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Simple Summary: Progesterone is an endogenous steroid hormone, which can induce capacitation
and/or acrosome reactions in semen of certain mammalian species. Our study aimed to investigate
the effect of progesterone on the functional status of fresh bovine spermatozoa using a chlortetracy-
cline fluorescent probe. Results showed that heparin induced capacitation in spermatozoa incubated
with or without progesterone. The destruction of microfilaments by an inhibitor of cytochalasin D
blocked the stimulating effect of heparin. Steroid hormone in mixture with prolactin stimulated the
acrosome reaction in spermatozoa, which was blocked by an inhibitor of microtubule polymerization
(nocodazole). At the acrosome stage, prolactin provided the undergoing of acrosome reaction in
male gametes. This effect was noted both in the presence and absence of progesterone and inhibited
by nocodazole. The supplementation of dibutyryl cyclic adenosine monophosphate during the
acrosome reaction to progesterone-untreated spermatozoa did not cause changes in proportion of
acrosome-reacted cells. However, when progesterone was added during capacitation, a significant
increase in the proportion of capacitated cells was noted, which was inhibited by nocodazole. Thus,
progesterone under the action of prolactin and dibutyryl cyclic adenosine monophosphate deter-
mines the functional status of fresh spermatozoa, which indicates progesterone-modulating effect on
the indicators of post-ejaculatory maturation of male gametes.

Abstract: The aim of this study is to identify the effects of progesterone (PRG) on the capacitation
and the acrosome reaction in bovine spermatozoa. The fresh sperm samples were incubated with
and without capacitation inductors (heparin, dibutyryl cyclic adenosine monophosphate (dbcAMP)),
hormones (prolactin (PRL), PRG), inhibitors of microfilaments (cytochalasin D) and microtubules
(nocodazole) during capacitation and acrosome reactions. The functional status of spermatozoa was
examined using the chlortetracycline assay. Supplementation of heparin stimulated capacitation
in the presence and absence of PRG. Cytochalasin D blocked the stimulating effect of heparin on
capacitation. The addition of PRL during capacitation (without PRG) did not affect the functional
status of spermatozoa, while in PRG-treated cells PRL stimulated the acrosome reaction. PRL (with
and without PRG) increased the acrosome reaction in capacitated cells. These PRL-dependent effects
were inhibited by nocodazole. During the acrosome reaction, in presence of dbcAMP, PRG decreased
the proportion of acrosome-reacted cells compared to PRG-untreated cells. This effect in PRG-treated
cells was canceled in the presence of nocodazole. In conclusion, PRG under the action of PRL and
dbcAMP determines the changes in the functional status of native sperm cells, which indicates PRG
modulating effect on the indicators of post-ejaculatory maturation of spermatozoa.
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1. Introduction

Capacitation is a biochemical process, which includes changes in membrane proteins
and lipids, ion fluxes, an increase in the level of cyclic adenosine monophosphate (cAMP)
and protein phosphorylation [1]. Successful fertilization of the oocyte includes many biome-
chanical and biochemical changes in spermatozoa when passing the oviductial tract and
reaching the oocyte-cumulus complex [2]. Progesterone (PRG) is the main physiological
activator of acrosome reaction, which is a Ca2+-dependent process [3]. Progesterone is
secreted by cumulus cells and present in high concentration during ovulation in the follicu-
lar fluid, where it can act on sperm cells before they bind to the zona pellucida [4]. The
follicular fluid promotes the processes of capacitation and acrosome reaction in bull sperma-
tozoa [5]. Progesterone is an endogenous steroid hormone, which can induce capacitation
and/or acrosome reaction in semen of certain mammalian species, and sperm response to
the progesterone is highly species-specific. It has been well established that progesterone
induces the capacitation or acrosome reaction in horse and human spermatozoa [6,7], but
the data on the effect of the progesterone on bovine sperm cells are contradictory. In some
cases, the progesterone provides only the capacitation, or only the acrosome reaction in
pre-capacitated spermatozoa, or induces both cellular processes [8–10]. It has been shown
that the acrosome reaction occurs only in capacitated cells [8]. Progesterone activates the
capacitation process; however, it has been noted that PRG-induced acrosome reaction also
can happen [11]. Progesterone-induced changes are mediated by intracellular mechanisms
associated with protein kinase C and voltage-gated Ca2+ channels [12]. By stimulating or
inhibiting protein kinases A, C, G and tyrosine kinase, it has been shown that progesterone
induces the acrosome reaction via tyrosine kinase and protein kinase C, but in horse sperm
cells this process does not depend on protein kinases A, C and bicarbonate [13]. In contrast,
in human sperm, the acrosome reaction is dependent on protein kinase A [14]. Calcium
is also an important modulator of the capacitation and the acrosome reaction, probably
participating as a key mediator in the exchange of information between the sperm and the
egg [15]. Induction of the acrosome reaction by progesterone leads to an increase in calcium
entry from the extracellular environment. The control of the function of voltage-gated Ca2+

