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Introduction: Chronic obstructive pulmonary disease (COPD) is a leading cause of high mortality and
heavy burden in the world. Unfortunately, emphysema, as an important component of COPD, has no
curative treatments currently. Recently, human umbilical cord mesenchymal stem cells-derived exo-
somes (hUCMSC-Ex) constitute a promising alternative approach for tissue regeneration and repair.
However, the roles of hUCMSC-Ex in emphysema and its mechanism are largely unknown. Here, we
investigated the effect and the action mechanism of hUCMSC-Ex in repairing emphysema induced by
papain in rats.
Methods: SD rats were used to establish a papain-induced emphysema model and estimate the effect and
mechanism of hUCMSC-Ex treatment. H&E staining and mean linear intercept (MLI) were used to
evaluate the hUCMSC-Ex effect on emphysema. Western blotting, TUNEL and miRNA-seq were used to
investigate the molecular mechanisms of hUCMSC-Ex treatment in models of papain-induced
emphysema.
Results: Papain treatment led to typical emphysema, while hUCMSC-Ex reversed emphysematous
changes effectively. Apoptosis of endothelial cells and other types of cells were observed in models, while
hUCMSC-Ex effectively prevented their apoptosis. hUCMSC-Ex repressed active caspase-3, activated
VEGF-VEGFR2-mediated AKT pathway and MEK/ERK pathway in emphysematous lungs. Notably, several
miRNAs, such as hsa-miR-10a-5p and hsa-miR-146a-5p, were target related to the roles of hUCMSC-Ex in
papain-induced emphysema through VEGF-VEGFR2-mediated AKT and MEK/ERK pathways.
Conclusions: hUCMSC-Ex effectively rescued the papain-induced emphysema injury through VEGF-
VEGFR2-mediated AKT pathway and MEK/ERK pathway.
© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Chronic obstructive pulmonary disease (COPD), as a common
and frequently occurring disease, is a leading cause of mortality in
the world [1e3]. In addition, patients with COPD need to bear
logy-Head and Neck Surgery,
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severe economic burden in the treatment because they usually
suffer from complications such as cardiovascular disease, depres-
sion, osteoporosis, muscle wasting, and lung cancer [4]. COPD has
posed a major threat to human health and has become a public
health concern worldwide. COPD characteristic pathology consists
of small airway lesions and emphysema changes. However, current
medications only target the airway lesions but not the emphysema.
So far, emphysema, as an important component of COPD, has no
curative treatments.

Mesenchymal stem cells (MSC)-based therapy constitutes a
promising alternative approach for tissue regeneration and repair
including COPD and emphysema [5e7]. MSC promote tissue repair
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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and regeneration through anti-inflammation, anti-apoptosis and
angiogenesis [8e11]. However, it is now well known that the repair
effect of MSC is mediated through paracrine pathway rather than
cell engraftment and differentiation [12e14]. As one important
form of paracrine pathway, exosomes play critical role in tissue
regeneration and may be an alternative to whole-cell therapy.
Exosomes, described as 30e200 nm in diameter, are the smallest
type of extracellular vesicles constitutively secreted by all most cell
types and serve as an important means of cell-to-cell communi-
cation [15,16]. Exosomes deliver a variety of biologically active
substances such as proteins, DNA, RNA and lipids to adjacent or
distant cells to affect cellular functions [17,18]. MSC-derived exo-
somes have been applied to therapy lung diseases such as various
factors-induced acute lung injury and asthma by inhibiting
inflammation and several pathways [19e23]. However, there are
relatively few studies on the application of MSC exosomes in COPD
or emphysema coupled with insufficient data about their mecha-
nism of action. Ridzuan et al. reported that MSC-derived extracel-
lular vesicles ameliorated COPD by inhibiting airway inflammation
[24], whereas other aspects such as the anti-apoptosis ability of
MSC-exosomes in COPD or emphysema has not been clarified.
Human umbilical cord MSC (hUCMSC) are highly suitable for
treating emphysema due to their easier access, faster expansion,
lower immunogenicity and lower likelihood of infection. Here, we
investigated the effect and the action mechanism of hUCMSC-
Exosomes (hUCMSC-Ex) in repairing emphysema induced by
papain in rats.
2. Materials and methods

