 0.124 0.098 0.114 0.1 0.115

Best 0.122 0.096 0.104 0.099 0.112 0.012

Invertebrate mtREV 0.087

mtZoa 0.067 0.082

mtMet 0.082 0.075 0.076

mtInv 0.08 0.08 0.079 0.064

mtVer 0.094 0.076 0.089 0.076 0.087

Best 0.081 0.081 0.075 0.064 0.006 0.088

The distances are normalised by dividing by (2n − 3), where n is the number
of taxa
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Markovian substitution matrix, Q = {qx , y}, that is un-
changed during the evolution across all sites. The distri-
bution of amino acid frequencies, π = {πx}, is also
assumed to be stationary (or in equilibrium) and fixed
across sites and evolution histories. Moreover, Q and π
are dependent, where Qπ = 0. Since the process is time-
reversible, Q = {qx , y} can be rewritten as:

qx;y ¼ πyrx;y andqx;x ¼ −Σx≠yqx;y;

where rx , y = ry , x is the exchangeability coefficient
between amino acids x and y.

Since time and branch lengths are normally measured
by the number of mutations, matrix Q is normalised
such that a time unit is equivalent to one amino acid
mutation as follows:

Q
:

¼ Q
μ
whereμ ¼ −Σxqx;x:

The normalisation of Q would not affect likelihood
values or tree topologies but branch lengths only.
Given normalised matrix Q, the probability of amino acid

substitutions over the course of time t is calculated as:

Fig. 8 We used the approximately unbiased SH test to examine tree topologies on metazoan, vertebrate and invertebrate testing datasets. For
each testing alignment D, we determined its best-fit model Mb. We fixed tree topologies, but reoptimised other parameters (i.e., branch lengths,
parameters of rate heterogeneity model) under the best-fit model Mb. Then we used the CONSEL program to assess the confidence levels for
every tree topologies
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P tð Þ ¼ eQt ;

where the right term, eQt, denotes the matrix
exponential.
The likelihood of phylogeny T and matrix Q of a given

alignment D is calculated as:

LK T ;Q;Dð Þ ¼
Y
i

LK T ;Q;Dið Þ;

where Di is the data at site i of alignment D. In addition,
LK(T,Q;Di) can be calculated using the pruning
algorithm [35].

Fig. 9 Location of Turtles in Amiphiona. The Testudines clade including two clades (Pleurodira and Cryptodira) is located within the clade of
Crocodylia and Aves
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It is well known that evolution rates among sites are
variant and are best described by a gamma distribution
with parameter α [36]. The proportion of invariant sites
also contributes to the likelihood of a phylogeny. The
likelihood of phylogeny T, matrix Q, rate variants α,and
the proportion of invariant sites, ν, with given alignment
D can be calculated as follows:

LK T ;Q; α; v;Dð Þ ¼ v
Y

i
LK Invariant;Dið Þ

þ 1−vð Þ
Y

i

1
C
ΣcLK ρcT ;Q;Di

� �

where ρc is the rate of category c of the gamma distribu-
tion with parameter α , and ρcT is tree T with branch
lengths multiplied by the factor ρc.
Many software applications have been developed to esti-

mate T ,Q , α, and v for a given alignment D [22, 37, 38].
Given a set of alignments, D = {Di}, matrix Q can be

estimated from D by maximising the likelihood function
as follows:

LK Q;Dð Þ ¼
Y

i
LKðTi;Q; αi; vi;DiÞ: ð1Þ

Le and Gascuel [16] proposed a method to estimate
matrix Q. First, Ti , αi, and vi are estimated using an ini-
tial matrix Q, and subsequently matrix Q is estimated
based on the newly estimated parameters Ti , αi, and vi.
The optimising process is repeated until the likelihood
improvement is insignificant.
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