channels, apparently, helps to prevent the premature acrosome reaction [16]. In bovine
spermatozoa, heparin and dbcAMP are compounds that activate processes of capacita-
tion [17,18], while PRL induce the acrosome reaction [19]. One of the main processes of
capacitation is the dynamic transformation of the cytoskeleton, in particular, actin. Actin is
the most widely known cytoskeleton protein, acting as a secondary messenger in signal
transduction [20]. Actin polymerization occurs during capacitation in various mammalian
species, including cattle [20,21]. Microtubules are also involved in intracellular processes
that determine the acrosome reaction [19].

The aim of this study is to identify the effects of different hormones (progesterone,
prolactin) on the postejaculate processes (capacitation and acrosome reaction) in bovine
spermatozoa, and the role of microtubules and microfilaments in these modifications.

2. Materials and Methods
2.1. Chemicals

All chemicals were obtained from Sigma-Aldrich Co. (Steinheim, Germany), unless
otherwise indicated.

2.2. Location

The present study was performed in the development biology laboratory of the All-
Russian Research Institute of Genetics and Farm Animal Breeding of the Federal Research
Center for Animal Husbandry, named after academy member L.K. Ernst (Saint Petersburg-
Pushkin, 59◦42′35′′ N, 30◦27′5′′ E).
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2.3. Semen Collection and Preparation

One ejaculate was collected from each of the sixty Black-and-White bulls (aged
3–4 years old) just before the experiment. All sperm samples were derived from animals of
breeding farm OJSC Nevskoe immediately after ejaculation. Fresh sperm was collected
twice weekly, with no apparent changes in animal health or semen quality throughout the
semen collection interval. Fresh ejaculates from three bulls were mixed and the obtained
mixture was used for each experiment.

In order to remove the seminal plasma, the obtained fresh sperm was twofold cen-
trifuged at 300× g for 10 min in Sp-TALP medium consisting of 100 mM NaCl, 3.1 mM KCl,
25 mM NaHCO3, 0.3 mM NaH2PO4, 21.6 mM sodium lactate, 0.5 mM CaCl2, 0.4 mM MgCl2,
10 mM HEPES, 1 mM pyruvate and 0.1% polyvinyl alcohol (PVA, 30,000–70,000 Da).

2.4. Study Design
2.4.1. Induction of Capacitation

After sperm dilution to a final concentration 50 × 106 sperm/mL, fresh samples were
divided into sixteen equal aliquots. Eight aliquots were incubated in Sp-TALP medium
with supplementation of 6 mg/mL bovine serum albumin (BSA), 0.5 mM CaCl2 and with
and without different reagents-capacitation inductor (heparin), hormones (PRL, PRG) and
inhibitors of actin microfilaments (cytochalasin D) and tubulin microtubules (nocodazole):
1—without any reagents (control), 2—with 5 µg/mL heparin (or 10 ng/mL PRL) [18,22];
3—with 5 µg/mL heparin (or 10 ng/mL PRL) and 10 µM cytochalasin D [23]; 4—with
5 ‘µg/mL heparin (or 10 ng/mL PRL) and 10 µM nocodazole [24]; 5—with 1 mg/mL
PRG (control) [7]; 6—with 1 mg/mL PRG, 5 µg/mL heparin (or 10 ng/mL PRL); 7—with
1 mg/mL PRG, 5 µg/mL heparin (or 10 ng/mL PRL) and 10 µM cytochalasin D; 8—
with 1 mg/mL PRG, 5 µg/mL heparin (or 10 ng/mL PRL) and 10 µM nocodazole. The
incubation was performed in the atmosphere of 5% CO2 at 38.5 ◦C and 95% humidity
for 4 h.