2.1. hUCMSC culture, exosome isolation and characterization

This study was approved by the Institutional Ethics Committee
of the Affiliated People's Hospital of Jiangsu University. hUCMSC
were isolated from fresh umbilical cords obtained from healthy
mothers attending the Affiliated People's Hospital of Jiangsu Uni-
versity. All mothers signed informed consent before entering the
experiment. hUCMSCwere isolated and characterized as previously
described [25]. Cells were cultured in human umbilical cord
mesenchymal stem cells complete medium (Cyagen, Guangzhou,
China) containing 10% FBS and 1% penicillin-streptomycin andwere
incubated in a humidified incubator at 37 �Cwith 5% CO2. Cells from
the 3rd passage were used in subsequent experiments.

When the cultured hUCMSC reached about 70%e80% conflu-
ence, the supernatant was discarded, the cells werewashed 3 times
with PBS. Then the complete medium was replaced with medium
containing 10% exosome-free FBS. After 2 days, the supernatant of
hUCMSC were harvested for exosome isolation. The supernatant
was centrifuged at 2000�g for 20 min at 4 �C, 10,000�g for 30 min
at 4 �C, then passed through a 220 nm filter (Millipore, MA, USA) to
remove cell debris and other non-exosome proteins. Then, the su-
pernatant was concentrated using 100-KD molecular weight cutoff
hollow fiber membrane (Millipore, MA, USA) at 1000�g for 30 min
at 4 �C repeatedly until the supernatant was concentrated to
approximate 240 mL. Exosome extraction reagent ExoQuick-TC (SBI,
Mountain View, CA, USA) was added into the final concentrated
liquid according to the manufacturer's instructions. The mixture
was overnight at 4 �C and centrifuged at 1500�g for 30 min to
precipitate exosomes. The supernatant was discarded and exo-
somes were resuspended with PBS. Exosomes were quantified by
BCA kit (Beyotime, Shanghai, China) according to the manufac-
turer's manual.

The morphology of extracted exosomes was observed by a
transmission electron microscope (TEM) (FEI Tecnai 12, Philips).
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The size distribution of extracted exosomes was analyzed by
nanosight tracking analysis (NTA) (Malvern Panalytical, Malvern,
UK). The CD63 and HSP70 markers of exosomes were detected by
western blotting.

2.2. Animal experiments

The animal studies were carried out with the approval of the
Institutional Animal Care and Use Committee of Jiangsu University.
Our experiments conformed to the effective laws and ethical rec-
ommendations currently in China. The male Sprague Dawley rats
were housed at an ambient temperature of 25 �C with 12 h for light
and 12 h for darkness. Emphysema models were established using
papain through intratracheal instillation. Rats were assigned
randomly into three groups: (A) Control group (n ¼ 10), (B) Papain
group (n ¼ 10), (C) Papain þ hUCMSC-Ex group (hUCMSC-Ex,
n ¼ 10). Rats in group B and C were administered with papain at a
dosage of 40 mg/kg body weight one time a week for 4 weeks. Rats
in group A only received saline by intratracheal instillation. On the
same day after the fourth administration of papain, 200 mg
hUCMSC-Ex resuspended in PBSwere infused into each rat in group
C through the tail vein, whereas groups A and B received only the
same volume of PBS. After 7 days from hUCMSC-Ex infusion, rats
were sacrificed and samples were achieved. The left lungs were
harvested and the upper lobes were fixed in 4% paraformaldehyde
for hematoxylin and eosin (HE) analysis and apoptosis assay, the
remaining left lungs were used to western blot analysis.

2.3. Animal live imaging analysis

The hUCMSC-Ex was labeled with DIR and injected into the
model group rats in order to observewhether the labeled hUCMSC-
Ex could reach the lungs. DIR solid dye was dissolved with DMSO
and was added to the hUCMSC-Ex dissolved in PBS according to the
instructions. Then mixed them well, placed them at 37 �C in the
dark for 30 min. Subsequently, the liquid was transferred to a 100
KD ultrafiltration tube and was centrifuged at 1000 g at 4 �C for
30 min. Then added PBS into the ultrafiltration tube and cen-
trifugated again to remove unbound dye. After 24 h from labeled-
hUCMSC-Ex were injected into the model rats by tail vein, rats
were anesthetized and a live imaging systemwas used to track the
fluorescence distribution in rats.