2.4.2. Induction of Acrosome Reaction

Acrosome reaction in spermatozoa, preliminary capacitated with 5 µg/mL heparin,
was performed using 100 µg/mL lysophosphatidylcholine [25] and incubated in Sp-TALP
medium with supplementation of 6 mg/mL BSA, 0.5 mM CaCl2 and with and without
different reagents-capacitation inductor (dibutyryl cyclic adenosine monophosphate, db-
cAMP), hormones (PRL, PRG) and inhibitors of actin microfilaments (cytochalasin D) and
tubulin microtubules (nocodazole): 1—without any reagents (control), 2—with 100 µM
dbcAMP (or 10 ng/mL PRL) [17]; 3—with 100 µM dbcAMP (or 10 ng/mL PRL) and 10 µM
cytochalasin D; 4–with 100 µM dbcAMP (or 10 ng/mL PRL) and 10 µM nocodazole; 5—
with 1 mg/mL PRG (control); 6—with 1 mg/mL PRG, 100 µM dbcAMP (or 10 ng/mL PRL);
7—with 1 mg/mL PRG, 100 µM dbcAMP (or 10 ng/mL PRL) and 10 µM cytochalasin D;
8—with 1 mg/mL PRG, 100 µM dbcAMP (or 10 ng/mL PRL) and 10 µM nocodazole. The
incubation was performed in the atmosphere of 5% CO2 at 38.5 ◦C and 95% humidity for
30 min (Figure 1).
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Figure 1. Study design.

2.5. CTC Fluorescence Assay

Chlortetracycline (CTC) was dissolved at 750 µM in a buffer of 20 mM Tris, 130 mM
NaCl and 5 mM L-cysteine, and the pH was adjusted to 7.8. The solution was kept in a
light-shielded container at 4 ◦C. At the time of the assay, 20 µL of the sperm suspension
of each sample was mixed with 20 µL of the CTC solution and incubated with CTC at
38.5 ◦C for 10 min. Then, 10 µL of 25% glutaraldehyde in 1 mM Tris (pH 7.4) was added
to a final concentration of 0.1% glutaraldehyde in each sample for fixation. A drop of
sperm suspension (10 µL) was placed on a glass slide and mixed with 10 µL of 0.22 M
1,4-diazobicyclo [2.2.2] octane dissolved in glycerol/phosphate buffered saline (9:1) at room
temperature. Then, coverslip was attached, drops of colorless nail polish were applied to
fix its edges. The slides were stored in a light-shielded container at 4 ◦C before scoring.

The slides were scored with a ZEISS AxioLab. A1. (Karl Zeiss, Jena, Germany) equipped
with phase contrast and epifluorescence optics. The excitation for CTC was 380–400 nm, the
emission–530 nm. The samples were analyzed in accordance with one of the three types
of CTC fluorescence patterns [26]: the uniform fluorescence in the entire sperm head with
uncapacitated cells, the fluorescence-free band in the post-acrosome region; capacitated cells,
the absence of fluorescence in the entire sperm head, with the exception of a thin bright band
of fluorescence in the equatorial area; and acrosome-reacted cells (Figure 2).

Animals 2021, 11, x 5 of 12 
 

 
Figure 2. Fluorescence intensity of CTC-Ca2+-membrane-bound complex in bull spermatozoa was detected by CTC fluo-
rescence probe. (A) non-capacitated sperm cell; (B) capacitated sperm cell; (C) acrosome-reacted sperm cell. Scale bar: 7 
µm. The fluorescence patterns of a minimum of 200 sperm were scored in each experimental group. All slides were kept 
at room temperature in light-shielded containers until examination. The sample on the slide was divided into quadrants 
with 6–8 separate fields being examined per quadrant. 

2.6. Statistical Analysis 
Results of the present study are predominantly presented using descriptive statistics. 

Average percent of sperm cells (in capacitation stage and acrosome reaction stage) in con-
trol and experimental groups were compared by Student’s t-test, with data presented as 
means ± SEM. Results were considered significant when p < 0.05; p < 0.01; p < 0.001. Statis-
tical analysis of the results was carried out using Statistic 7.0 package (StatSoft, Tulsa, OK, 
USA, 2016). 

3. Results 
3.1. The Effect of PRG on Functional Status of Bull Spermatozoa during Capacitation 

The analysis of effects of 1 µg/mL PRG on the capacitation process of bull spermato-
zoa stimulated by heparin (5 µg/mL) is presented in Figure 3. The use of the chlortetracy-
cline probe allows for visualization of the redistribution of Ca2+ in the sperm membrane 
by forming CTC-Ca2+-membrane-bound fluorescence complexes. The sperm cells, which 
were incubated for 4 h with heparin showed an increase of capacitated cells (26%, p < 
0.001) and a decrease of acrosome-reacted spermatozoa (69%, p < 0.001) compared to intact 
untreated cells incubated for 4 h (16% and 81%, respectively, p < 0.001). The treatment 
with an inhibitor of microfilaments (cytochalasin D) at the concentration of 10 µM resulted 
in a lower percent of capacitated cells and a high proportion of acrosome-reacted sperm 
cells (12% and 83%, respectively, p < 0.001) versus those of cells treated with heparin only. 
The treatment of sperm with 10 µM inhibitor of microtubules (nocodazole) did not affect 
the cell ratio with different fluorescence pattern (25% vs. 69%, respectively, p < 0.001) com-
pared to the group incubated with heparin. It should be noted that the effects of a single 
use of heparin or a mixture with PRG on spermatozoa were similar–an increase in the 
number of capacitated cells and a decrease in acrosome-reacted spermatozoa (26% and 
23% vs. 69% and 70%, respectively). The usage of the inhibitor cytochalasin D stimulated 
the decrease of acrosome-reacted cells in PRG-treated group of spermatozoa during ca-
pacitation (83%, p < 0.01). 

Figure 2. Fluorescence intensity of CTC-Ca2+-membrane-bound complex in bull spermatozoa was detected by CTC
fluorescence probe. (A) non-capacitated sperm cell; (B) capacitated sperm cell; (C) acrosome-reacted sperm cell. Scale bar:
7 µm. The fluorescence patterns of a minimum of 200 sperm were scored in each experimental group. All slides were kept
at room temperature in light-shielded containers until examination. The sample on the slide was divided into quadrants
with 6–8 separate fields being examined per quadrant.
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2.6. Statistical Analysis

Results of the present study are predominantly presented using descriptive statistics.
Average percent of sperm cells (in capacitation stage and acrosome reaction stage) in
control and experimental groups were compared by Student’s t-test, with data presented
as means ± SEM. Results were considered significant when p < 0.05; p < 0.01; p < 0.001.
Statistical analysis of the results was carried out using Statistic 7.0 package (StatSoft, Tulsa,
OK, USA, 2016).