2.4. H&E staining and MLI calculation

Fixed lungs were paraffin-embedded, sectioned into 4 um slices
and stained with hematoxylin and eosin for histological analysis.
Mean linear intercept (MLI) was proposed by Dunnill in 1964 and is
now commonly used for quantitative assessment of lung histolog-
ical analysis [26]. In the present study, MLI was calculated to
determine the severe extent of emphysema and the cure effect of
hUCMSC-Ex on emphysema. MLI was determined by random slices
from each specimen. Briefly, we drew a cross at the center of each
vision field avoiding large blood vessels and bronchial at original
magnification of � 100, counted the total number of alveolar septa
(NS) encountered in all lines, and measured the total length of the
crosshairs (L). MLI was calculated according to the formula MLI¼ L/
NS. The MLI value represented the average alveoli diameter.

2.5. TUNEL analysis

TUNEL assaywas applied to analyze the apoptosis of lung tissues
using paraffin sections with commercially available kit (Sigma-
eAldrich, QIA33) following the manufacturer's instructions. Briefly,



Fig. 1. Characterization of hUCMSC and hUCMSC-Ex. (A) Immunophenotype analysis of hUCMSC. hUCMSC were positive for CD29, CD44, CD73 and CD90, but negative for CD11b,
CD19, CD34 and CD45. (B) Morphology of hUCMSC. (C) Differentiation potential of hUC-MSCs. (a) Adipogenic differentiation. (b) Osteogenic differentiation. (BeC)
Magnification, �100; scale bar, 200 mm. (D) TEM results of hUCMSC-Ex. (E) Diameter ranges of hUCMSC-Ex from NTA. (F) The vedio image of hUCMSC-Ex from NTA. (G) The protein
expression of CD63 and HSP70 in hUCMSC-Ex were detected by western blot.
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paraffin sections were deparaffinizated, rehydrated, and digested
with proteinase K. They were then covered with Equilibration
Buffer for 30 min and incubated with TdT Labeling Reaction
Mixture in a humid atmosphere. Slices were then washed with PBS
and incubated with conjugate for 30 min. After rinsing with PBS,
sections were covered with DAB solution and were counterstained
with hematoxylin. Apoptosis extent was determined by dividing
the number of TUNEL-positive cells to the total cell number in
randomly selected fields at � 400 magnification.

2.6. Western blot analysis

hUCMSC-Ex and left lungs were lysed in RIPA lysis buffer con-
taining 1% PMSF and protein concentration was examined using
BCA protein assay kit. For detection of phosphorylated proteins (p-
VEGFR2, p-AKT, p-MEK, p-ERK), phosphatase inhibitor (Biosharp)
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was also added in the lysis buffer to protect the phosphorylation
groups. Protein samples were separated by a sodium dodecyl sul-
fatepolyacrylamide gel electrophoresis, transferred to PVDF mem-
branes, then blocked with 5% BSA for 2 h at room temperature and
incubated with primary antibodies overnight at 4 �C. The primary
antibodies were as follows: CD63 (Proteintech 25682-1-AP), HSP70
(Proteintech 10995-1-AP), caspase-3 (Proteintech 19677-1-AP),
VEGF (R&D MAB564), p-VEGFR2 (Millipore # 07e722), VEGFR2
(Abcam ab39256), p-AKT (Affinity AF0016), AKT (Affinity AF6261),
p-MEK (Affinity AF3385), MEK (Affinity AF6385), p-ERK (Affinity
AF1015), ERK (Affinity AF0155) and b-actin (Abcam ab8227). All
antibodies were diluted according to the instructions. The mem-
branes were then washed with 0.1% PBST and incubated with HRP-
conjugated secondary antibody. Finally, they were detected with
enhanced chemiluminescence (Millipore, MA, USA). b-actin was
used as the internal control for protein loading.