3. Results
3.1. The Effect of PRG on Functional Status of Bull Spermatozoa during Capacitation

The analysis of effects of 1 µg/mL PRG on the capacitation process of bull spermatozoa
stimulated by heparin (5 µg/mL) is presented in Figure 3. The use of the chlortetracycline
probe allows for visualization of the redistribution of Ca2+ in the sperm membrane by
forming CTC-Ca2+-membrane-bound fluorescence complexes. The sperm cells, which were
incubated for 4 h with heparin showed an increase of capacitated cells (26%, p < 0.001) and
a decrease of acrosome-reacted spermatozoa (69%, p < 0.001) compared to intact untreated
cells incubated for 4 h (16% and 81%, respectively, p < 0.001). The treatment with an inhibitor
of microfilaments (cytochalasin D) at the concentration of 10 µM resulted in a lower percent
of capacitated cells and a high proportion of acrosome-reacted sperm cells (12% and 83%,
respectively, p < 0.001) versus those of cells treated with heparin only. The treatment of sperm
with 10 µM inhibitor of microtubules (nocodazole) did not affect the cell ratio with different
fluorescence pattern (25% vs. 69%, respectively, p < 0.001) compared to the group incubated
with heparin. It should be noted that the effects of a single use of heparin or a mixture with
PRG on spermatozoa were similar—an increase in the number of capacitated cells and a
decrease in acrosome-reacted spermatozoa (26% and 23% vs. 69% and 70%, respectively).
The usage of the inhibitor cytochalasin D stimulated the decrease of acrosome-reacted cells
in PRG-treated group of spermatozoa during capacitation (83%, p < 0.01).
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Figure 3. The effect of 1 µg/mL PRG on capacitation process of bull spermatozoa stimulated by heparin (5 µg/mL)
(total number of counted cells-6400; number of experiments-4). 1—without any reagents (control), 2—with 5 µg/mL
heparin; 3—with 5 µg/mL heparin and 10 µM cytochalasin D; 4—with 5 µg/mL heparin and 10 µM nocodazole; 5— with
1 mg/mL PRG (control); 6—with 1 mg/mL PRG, 5 µg/mL heparin; 7—with 1 mg/mL PRG, 5 µg/mL heparin and 10 µM
cytochalasin D; 8—with 1 mg/mL PRG, 5 µg/mL heparin and 10 µM nocodazole. The differences are significant (percent
ratio of capacitated and acrosome-reacted cells) a:b; a:d; b:c; c:d; c:b; b:j; d:j; a:f; c:f; f:j at p < 0.001; b:d; d:e; a:h; e:f; f:j; e:h; j:h at p < 0.01
(Student’s t-test).

The effect of PRL (10 ng/mL) on appearance of bovine spermatozoa with different
fluorescence patterns is shown in Figure 4. No significant changes in the ratio of sperm
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cells with different functional status was observed during the incubation period of cells
with 10 ng/mL PRL (without PRG) for 4 h in comparison with capacitation of spermatozoa
without PRL. The treatment of cells with cytochalasin D in PRG-free medium promoted the
growth in number of acrosome-reacted cells during the 4 h incubation of spermatozoa with
PRL in comparison with the sperm cells incubated 4 h with any reagents (82% vs. 63%,
respectively, p < 0.001). The treatment with PRG caused changes in the biological action of
PRL on sperm cells during incubation period; as well, the stimulatory effect on the growth
of acrosome-reacted sperm cells was blocked by the microtubule inhibitor, nocodazole
(81% and 82% vs. 70%, respectively, p < 0.01).
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Figure 4. The effect of PRL (10 ng/mL) on appearance of bovine spermatozoa with different fluorescence patterns (total
number of counted cells-6400; number of experiments-4). 1—without any reagents (control); 2—with 10 ng/mL PRL;
3—with 10 ng/mL PRL and 10 µM cytochalasin D; 4—with 10 ng/mL PRL and 10 µM nocodazole; 5—with 1 mg/mL PRG
(control); 6—with 1 mg/mL PRG, 10 ng/mL PRL; 7—with 1 mg/mL PRG, 10 ng/mL PRL and 10 µM cytochalasin D; 8—
with 1 mg/mL PRG, 10 ng/mL PRL and 10 µM nocodazole. The differences are significant (percent ratio of capacitated and
acrosome-reacted cells) a:c; a:b; c:d; a:f; a:j; b:c; b:f; b:j; d:c; d:f; d:j; h:f; h:j at p < 0.001; d:e; a:e; a:h; b:e; b:h; d:h at p < 0.01 (Student’s t-test).