Fig. 2. hUCMSC-Ex reversed papain-induced emphysema. (A) Fluorescence distribution of DIR-labeled hUCMSC-Ex in emphysematous rat lungs after injection 24 h. (B) Repre-
sentative results of HE staining in lung sections chosen from each group. Typical emphysematous changes were observed in the Papain group. hUCMSC-Ex reversed the papain-
induced emphysema. Magnification, x100; scale bar, 100 mm. MLI showed changes of the average alveoli diameter in control, model and treatment groups. Values are presented as
mean ± SEM. ***P < 0.001. n ¼ 10.
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2.7. miRNA sequencing

Total RNA, containing the miRNA fraction, was prepared using
mirVana miRNA Isolation kit (Invitrogen), according to the manu-
facturer's instruction. Sequencing libraries were generated using
NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA)
following manufacturer's recommendations. First strand cDNAwas
synthesized using random hexamer primer and M-MuLVReverse
Transcriptase (RNase H-). Second strand cDNA synthesis was sub-
sequently performed using DNA Polymerase I and RNase H. The
library fragments were purified with AMPure XP system (Beckman
Coulter, Beverly, USA). After cluster generation, the library prepa-
rations were sequenced on an Illumina Hiseq platform. FASTQ files
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were aligned to the human genome (assembly hg19) using STAR
and GENCODE v19 transcriptome annotation. Read pairs aligned to
gene features were counted and summarized as reads per kilobase
of transcript per million mapped reads (RPKM) values at the gene
level using feature Count.
2.8. Bioinformatics

The resulting P-values were adjusted using the Benjamini and
Hochberg's approach for controlling the false discovery rate. Genes
with an adjusted P-value < 0.05 found by DESeq2 were assigned as
differentially expressed. GO and KEGG enrichment analysis of



Fig. 3. hUCMSC-Ex prevented endothelial cell apoptosis in papain-treated lungs. (A) Representative TUNEL results using lung sections from each group. Increased TUNEL-positive
endothelial cells were observed in the Papain group. hUCMSC-Ex reduced TUNEL-positive endothelial cells. Magnification, �400; scale bar, 50 mm. Quantitative results showed
percentage of TUNEL-positive cells in the three groups. Data are presented as mean ± SEM. ***P < 0.001 compared with the Control group, ###P < 0.001 compared with the Papain
group. n ¼ 3. (B) The expression of active caspase-3 was determined by western blotting. hUCMSC-Ex repressed enhanced active caspase-3 activity in the model group.
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differentially expressed genes was implemented by the cluster
Profiler R package.

2.9. Statistical analysis

Data were all presented as mean ± SEM. GraphPad Prism soft-
ware was used for statistical analysis and for figures creation. Un-
paired t test and one-way analysis of variance were carried out to
compare the difference among two or multiple groups, respectively.
The level of statistical significance was set at P < 0.05 for all tests.

3. Results

3.1. Characterization of hUCMSC and hUCMSC-Ex

Immunophenotype analysis showed that hUCMSCwere positive
for CD29, CD44, CD73 and CD90, but negative for CD11b, CD19,
CD34 and CD45 (Fig. 1A). Morphologically, hUCMSC were spindle-
shaped (Fig. 1B). Differentiation assays showed that hUCMSC
220
retained the ability to differentiate into adipocytes and osteoblasts
(Fig. 1C). TEM showed the hUCMSC-Ex were 30e200 nm and
typically round, with high density at the periphery and low density
at the center (Fig. 1D). The NTA results showed that the average
particle size was 134.5 nm, and most of the particles were
distributed in the range of 30e200 nm (Fig. 1E) with the vedio
image (Fig. 1F). Western blotting showed that the extracted
hUCMSC-Ex could expressed the marker proteins CD63 and HSP70
very well, but the expression of the two proteins in hUCMSC lysate
was almost no or relative lower (Fig. 1G). This is in line with the
main signs of exosomes. The above results indicate that we have
successfully extracted hUCMSC-Ex with complete structure and
high purity from hUCMSC conditioned medium.