3.2. The Effect of PRG on Functional Status of Bull Spermatozoa during Acrosome Reaction

The effect of 10 ng/mL PRL on the time course of acrosome reaction in bovine sper-
matozoa is shown in Figure 5. The incubation of cells with PRL, without PRG, dur-
ing the acrosome reaction period resulted in a high percent of acrosome-reacted cells
(81%, p < 0.001) in comparison with intact and PRG-treated control groups (70% and 67%,
p < 0.001). Furthermore, the PRL-induced effect on stimulation of the acrosome reaction
process in spermatozoa was inhibited by nocodazole (70%, p < 0.001) versus PRL-treated
PRG-untreated group (81%, p < 0.001). The incubation of sperm cells with PRL or the mix-
ture with PRG, stimulated an undergoing of acrosome reaction in capacitated spermatozoa
(81% and 82%, respectively) in contrast with both control groups, which was canceled
under the action of nocodazole (70% and 69%, respectively, p < 0.001).

The effect of PRG on the acrosome reaction process activated by 100 µM dbcAMP
presented in Figure 6. The addition of dbcAMP to intact PRG-untreated sperm cells
had no effect on the time course of the acrosome reaction (78%, respectively, p < 0.001)
compared to intact and PRG-treated control groups (78% and 78%, respectively). The
pre-incubation of cells with PRG and subsequent exposure to dbcAMP increased the
number of capacitated cells compared to the spermatozoa incubated with dbcAMP only
(29% vs. 19, respectively, p < 0.001). During incubation of PRG-treated spermatozoa with
the cytoskeleton-depolymerized agent cytochalasin D, no significant changes in the ratio of
sperm cells with a different functional status caused by exposure to dbcAMP were observed
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(25% and 68% and 29% and 64%, respectively, p < 0.001), whereas the nocodazole promoted
the increase of acrosome-reacted sperm cells (15% and 78%, respectively, p < 0.001).
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Figure 5. The effect of 10 ng/mL PRL on the time course of acrosome reaction in bovine spermatozoa (total number of
counted cells-6400; number of experiments-4). 1—without any reagents (control); 2—with 10 ng/mL PRL; 3—with 10 ng/mL
PRL and 10 µM cytochalasin D; 4—with 10 ng/mL PRL and 10 µM nocodazole; 5—with 1 mg/mL PRG (control); 6—with
mg/mL PRG, 10 ng/mL PRL; 7—with 1 mg/mL PRG, 10 ng/mL PRL and 10 µM cytochalasin D; 8—with 1 mg/mL PRG,
10 ng/mL PRL and 10 µM nocodazole. The differences are significant (percent ratio of capacitated and acrosome-reacted
cells) a:b; a:c; a:f; a:j; d:b; d:e; d:f; d:j; e:b; e:c; e:f; e:j; h:b; h:e; h:f; h:j at p < 0.001 (Student’s t-test).
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Figure 6. The effect of PRG on the acrosome reaction process activated by 100 µM dbcAMP (total number of counted
cells-6400; number of experiments-4). 1—without any reagents (control); 2—with 100 µM dbcAMP; 3—with 100 µM
dbcAMP and 10 µM cytochalasin D; 4—with 100 µM dbcAMP and 10 µM nocodazole; 5—with 1 mg/mL PRG (control);
6—with mg/mL PRG, 100 µM dbcAMP; 7—with 1 mg/mL PRG, 100 µM dbcAMP and 10 µM cytochalasin D; 8—with
1 mg/mL PRG, 100 µM dbcAMP and 10 µM nocodazole. The differences are significant (percent ratio of capacitated and
acrosome-reacted cells) a:f; b:f; c:f; d:f; e:f; h:f at p < 0.001; a:j; b:j; c:j; d:j; e:j; h:j at p < 0.01 (Student’s t-test).