3.2. hUCMSC-Ex protected against lung injury in papain-induced
emphysema

The hUCMSC-Ex were labeled with DIR and injected into the
model rats to observe whether the labeled exosomes could reach



Fig. 4. hUCMSC-Ex activated VEGF-VEGFR2-mediated AKT and MEK/ERK pathways in papain-induced emphysema. The protein expressions of pathways-related molecules in the
lungs were determined by western blotting. Compared with the Control group, VEGF, p-VEGFR2, p-AKT, p-MEK, p-ERK were significantly inactivated in the Papain group, but all of
them were activated in the hUCMSC-Ex group and returned to the level of the Control group. Further analysis showed hUCMSC-Ex contained active proteins VEGF, p-AKT, p-MEK
and p-ERK.
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the lungs, which is a prerequisite for hUCMSC-Ex to function in
emphysema. Animal live imaging analysis showed the red fluo-
rescence signal was accumulated in corresponding position of the
bilateral lungs of rats in the DIR-labeled hUCMSC-Ex group, while
there was no red fluorescence signal in the lungs of the PBS-
injected model rats (Fig. 2A), indicating that the labeled hUCMSC-
Ex could reach the emphysematous lungs.

H&E staining indicated that rats in the model group showed
severe alveolar destruction and enlargement of alveolar spaces
compared with the Control group, suggesting the lungs had
become emphysematous. However, hUCMSC-Ex reversed emphy-
sematous changes markedly (Fig. 2B). MLI was determined to
quantify enlargement of the alveolar spaces. MLI was significantly
higher in the Papain group compared to the Control group. How-
ever, MLI was restored to the normal level in the hUCMSC-Ex group.
These findings indicate that hUCMSC-Ex can effectively repair
papain-induced emphysema injury.

3.3. hUCMSC-Ex prevented apoptosis in papain-induced
emphysema

TUNEL staining was performed to analyze the apoptosis of lung
tissues. TUNEL results showed that endothelial cell apoptosis was
observed companied with apoptosis of other types of cells. Papain
group had a significantly higher percentage of TUNEL-positive cells
than Control group. Notably, hUCMSC-Ex significantly decreased
the percentage of TUNEL-positive cells in the papain group
(Fig. 3A). Western blotting showed Papain group had enhanced
active caspase-3 levels, while hUCMSC-Ex significantly decreased
the activity of active caspase-3 (Fig. 3B).

3.4. hUCMSC-Ex activated VEGF/VEGFR2 mediated AKT and MEK/
ERK pathways in papain-induced emphysema

Damage of VEGF/VEGFR2 and their downstream AKT and MEK/
ERK survival signal pathways have been implicated in apoptosis of
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endothelial cells in emphysema. In the current study, we detected
proteins expression of pathways-related key molecules such as
VEGF, p-VEGFR2, p-AKT, p-MEK and p-ERK bywestern blotting. The
results showed these active molecules VEGF, p-VEGFR2, p-AKT, p-
MEK and p-ERK were significantly lower in the Papain group
compared to the Control group, while hUCMSC-Ex recovered their
expressions in the treatment group (Fig. 4AeC), indicating that
hUCMSC-Ex intervention could rescue the VEGF-VEGFR2 mediated
AKT and MEK/ERK pathways to prevent cell apoptosis and induce
cell survival in emphysematous lungs. The expressions of total
VEGFR2, AKT, MEK and ERK were not significantly altered in
damaged or treatment groups. Further analysis showed hUCMSC-
Ex contained active VEGF, p-AKT, p-MEK and p-ERK proteins
(Fig. 4D), which may contribute to the restoration of the pathways.

3.5. Several miRNAs may be involved in the protective effects of
hUCMSC-Ex in papain-induced emphysema

To uncover mechanisms underlying hUCMSC-Ex-mediated
protective effects of papain-induced emphysema, we performed
unbiased miRNA-seq analysis and found 108 miRNAs were up-
regulated and 231 miRNAs were down-regulated in hUCMSC-Ex
(Fig. 5A). Then, the top 10 miRNAs including hsa-miR-10a-5p,
hsa-miR-146a-5p, hsa-miR-193a-5p, hsa-miR-199a-3p, etc. were
used for miRNAs target genes network prediction (Fig. 5B). The
result of transcriptome analysis showed that the top 10 miRNA-
related target genes were enriched according to the KEGG anno-
tations of cell apoptosis, proliferation and differentiation, including
PI3K-Akt signaling pathway (hsa04151), MAPK signaling pathway
(hsa04010) and AMPK signaling pathway (hsa04152) (Fig. 5C).
Interestingly, GO analysis of these differentially expression tran-
scripts show that the overrepresented biological processes were
mostly associated with the regulation of cell morphogenesis
(GO:0022,604), and autophagy (GO:0006914) (Fig. 5D). Thus, these
results indicated that several miRNAs, such as hsa-miR-10a-5p and
hsa-miR-146a-5p, may be involved in the protective effects of