4. Discussion

In our experiments, in the absence of PRG, heparin and dbcAMP stimulated the
capacitation and did not affect the process of acrosome reaction in fresh sperm. PRL
worked in the opposite way—it increased the proportion of acrosome-reacted spermatozoa
and did not have an effect on cells at the capacitation stage.
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During capacitation, actin polymerization occurs in mammalian spermatozoa. Be-
fore the acrosome reaction, actin-cleaving proteins are activated, which leads to actin
depolymerization [27]. Actin polymerization is one of the mechanisms dependent on
capacitation that protects sperm from premature acrosome reaction [28]. Polymerization
of microtubules occurs during the acrosome reaction, which is necessary for the normal
fertilization process [29]. It can be assumed that the action of compounds, which acti-
vate the passage of capacitation, should be associated with the polymerization of actin;
compounds that stimulate the polymerization of microtubules are suitable to stimulate
the acrosome reaction. According to our results, the heparin-stimulated capacitation is
associated with the functioning of actin cytoskeleton, since the depolymerization of micro-
filaments mediated by cytochalasin D, caused the decrease in the proportion of capacitated
sperm cells. In buffalo spermatozoa during capacitation, dbcAMP also stimulates actin
polymerization [30]. Microtubules are necessary for implementation of effect of PRL during
the acrosome reaction period, since the simultaneous use of the inhibitor nocodazole led to
the dramatic drop in the proportion of acrosome-reacted cells in bovine spermatozoa. In
breast cancer cells, prolactin promotes actin regulation, thus enhancing cell movement [31].
Also, microtubules can participate in the transmission of the prolactin signal from the
receptor to the genes of milk protein [32]. The usage of homological follicular fluid for
incubation of bovine spermatozoa in various concentrations, containing a large amount of
PRG, promoted sperm capacitation and induced the acrosome reaction [5]. However, the
data on the effect of PRG on the acrosome reaction are controversial. It has been shown that
under certain conditions, PRG can stimulate the acrosome-associated processes, although
there are significant differences between the data presented in the articles of different
researchers [33,34].

Thus, in intact PRG-untreated bovine spermatozoa, capacitation activators (heparin,
dbcAMP) increase the number of capacitated cells only during process of capacitation,
and microfilaments are involved in this process. At the same time, an increase in the
number of acrosome-reacted cells under the action of PRL occurred only when spermatozoa
underwent the acrosome reaction with intact microtubules.

In intact (PRG-untreated) spermatozoa of bulls, PRL did not promote processes of
acrosome reaction during capacitation, while in sperm cells exposed with PRG, PRL ac-
tivated the acrosome reaction in capacitated spermatozoa. In intact bovine spermatozoa,
the effect of dbcAMP at the stage of the acrosome reaction had no effect on proportions of
spermatozoa with different functional status, whereas in the presence of PRG, dbcAMP
increased the percent of cells on capacitation stage. The action of dbcAMP during capacita-
tion in untreated sperm cells was associated with microfilaments; the effect of PRL during
the acrosome reaction was mediated by microtubules. At the same time, the effect of PRL
at the stage of capacitation and the effect of dbcAMP during the acrosome reaction, in the
presence of PRG, depended only on the intact microtubules.

Thus, in bovine spermatozoa treated with PRG, the effects of dbcAMP and PRL did
not depend on functional status of male gametes (capacitation or acrosome reaction). In this
case (treatment with PRG) dbcAMP always (both at the capacitation stage and at the stage
of acrosome reaction) increased the percent of capacitated spermatozoa, while PRL always
(at both stages) stimulated the growth in the proportion of acrosome-reacted spermatozoa.

After thawing bull sperm cells, their fertility is significantly reduced. The lower
fertility of cryopreserved semen is partly due to premature capacitation-like modifications
in considerable proportion of the sperm that affects the sample quality [35]. It has also
been shown that cryopreservation procedures destroys microfilaments in mammalian cells
and does not affect microtubules [36]. This finding raises the question of what the possible
mechanism is for showing additional capacitated sperm cells after thawing. This increase
likely occurs through the “intracellular mechanisms”, potentially due to the transformation
of spermatozoa from capacitation stage to acrosome-reacted. In the presence of PRG in fresh
bovine spermatozoa, all compounds, which activate processes of capacitation (heparin and
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dbcAMP) and acrosome reaction (prolactin), act through the microtubules, which remain
intact even after thawing (Figure 7).
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