Fig. 5. Several miRNAs may be involved in the protective effects of hUCMSC-Ex in papain-induced emphysema. (A) miRNA-seq showed that 108 miRNAs were up-regulated and 231
miRNAs were down-regulated in hUCMSC-Ex. Volcano plot graphs of differentially expressed genes (as assessed by the elog10 (padj)). (B) Significant Target gene network pre-
diction of the top 10 miRNAs. (C) The result of transcriptome analysis showed that the top 10 miRNA-related target genes were enriched according to the KEGG annotations. (D) GO
analysis of the top 10 miRNA-related target genes show that the overrepresented biological processes (P values: Benjamini-Hochberg corrected).
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hUCMSC-Ex in papain-induced emphysema through AKT and MEK/
ERK pathways.
4. Discussion

Several animal models have been established and used in order
to explore the pathogenesis and interventions of emphysema. As
early as 1965, Gross et al. first discovered that intratracheal
injection of papain could induce emphysema [27]. Papain has
broad proteolytic activity, and its enzymatic attack on proteins in
the lung can lead to alveolar expansion [28], causing emphysema.
To date, papain-induced models have been widely used in the
study of COPD and emphysema [29e31]. In the current
investigation, we successfully induced emphysema model in rats
using papain because alveolar spaces were enlarged in model
group. In this papain-induced emphysema models, we showed
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the repair effect of hUCMSC-Ex and its ability of opposing
apoptosis in SD rats.

Apoptosis of pulmonary parenchymal cells is increasing recog-
nized as an important contributor to the pathogenic mechanisms of
emphysema. Increased apoptosis of endothelial and epithelial cells
has been reported in human emphysematous lungs [32]. Enhanced
apoptosis was also found in animal models induced by cigarette
smoke, papain and VEGFR2 blocker [33e35]. More direct evidence
is that intratracheal instillation of active caspase-3 could induce
lung cell apoptosis and emphysema in animals [36] and adminis-
tration with caspase inhibitor markedly alleviated the apoptosis-
dependent emphysema [35]. Furthermore, alveolar septal cell
apoptosis was correlated with the decrease of alveolar surface area
in human emphysema [37]. Notably, despite smoking cessation, cell
apoptosis persists in COPD patients [38]. These findings provided
further evidences that the key role of apoptosis in emphysema and
COPD. In our papain-induced emphysema, excessive apoptosis in
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lungs was illustrated by TUNEL analysis and increased active
caspases-3 activity. Administration with hUCMSC-Ex greatly
inhibited increased apoptosis and increased active caspase-3, sug-
gesting hUCMSC-Ex have remarkably great ability of preventing
apoptosis in the papain-induced emphysema.

Previous studies have reported that endothelial cell apoptosis
dominated in patients with COPD and emphysema. Among the
apoptotic cells in sections of COPD lung tissues, most were endo-
thelial cells [39]. There were also observed increased endothelial
cell apoptosis in cigarette smoke-damaged lungs in animal models
[33]. Moreover, Tuder and his colleagues reported that lung endo-
thelial cells underwent a greater extent of apoptosis than lung
epithelial cells when they were exposed to cigarette smoke extract
in vitro [40]. In our papain-induced models, endothelial cell
apoptosis was also observed companied with apoptosis of other
types of cells. Numerous literatures report VEGF and its receptor
VEGFR2 mediated survival signaling pathways are essential for the
survival of endothelial cells, the maintenance of the vascular sys-
tem andmaintenance of alveolar structural homeostasis. Decreased
expression of VEGF and VEGFR2 in human emphysematous lungs
are related to increased endothelial cell death. The reduction of
VEGF/VEGFR2 expression can lead to endothelial cell apoptosis,
which leads to emphysema changes [35,41]. These findings further
demonstrated that VEGF-VEGFR2-mediated signaling pathways
implicated in the lung cells apoptosis and emphysema develop-
ment. It is proposed that reduced VEGF or VEGFR2 would lead to
endothelial cell death and microcirculation damage, subsequently
promoting further epithelial cell death and emphysema develop-
ment. VEGF has been proved as a well characterized anti-apoptotic
growth factor. VEGF specifically binds to Flk-1/KDR (VEGFR2 re-
ceptor) of endothelial cell and activates PI3K/AKT pathway [42].
During this process, VEGFR2 needs to be activated to phosphory-
lated form. Subsequently, activated-AKT suppresses BAD and
caspase-9 expression to reduce apoptosis [43,44]. In addition, VEGF
represses endothelial cell apoptosis trough activating ERK pathway
[45]. AKT pathway and ERK pathway are essential for cell survival.
To evaluate whether hUCMSC-Ex promoted activation of the AKT
cascade and ERK cascade in emphysema, we examined the activa-
tion of proteins involved in the two signaling pathways in lungs and
hUCMSC-Ex. In this papain-induced emphysema, we observed
significantly decreased expression of VEGF signaling-related key
molecules include VEGF, p-VEGFR2, p-AKT, p-MEK and p-ERK by
western blotting, while hUCMSC-Ex reversed this reduction by
increasing their expressions, accompanied by decreased active
caspase-3 and decreased TUNEL-positive cells in the lungs of the
treatment group, suggesting hUCMSC-Ex can prevent apoptosis
through the VEGF/VEGFR2 mediated AKT pathway and ERK
pathway. Furthermore, we found hUCMSC-Ex contain the VEGF, p-
AKT, p-MEK and p-ERK active proteins, whichmay contribute to the
restoration of the pathways.

miRNAs are a large family of post-transcriptional regulators of
gene expression, which are small non-coding RNAs that usually
inhibit the translation and stability of messenger RNAs (mRNAs),
which are about 20e24 nucleotides in length, and control many
developmental and cellular processes in eukaryotes, such as
inflammation, cell cycle regulation, stress response, differentiation,
apoptosis and migration, etc. [46,47]. miRNAs are involved in the
regulation of almost all signaling circuits in cells, and their dysre-
gulation has been shown to play a crucial role in the development
of certain diseases [46]. To uncover mechanisms underlying
hUCMSC-Ex-mediated protective effects of papain-induced
emphysema, we performed miRNA sequencing and predicted
target genes for the top 10 miRNAs, such as hsa-miR-10a-5p, hsa-
miR-146a-5p, hsa-miR-193a-5p, hsa-miR-199a-3p, as well as KEGG
analysis and GO analysis of target genes. Several cancer cells can
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secrete exosomal granules containing miR-146a-5p, while over-
expression of miR-146a target genes affects cell proliferation, in-
vasion, metastasis and cell survival [48]. miR-199a-3p/145-5p are
relatively highly expressed miRNAs in exosomes, which can pro-
mote PC12 cell differentiation by regulating the NGF/TrkA pathway
[49]. miR10a-5p can be directly bound by MIR22HG, and MIR22HG
inhibits growth, migration and invasion by regulating the miR-10a-
5p/NCOR2 axis in hepatocellular carcinoma cells [50]. Expression of
miR-193a-5p in hepatoma cells mimics reduced proliferation, sur-
vival, migration and invasion and their growth as xenograft tumors
in nude mice [51]. Here, the results of miRNA-seq showed that
hUCMSC-Ex was enriched according to the KEGG annotations of
cell apoptosis, proliferation and differentiation, including PI3K-Akt
signaling pathway, MAPK signaling pathway and AMPK signaling
pathway, indicating that several miRNAs, such as hsa-miR-10a-5p
and hsa-miR-146a-5p, may be involved in the protective effects of
hUCMSC-Ex in papain-induced emphysema through AKT and MEK/
ERK pathways. The specific miRNAs and target genes in this process
remains to be further studied.

In conclusion, this investigation reports the role of the exosomes
derived from hUCMSC in repairing papain-induced emphysema by
preventing apoptosis through VEGF and VEGFR2 mediated AKT
pathway and MEK/ERK pathway, for the first time. This study
provides a basis for application of hUCMSC-Ex in intervening
emphysema and COPD.
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